#include "sumrows.cuh" static __global__ void k_sum_rows_f32(const float * x, float * dst, const int ncols) { const int row = blockIdx.x; const int col = threadIdx.x; float sum = 0.0f; for (int i = col; i < ncols; i += blockDim.x) { sum += x[row * ncols + i]; } sum = warp_reduce_sum(sum); if (col == 0) { dst[row] = sum; } } static void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) { const dim3 block_dims(WARP_SIZE, 1, 1); const dim3 block_nums(nrows, 1, 1); k_sum_rows_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols); } void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); GGML_ASSERT(ggml_is_contiguous(src0)); const int64_t ncols = src0->ne[0]; const int64_t nrows = ggml_nrows(src0); sum_rows_f32_cuda(src0_d, dst_d, ncols, nrows, stream); }