#include "ggml-backend.h" #include #include #include #include #include #define UNUSED(x) (void)(x) // allocator static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) { assert(alignment && !(alignment & (alignment - 1))); // power of 2 size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment; return offset + align; } static inline size_t ggml_backend_buffer_get_alloc_size(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) { return alloc->interface.get_alloc_size(alloc, tensor); } static inline void ggml_backend_buffer_init_tensor(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) { alloc->interface.init_tensor(alloc, tensor); } void ggml_backend_buffer_free(struct ggml_backend_buffer * alloc) { alloc->interface.free_buffer(alloc); free(alloc); } // backend buffer allocator - simple - cannot free tensors, good for weights and small contexts struct ggml_allocator_simple_context { void * data; size_t size; size_t offset; size_t alignment; }; static void ggml_allocator_simple_free_buffer(struct ggml_backend_buffer * alloc) { struct ggml_allocator_simple_context * context = (struct ggml_allocator_simple_context *)alloc->context; free(context); } #define MAX(a, b) ((a) > (b) ? (a) : (b)) static void ggml_allocator_simple_alloc_tensor(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) { struct ggml_allocator_simple_context * context = (struct ggml_allocator_simple_context *)alloc->context; size_t size = ggml_backend_buffer_get_alloc_size(alloc, tensor); if (!alloc->measure && context->offset + size > context->size) { fprintf(stderr, "%s: not enough space in the buffer (needed %zu, available %zu)\n", __func__, size, context->size - context->offset); GGML_ASSERT(!"not enough space in the buffer"); return; } alloc->max_size = MAX(alloc->max_size, context->offset + size); if (alloc->measure) { tensor->data = NULL; } else { tensor->data = (char*)context->data + context->offset; if (alloc->interface.init_tensor) { ggml_backend_buffer_init_tensor(alloc, tensor); } } context->offset = aligned_offset(context->data, context->offset + size, context->alignment); } static void ggml_allocator_simple_free_tensor(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) { GGML_ASSERT(!"ggml_simple_allocator cannot free individual tensors"); UNUSED(alloc); UNUSED(tensor); } static void ggml_allocator_simple_reset(struct ggml_backend_buffer * alloc) { struct ggml_allocator_simple_context * context = (struct ggml_allocator_simple_context *)alloc->context; context->offset = aligned_offset(context->data, 0, context->alignment); } size_t ggml_allocator_simple_get_alloc_size(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) { return ggml_nbytes(tensor); UNUSED(alloc); } static const struct ggml_backend_buffer_interface ggml_allocator_simple_interface = { /* .free_buffer = */ ggml_allocator_simple_free_buffer, /* .alloc_tensor = */ ggml_allocator_simple_alloc_tensor, /* .free_tensor = */ ggml_allocator_simple_free_tensor, /* .reset = */ ggml_allocator_simple_reset, /* .get_alloc_size = */ ggml_allocator_simple_get_alloc_size, /* .init_tensor = */ NULL, /* .free_data = */ NULL, }; static struct ggml_backend_buffer * ggml_allocator_simple_init(void * data, size_t size, size_t alignment) { struct ggml_allocator_simple_context * ctx = malloc(sizeof(struct ggml_allocator_simple_context)); ctx->data = data; ctx->size = size; ctx->offset = aligned_offset(data, 0, alignment); ctx->alignment = alignment; struct ggml_backend_buffer * allocator = malloc(sizeof(struct ggml_backend_buffer)); *allocator = (struct ggml_backend_buffer){ /* .interface = */ ggml_allocator_simple_interface, /* .context = */ ctx, /* .backend = */ NULL, /* .backend_data = */ NULL, /* .measure = */ false, /* .max_size = */ 0, }; return allocator; } // struct ggml_backend_buffer * ggml_allocator_default_init(void * data, size_t size, size_t alignment) { return ggml_allocator_simple_init(data, size, alignment); } // buffer