#pragma once #include "llama-impl.h" #include "llama-hparams.h" #include "ggml-cpp.h" #include #include // // llama_adapter_cvec // // TODO: rename to llama_adapter_cvec struct llama_control_vector { std::vector ctxs; std::vector bufs; std::vector tensors; // per layer int32_t layer_start = -1; int32_t layer_end = -1; struct ggml_tensor * tensor_for(int il) const; struct ggml_tensor * apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const; }; int32_t llama_control_vector_apply( struct llama_control_vector & cvec, const llama_model & model, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end); // // llama_adapter_lora // // TODO: rename to llama_adapter_lora_weight struct llama_lora_weight { struct ggml_tensor * a = nullptr; struct ggml_tensor * b = nullptr; // get actual scale based on rank and alpha float get_scale(float alpha, float adapter_scale) { const float rank = (float) b->ne[0]; const float scale = alpha ? adapter_scale * alpha / rank : adapter_scale; return scale; } llama_lora_weight() = default; llama_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b) : a(a), b(b) {} }; // TODO: rename to llama_adapter_lora struct llama_lora_adapter { // map tensor name to lora_a_b std::unordered_map ab_map; std::vector ctxs; std::vector bufs; float alpha; llama_lora_adapter() = default; ~llama_lora_adapter() = default; llama_lora_weight * get_weight(struct ggml_tensor * w); };