#include "rope.cuh" struct rope_corr_dims { float v[2]; }; static __device__ float rope_yarn_ramp(const float low, const float high, const int i0) { const float y = (i0 / 2 - low) / max(0.001f, high - low); return 1.0f - min(1.0f, max(0.0f, y)); } // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng. static __device__ void rope_yarn( float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale, float * cos_theta, float * sin_theta) { // Get n-d rotational scaling corrected for extrapolation float theta_interp = freq_scale * theta_extrap; float theta = theta_interp; if (ext_factor != 0.0f) { float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor; theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix; // Get n-d magnitude scaling corrected for interpolation mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale); } *cos_theta = cosf(theta) * mscale; *sin_theta = sinf(theta) * mscale; } template<typename T, bool has_ff> static __global__ void rope_norm( const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows, float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors) { const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y); if (i0 >= ne0) { return; } const int row = blockDim.x*blockIdx.x + threadIdx.x; if (i0 >= n_dims) { const int i = row*ne0 + i0; dst[i + 0] = x[i + 0]; dst[i + 1] = x[i + 1]; return; } const int i = row*ne0 + i0; const int i2 = row/p_delta_rows; const float theta_base = pos[i2]*powf(theta_scale, i0/2.0f); const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f; float cos_theta; float sin_theta; rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta); const float x0 = x[i + 0]; const float x1 = x[i + 1]; dst[i + 0] = x0*cos_theta - x1*sin_theta; dst[i + 1] = x0*sin_theta + x1*cos_theta; } template<typename T, bool has_ff> static __global__ void rope_neox( const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows, float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors) { const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y); if (i0 >= ne0) { return; } const int row = blockDim.x*blockIdx.x + threadIdx.x; if (i0 >= n_dims) { const int i = row*ne0 + i0; dst[i + 0] = x[i + 0]; dst[i + 1] = x[i + 1]; return; } const int i = row*ne0 + i0/2; const int i2 = row/p_delta_rows; const float theta_base = pos[i2]*powf(theta_scale, i0/2.0f); const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f; float cos_theta; float sin_theta; rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta); const float x0 = x[i + 0]; const float x1 = x[i + n_dims/2]; dst[i + 0] = x0*cos_theta - x1*sin_theta; dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta; } template<typename T> static void rope_norm_cuda( const T * x, T * dst, int ne0, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) { GGML_ASSERT(ne0 % 2 == 0); const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1); const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE); const dim3 block_nums(nr, n_blocks_x, 1); const float theta_scale = powf(freq_base, -2.0f/n_dims); if (freq_factors == nullptr) { rope_norm<T, false><<<block_nums, block_dims, 0, stream>>>( x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims, theta_scale, freq_factors ); } else { rope_norm<T, true><<<block_nums, block_dims, 0, stream>>>( x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims, theta_scale, freq_factors ); } } template<typename T> static void rope_neox_cuda( const T * x, T * dst, int ne0, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) { GGML_ASSERT(ne0 % 2 == 0); const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1); const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE); const dim3 block_nums(nr, n_blocks_x, 1); const float theta_scale = powf(freq_base, -2.0f/n_dims); if (freq_factors == nullptr) { rope_neox<T, false><<<block_nums, block_dims, 0, stream>>>( x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims, theta_scale, freq_factors ); } else { rope_neox<T, true><<<block_nums, block_dims, 0, stream>>>( x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims, theta_scale, freq_factors ); } } static void rope_norm_cuda_f16( const half * x, half * dst, int ne0, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) { rope_norm_cuda<half>(x, dst, ne0, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream); } static void rope_norm_cuda_f32( const float * x, float * dst, int ne0, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) { rope_norm_cuda<float>(x, dst, ne0, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream); } static void rope_neox_cuda_f16( const half * x, half * dst, int ne0, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) { rope_neox_cuda<half>(x, dst, ne0, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream); } static void rope_neox_cuda_f32( const float * x, float * dst, int ne0, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream ) { rope_neox_cuda<float>(x, dst, ne0, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream); } void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; const ggml_tensor * src2 = dst->src[2]; const float * src0_d = (const float *)src0->data; const float * src1_d = (const float *)src1->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); GGML_ASSERT(src0->type == dst->type); const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; const int64_t nr = ggml_nrows(src0); //const int n_past = ((int32_t *) dst->op_params)[0]; const int n_dims = ((int32_t *) dst->op_params)[1]; const int mode = ((int32_t *) dst->op_params)[2]; //const int n_ctx = ((int32_t *) dst->op_params)[3]; const int n_ctx_orig = ((int32_t *) dst->op_params)[4]; // RoPE alteration for extended context float freq_base; float freq_scale; float ext_factor; float attn_factor; float beta_fast; float beta_slow; memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); const bool is_neox = mode & 2; const int32_t * pos = (const int32_t *) src1_d; const float * freq_factors = nullptr; if (src2 != nullptr) { freq_factors = (const float *) src2->data; } rope_corr_dims corr_dims; ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims.v); // compute if (is_neox) { if (src0->type == GGML_TYPE_F32) { rope_neox_cuda_f32( (const float *)src0_d, (float *)dst_d, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream ); } else if (src0->type == GGML_TYPE_F16) { rope_neox_cuda_f16( (const half *)src0_d, (half *)dst_d, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream ); } else { GGML_ASSERT(false); } } else { if (src0->type == GGML_TYPE_F32) { rope_norm_cuda_f32( (const float *)src0_d, (float *)dst_d, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream ); } else if (src0->type == GGML_TYPE_F16) { rope_norm_cuda_f16( (const half *)src0_d, (half *)dst_d, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream ); } else { GGML_ASSERT(false); } } }