struct ggml_buffer * ggml_buffer_alloc(struct ggml_backend * backend, size_t size, size_t max_tensors) { struct ggml_buffer * buffer = malloc(sizeof(struct ggml_buffer)); buffer->mem_size = ggml_tensor_overhead() * max_tensors; buffer->mem_buffer = malloc(buffer->mem_size); size += 128 * max_tensors; // alignment overhead buffer->backend_buffer = backend->interface.alloc_buffer(backend, size); buffer->backend_buffer->backend = backend; return buffer; } struct ggml_buffer * ggml_buffer_measure_alloc(struct ggml_backend * backend, size_t max_tensors) { struct ggml_buffer * buffer = ggml_buffer_alloc(backend, 0, max_tensors); buffer->backend_buffer->measure = true; return buffer; } void ggml_buffer_free(struct ggml_buffer * buffer) { ggml_backend_buffer_free(buffer->backend_buffer); free(buffer->mem_buffer); free(buffer); } // backend copy static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { if (a->type != b->type) { return false; } for (int i = 0; i < GGML_MAX_DIMS; i++) { if (a->ne[i] != b->ne[i]) { return false; } if (a->nb[i] != b->nb[i]) { return false; } } return true; } void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) { //printf("src: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", src->name, (int)src->ne[0], (int)src->ne[1], (int)src->ne[2], (int)src->ne[3], (int)src->nb[0], (int)src->nb[1], (int)src->nb[2], (int)src->nb[3]); //printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]); GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts"); // printf("cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src)); if (src == dst) { return; } if (dst->backend->interface.cpy_tensor_from != NULL) { dst->backend->interface.cpy_tensor_from(dst->backend->context, src, dst); } else if (src->backend->interface.cpy_tensor_to != NULL) { src->backend->interface.cpy_tensor_to(src->backend->context, src, dst); } else { // not ideal, but shouldn't be hit when copying from/to CPU // TODO: print a performance warning in debug builds size_t nbytes = ggml_nbytes(src); void * data = malloc(nbytes); ggml_backend_tensor_get(src, data, 0, nbytes); ggml_backend_tensor_set(dst, data, 0, nbytes); free(data); } } // backend CPU struct ggml_backend_cpu_context { int n_threads; void * work_data; size_t work_size; }; static const char * ggml_backend_cpu_name(struct ggml_backend * backend) { return "CPU"; UNUSED(backend); } static void ggml_backend_cpu_free(struct ggml_backend * backend) { struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; free(cpu_ctx->work_data); free(cpu_ctx); free(backend); } static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512 static void ggml_backend_cpu_free_buffer(struct ggml_backend_buffer * alloc) { free(alloc->backend_data); } static struct ggml_backend_buffer * ggml_backend_cpu_alloc_buffer(struct ggml_backend * backend, size_t size) { void * data = malloc(size); struct ggml_backend_buffer * buffer = ggml_allocator_default_init(data, size, TENSOR_ALIGNMENT); buffer->interface.free_data = ggml_backend_cpu_free_buffer; buffer->backend_data = data; return buffer; UNUSED(backend); } static void ggml_backend_cpu_set_tensor_async(struct ggml_backend * backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds"); GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); memcpy((char *)tensor->data + offset, data, size); UNUSED(backend); } static void ggml_backend_cpu_get_tensor_async(struct ggml_backend * backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds"); GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); memcpy(data, (const char *)tensor->data + offset, size); UNUSED(backend); } static void ggml_backend_cpu_synchronize(struct ggml_backend * backend) { UNUSED(backend); } static void ggml_backend_cpu_cpy_tensor_from(struct ggml_backend * backend, struct ggml_tensor * src, struct ggml_tensor * dst) { ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src)); UNUSED(backend); } static void ggml_backend_cpu_cpy_tensor_to(struct ggml_backend * backend, struct ggml_tensor * src, struct ggml_tensor * dst) { // for a backend such as CUDA that can queue async calls, it is ok to do this asynchronously, but it may not be the case for other backends ggml_backend_tensor_set_async(dst, src->data, 0, ggml_nbytes(src)); UNUSED(backend); } struct ggml_backend_cpu_plan { struct ggml_cplan cplan; struct ggml_cgraph cgraph; }; static ggml_graph_plan_t ggml_backend_cpu_graph_plan_create(struct ggml_backend * backend, struct ggml_cgraph * cgraph) { struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; struct ggml_backend_cpu_plan * cpu_plan = malloc(sizeof(struct ggml_backend_cpu_plan)); cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads); cpu_plan->cgraph = *cgraph; if (cpu_plan->cplan.work_size > 0) { cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size); } return cpu_plan; } static void ggml_backend_cpu_graph_plan_free(struct ggml_backend * backend, ggml_graph_plan_t plan) { struct ggml_backend_cpu_plan * cpu_plan = (struct ggml_backend_cpu_plan *)plan; free(cpu_plan->cplan.work_data); free(cpu_plan); UNUSED(backend); } static void ggml_backend_cpu_graph_plan_compute(struct ggml_backend * backend, ggml_graph_plan_t plan) { struct ggml_backend_cpu_plan * cpu_plan = (struct ggml_backend_cpu_plan *)plan; ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan); UNUSED(backend); } static void ggml_backend_cpu_graph_compute(struct ggml_backend * backend, struct ggml_cgraph * cgraph) { struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads); if (cpu_ctx->work_size < cplan.work_size) { // TODO: may be faster to free and use malloc to avoid the copy cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size); cpu_ctx->work_size = cplan.work_size; } cplan.work_data = cpu_ctx->work_data; ggml_graph_compute(cgraph, &cplan); } static struct ggml_backend_interface cpu_backend_interface = { /* .get_name = */ ggml_backend_cpu_name, /* .free = */ ggml_backend_cpu_free, /* .alloc_buffer = */ ggml_backend_cpu_alloc_buffer, /* .set_tensor_async = */ ggml_backend_cpu_set_tensor_async, /* .get_tensor_async = */ ggml_backend_cpu_get_tensor_async, /* .synchronize = */ ggml_backend_cpu_synchronize, /* .cpy_tensor_from = */ ggml_backend_cpu_cpy_tensor_from, /* .cpy_tensor_to = */ ggml_backend_cpu_cpy_tensor_to, /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create, /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free, /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute, /* .graph_compute = */ ggml_backend_cpu_graph_compute }; struct ggml_backend * ggml_backend_cpu_init(void) { struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context)); ctx->n_threads = GGML_DEFAULT_N_THREADS; ctx->work_data = NULL; ctx->work_size = 0; struct ggml_backend * cpu_backend = malloc(sizeof(struct ggml_backend)); *cpu_backend = (struct ggml_backend) { /* .interface = */ cpu_backend_interface, /* .context = */ ctx }; return cpu_backend; } void ggml_backend_cpu_set_n_threads(struct ggml_backend * backend_cpu, int n_threads) { struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context; ctx->n_threads = n_threads; } // splits struct ggml_graph_splits ggml_graph_split_init(void) { struct ggml_graph_splits splits = {0}; return splits; } // TODO: this can be removed after allocating the graphs in a ggml_context void ggml_graph_splits_free(struct ggml_graph_splits * splits) { for (int i = 0; i < splits->n_splits; i++) { if (splits->splits[i].graph) { free(splits->splits[i].graph); } } } void ggml_graph_splits_add_n_va(struct ggml_graph_splits * splits, struct ggml_tensor *** inputs, struct ggml_context * ctx, const char * fmt, va_list args) { GGML_ASSERT(splits->n_splits < GGML_MAX_SPLITS); struct ggml_graph_split * split = &splits->splits[splits->n_splits]; // check if the split is on the same backend as the previous one // FIXME: need to check all the inputs if ((*inputs[0])->backend == ggml_get_ctx_backend(ctx)) { if (splits->n_splits == 0) { // always add the first split int i = 0; while (inputs[i] != NULL) { GGML_ASSERT(i < GGML_MAX_SPLIT_INPUTS); split->src_inputs[i] = *inputs[i]; split->dst_inputs[i] = *inputs[i]; i++; } split->src_inputs[i] = NULL; split->dst_inputs[i] = NULL; } else { // add to the previous split char name[GGML_MAX_NAME - 2]; int n = vsnprintf(name, sizeof(name), fmt, args); char new_name[GGML_MAX_NAME]; snprintf(new_name, sizeof(new_name), "%.*s,%s", GGML_MAX_NAME - n - 2, splits->splits[splits->n_splits - 1].name, name); strcpy(splits->splits[splits->n_splits - 1].name, new_name); return; } } else { // add a new split int i = 0; while (inputs[i] != NULL) { GGML_ASSERT(i < GGML_MAX_SPLIT_INPUTS); split->src_inputs[i] = *inputs[i]; split->dst_inputs[i] = ggml_dup_tensor(ctx, *inputs[i]); // TODO: maybe support different layings in ggml_backend_cpy_tensor instead for (int j = 0; j < GGML_MAX_DIMS; j++) { split->dst_inputs[i]->nb[j] = split->src_inputs[i]->nb[j]; } ggml_set_name(split->dst_inputs[i], ggml_get_name(*inputs[i])); *inputs[i] = split->dst_inputs[i]; i++; } split->src_inputs[i] = NULL; split->dst_inputs[i] = NULL; } vsnprintf(split->name, GGML_MAX_NAME, fmt, args); split->graph = NULL; splits->n_splits++; } void ggml_graph_splits_add_n(struct ggml_graph_splits * splits, struct ggml_tensor *** input, struct ggml_context * ctx, const char * fmt, ...) { va_list args; va_start(args, fmt); ggml_graph_splits_add_n_va(splits, input, ctx, fmt, args); va_end(args); } void ggml_graph_splits_add(struct ggml_graph_splits * splits, struct ggml_tensor ** input, struct ggml_context * ctx, const char * fmt, ...) { va_list args; va_start(args, fmt); ggml_graph_splits_add_n_va(splits, (struct ggml_tensor**[2]){ input, NULL }, ctx, fmt, args); va_end(args); } void ggml_graph_splits_build_forward(struct ggml_graph_splits * splits, struct ggml_tensor * output) { struct ggml_tensor *last_outputs[2] = { output, NULL }; struct ggml_tensor ** outputs; for (int i = 0; i < splits->n_splits; i++) { struct ggml_graph_split * split = &splits->splits[i]; if (i < splits->n_splits - 1) { outputs = splits->splits[i + 1].src_inputs; } else { outputs = last_outputs; } // build the graph // TODO: allocate graphs in context split->graph = (struct ggml_cgraph *) malloc(sizeof(struct ggml_cgraph)); memset(split->graph, 0, sizeof(struct ggml_cgraph)); for (int j = 0; outputs[j] != NULL; j++) { ggml_build_forward_expand(split->graph, outputs[j]); } for (int j = 1; j < split->graph->n_nodes; j++) { if (split->graph->nodes[j]->backend != split->graph->nodes[0]->backend) { fprintf(stderr, "split %s: node %s has different backend (%s) than the first node (%s)\n", split->name, split->graph->nodes[j]->name, ggml_backend_name(split->graph->nodes[j]->backend), ggml_backend_name(split->graph->nodes[0]->backend)); } } for (int j = 1; j < split->graph->n_leafs; j++) { if (split->graph->leafs[j]->backend != split->graph->leafs[0]->backend) { fprintf(stderr, "split %s: leaf %s has different backend (%s) than the first leaf (%s)\n", split->name, split->graph->leafs[j]->name, ggml_backend_name(split->graph->leafs[j]->backend), ggml_backend_name(split->graph->leafs[0]->backend)); } } } // close graphs for (int i = 0; i < splits->n_splits; i++) { struct ggml_graph_split * split = &splits->splits[i]; ggml_graph_close(split->graph); } } void ggml_graph_splits_compute(struct ggml_graph_splits * splits) { uint64_t copy_us = 0; uint64_t compute_cpu_us = 0; uint64_t compute_gpu_us = 0; int n_nodes = 0; for (int i = 0; i < splits->n_splits; i++) { struct ggml_graph_split * split = &splits->splits[i]; //printf("computing split %i (%s) on backend %s (%i nodes)\n", i, split->name, ggml_backend_name(split->dst_inputs[0]->backend), split->graph->n_nodes); // copy the input tensor to the backend uint64_t copy_start_us = ggml_time_us(); for (int j = 0; split->src_inputs[j] != NULL; j++) { //printf("\tcopying tensor %d (%s) (%lu bytes)\n", j, split->src_inputs[j]->name, ggml_nbytes(split->src_inputs[j])); ggml_backend_tensor_copy(split->src_inputs[j], split->dst_inputs[j]); } // ggml_backend_synchronize(split->dst_inputs[0]->backend); copy_us += ggml_time_us() - copy_start_us; #if 0 char split_filename[GGML_MAX_NAME]; snprintf(split_filename, GGML_MAX_NAME, "split_%i.dot", i); ggml_graph_dump_dot(split->graph, NULL, split_filename); #endif uint64_t start = ggml_time_us(); ggml_backend_graph_compute(split->dst_inputs[0]->backend, split->graph); //ggml_backend_synchronize(split->dst_inputs[0]->backend); uint64_t end = ggml_time_us(); if (strcmp(ggml_backend_name(split->dst_inputs[0]->backend), "CPU") == 0) { compute_cpu_us += end - start; } else { compute_gpu_us += end - start; } n_nodes += split->graph->n_nodes; } //printf("splits: %d, nodes: %d, copy: %.2fms, compute_cpu: %.2fms, compute_gpu: %.2fms\n", splits->n_splits, n_nodes, copy_us / 1000.0, compute_cpu_us / 1000.0, compute_gpu_us / 1000.0); //exit(0); } #if 0 // default allocator struct free_block { void * addr; size_t size; }; struct ggml_backend_default_allocator_context { void * data; size_t alignment; int n_free_blocks; struct free_block free_blocks[]; }; void ggml_backend_default_allocator_free_context(ggml_allocator_context_t ctx) { struct ggml_backend_default_allocator_context * allocator_ctx = ctx; free(allocator_ctx); } ggml_allocator_context_t ggml_backend_default_allocator_context(void * data, size_t size, size_t alignment, int n_free_blocks) { struct ggml_backend_default_allocator_context * ctx = malloc(sizeof(struct ggml_backend_default_allocator_context) + n_free_blocks * sizeof(struct free_block)); ctx->data = data; ctx->alignment = alignment; ctx->n_free_blocks = 1; size_t align_offset = align_offset(data, alignment); ctx->free_blocks[0].addr = (char *)data + align_offset; ctx->free_blocks[0].size = size - align_offset; return ctx; } void * ggml_backend_default_allocator_alloc(ggml_allocator_context_t ctx, size_t size) { struct ggml_backend_default_allocator_context * allocator_ctx = ctx; size = align_size(size, allocator_ctx->alignment); // find a free block for (int i = 0; i < allocator_ctx->n_free_blocks; i++) { struct free_block * block = &allocator_ctx->free_blocks[i]; if (block->size >= size) { void * addr = block->addr; block->addr += size; block->size -= size; if (block->size == 0) { // remove block if empty allocator_ctx->n_free_blocks--; for (int j = i; j < allocator_ctx->n_free_blocks; j++) { allocator_ctx->free_blocks[j] = allocator_ctx->free_blocks[j+1]; } } return addr; } } return NULL; } // this is a very naive implementation, but for our case the number of free blocks should be very small void ggml_backend_default_allocator_free(ggml_allocator_context_t ctx, void * ptr, size_t size) { struct ggml_backend_default_allocator_context * allocator_ctx = ctx; size = align_size(size, allocator_ctx->alignment); // see if we can merge with an existing block for (int i = 0; i < allocator_ctx->n_free_blocks; i++) { struct free_block * block = &allocator_ctx->free_blocks[i]; // check if ptr is at the end of the block if (block->addr + block->size == ptr) { block->size += size; // check if we can merge with the next block if (i < allocator_ctx->n_free_blocks - 1 && block->addr + block->size == allocator_ctx->free_blocks[i+1].addr) { block->size += allocator_ctx->free_blocks[i+1].size; allocator_ctx->n_free_blocks--; for (int j = i+1; j < allocator_ctx->n_free_blocks; j++) { allocator_ctx->free_blocks[j] = allocator_ctx->free_blocks[j+1]; } } return; } // check if ptr is at the beginning of the block if (ptr + size == block->addr) { block->addr = ptr; block->size += size; // check if we can merge with the previous block if (i > 0 && allocator_ctx->free_blocks[i-1].addr + allocator_ctx->free_blocks[i-1].size == block->addr) { allocator_ctx->free_blocks[i-1].size += block->size; allocator_ctx->n_free_blocks--; for (int j = i; j < allocator_ctx->n_free_blocks; j++) { allocator_ctx->free_blocks[j] = allocator_ctx->free_blocks[j+1]; } } return; } } // otherwise, add a new block if (allocator_ctx->n_free_blocks < MAX_FREE_BLOCKS) { // insert the new block in the correct position to keep the array sorted int insert_pos = 0; while (insert_pos < allocator_ctx->n_free_blocks && allocator_ctx->free_blocks[insert_pos].addr < ptr) { insert_pos++; } // shift all blocks from insert_pos onward to make room for the new block for (int i = allocator_ctx->n_free_blocks; i > insert_pos; i--) { allocator_ctx->free_blocks[i] = allocator_ctx->free_blocks[i-1]; } // insert the new block allocator_ctx->free_blocks[insert_pos].addr = ptr; allocator_ctx->free_blocks[insert_pos].size = size; allocator_ctx->n_free_blocks++; } else { GGML_ASSERT(!"out of free blocks"); } } static bool ggml_is_view(struct ggml_tensor * t) { return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE || t->op == GGML_OP_PERMUTE || t->op == GGML_OP_NONE; } NOTE: id can be n_leaf OR n_node instead, we can determine the type by checking if the node is a leaf or not void allocate_graph(struct ggml_cgraph * gf, struct ggml_buffer * buffer) { int node_children_count[GGML_MAX_NODES*2]; int node_view_count[GGML_MAX_NODES*2]; memset(node_children_count, 0, sizeof(int) * (gf->n_nodes + gf->n_leafs)); memset(node_view_count, 0, sizeof(int) * (gf->n_nodes + gf->n_leafs)); // count number of children and views for (int i = 0; i < gf->n_nodes; i++) { struct ggml_tensor * node = gf->nodes[i]; for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * parent = node->src[j]; if (parent == NULL) { break; } // todo: .... node_children_count[parent->id] += 1; if (ggml_is_view(parent)) { struct ggml_tensor * ancestor = parent; do { node_view_count[ancestor->id] += 1; ancestor = ancestor->src[0]; } while (ggml_is_view(ancestor)); } } } // allocate tensors for (int i = 0; i < gf->n_nodes; i++) { struct ggml_tensor * node = gf->nodes[i]; bool is_view = ggml_is_view(node); if (is_view) { // allocate view accordingly to the OP node->data = node->src[0]->data; // + offset struct ggml_tensor * ancestor = node->src[0]; while (ggml_is_view(ancestor)) { ancestor = ancestor->src[0]; } node_view_count[ancestor->id] -= 1; } else { if (node->data == NULL) { // allocate tensor // TODO: if last children and size == parent.size, then reuse parent tensor (auto in-place) // may need a list of ops that can be in-place ggml_backend_alloc_tensor(buffer, node); } } // update parents for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * parent = node->src[j]; if (parent == NULL) { break; } if (is_view) { node_view_count[parent->id] -= 1; } node_children_count[parent->id] -= 1; if (node_children_count[parent->id] == 0 && node_view_count[parent->id] == 0) { // free parent ggml_backend_free_tensor(buffer, parent); } } } } #endif void ggml_graph_allocate_tensors(struct ggml_cgraph * graph) { ggml_graph_allocate_tensors_n(&graph, 1); } void ggml_graph_allocate_tensors_n(struct ggml_cgraph ** graphs, int n_graphs) { } void ggml_graph_splits_allocate_tensors(struct ggml_graph_splits * splits) { bool visited[GGML_MAX_SPLITS] = {false}; for (int i = 0; i < splits->n_splits; i++) { if (!visited[i]) { struct ggml_graph_split * split = &splits->splits[i]; struct ggml_backend * backend = split->dst_inputs[0]->backend; // not great struct ggml_cgraph * backend_graphs[GGML_MAX_SPLITS]; int num_graphs = 0; for (int j = i; j < splits->n_splits; j++) { if (splits->splits[j].dst_inputs[0]->backend == backend) { backend_graphs[num_graphs++] = splits->splits[j].graph; visited[j] = true; // TODO: need to ensure that the output tensors are never freed // maybe this can be done automatically in ggml_graph_calc_compute_buffer_size by assuming that n_childs == 0 => output tensor } } ggml_graph_allocate_tensors_n(backend_graphs, num_graphs); } } }