#include "clip.h" #include "common.h" #include "llama.h" #include "llava.h" #include "base64.hpp" #include <cstdio> #include <cstdlib> #include <vector> #include <numeric> // RGB uint8 image struct clip_image_u8 { int nx; int ny; std::vector<uint8_t> buf; }; // RGB float32 image (NHWC) // Memory layout: RGBRGBRGB... struct clip_image_f32 { int nx; int ny; std::vector<float> buf; }; struct clip_image_grid_shape { int first; int second; }; /** * Selects the best resolution from a list of possible resolutions based on the original size. * * @param original_size The original size of the image in the format (width, height). * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...]. * @return The best fit resolution in the format (width, height). */ static std::pair<int, int> select_best_resolution(const std::pair<int, int>& original_size, const std::vector<std::pair<int, int>>& possible_resolutions) { int original_width = original_size.first; int original_height = original_size.second; std::pair<int, int> best_fit; int max_effective_resolution = 0; int min_wasted_resolution = std::numeric_limits<int>::max(); for (const auto& resolution : possible_resolutions) { int width = resolution.first; int height = resolution.second; float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height); int downscaled_width = static_cast<int>(original_width * scale); int downscaled_height = static_cast<int>(original_height * scale); int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height); int wasted_resolution = (width * height) - effective_resolution; // LOG_TEE("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution); if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) { max_effective_resolution = effective_resolution; min_wasted_resolution = wasted_resolution; best_fit = resolution; } } return best_fit; } /** * @brief Get the anyres image grid shape object * * @param image_size * @param grid_pinpoints * @param image_patch_size * @return <int, int> */ static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<int, int> & image_size, const std::vector<std::pair<int, int>> & grid_pinpoints, int image_patch_size) { /** Conversion from gguf flat array to vector: std::vector<std::pair<int, int>> possible_resolutions; for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) { possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]}); } */ auto best_resolution = select_best_resolution(image_size, grid_pinpoints); return {best_resolution.first / image_patch_size, best_resolution.second / image_patch_size}; } // Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out) static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) { struct { struct ggml_context * ctx; } model; const int32_t image_size = clip_image_size(ctx_clip); const int32_t patch_size = clip_patch_size(ctx_clip); int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches) int num_patches_width = grid_shape.first; // grid 1-4 int num_patches_height = grid_shape.second; // grid 1-4 const size_t num_images = num_patches_width * num_patches_height + 1; // TODO: size calculation is not calculated - it's only tens of MB size_t ctx_size = 0; { ctx_size += clip_embd_nbytes(ctx_clip) * num_images * 8; // image_features ctx_size += 1024*1024 * ggml_type_size(GGML_TYPE_F32); } struct ggml_init_params params { /*.mem_size =*/ ctx_size, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ false, // NOTE: this should be false when using the legacy API }; // Python reference code for full unpad: /* base_image_feature = image_feature[0] image_feature = image_feature[1:] image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous() image_feature = image_feature.flatten(1, 2).flatten(2, 3) image_feature = unpad_image(image_feature, image_sizes[image_idx]) image_feature = torch.cat(( image_feature, self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1) ), dim=-1) image_feature = image_feature.flatten(1, 2).transpose(0, 1) image_feature = torch.cat((base_image_feature, image_feature), dim=0) */ // We now have two options: unpad or no unpad. Unpad removes tokens for faster llm eval. // In terms of result quality it appears to make no difference, so we'll start with the easier approach given 5D tensors are not supported in ggml yet. // Without unpad we have to split the sub-image embeddings into patches of 24 features each and permute them. // Once all images are processed to prepended the base_image_features without any changes. // Pytorch reference simplified, modified for ggml compatibility - confirmed identical output in python (for a 2x2 grid image (676x676 scaling)) /* image_feature = image_feature.view(2, 2, 24, 24, 4096) image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous() image_feature = image_feature.view(2, 24, 2, 24, 4096) image_feature = image_feature.flatten(0, 3) // Reshape to 4D tensor by merging the last two dimensions image_feature = image_feature.view(2, 2, 24, 24*4096) image_feature = image_feature.permute(0, 2, 1, 3).contiguous() image_feature = image_feature.view(-1, 4096) */ model.ctx = ggml_init(params); struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4 // ggml_tensor_printf(image_features,"image_features",__LINE__,false,false); // fill it with the image embeddings, ignoring the base for (size_t i = 1; i < num_images; i++) { size_t offset = (i-1) * clip_embd_nbytes(ctx_clip); memcpy((uint8_t *)(image_features->data) + offset, image_embd_v[i], clip_embd_nbytes(ctx_clip)); } struct ggml_cgraph * gf = ggml_new_graph(model.ctx); size_t size_ele = ggml_type_size(GGML_TYPE_F32); struct ggml_tensor *image_features_patchview = ggml_view_4d(model.ctx, image_features, num_patches_per_side * clip_n_mmproj_embd(ctx_clip), num_patches_per_side, num_patches_width, num_patches_height, size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip), size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side, size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side * num_patches_width, 0); // ggml_tensor_printf(image_features_patchview,"image_features_patchview",__LINE__,false,false); struct ggml_tensor *permuted_cont = ggml_cont(model.ctx, ggml_permute(model.ctx, image_features_patchview, 0, 2, 1, 3)); /** At the end of each row we have to add the row_end embeddings, which are the same as the newline embeddings image_feature = torch.cat(( image_feature, self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device) ), dim=-1) * */ // ggml_tensor_printf(permuted_cont,"permuted_cont",__LINE__,false,false); struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side, size_ele * clip_n_mmproj_embd(ctx_clip), 0); // ggml_tensor_printf(flatten,"flatten",__LINE__,false,false); ggml_build_forward_expand(gf, flatten); ggml_graph_compute_with_ctx(model.ctx, gf, 1); struct ggml_tensor* result = gf->nodes[gf->n_nodes - 1]; memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context // append without newline tokens (default behavior in llava_arch when not using unpad ): memcpy(image_embd_out + clip_n_patches(ctx_clip) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches *n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_patches(ctx_clip)); // Debug: Test single segments // Current findings: sending base image, sending a segment embedding all works similar to python // However, permuted embeddings do not work yet (stride issue?) // memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as context // memcpy(image_embd_out, (float*)prepared_cont->data, clip_embd_nbytes(ctx_clip)); // main image as context // *n_img_pos_out=576; ggml_free(model.ctx); return true; } static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) { // std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336 clip_image_f32_batch img_res_v; img_res_v.size = 0; img_res_v.data = nullptr; if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) { LOG_TEE("%s: unable to preprocess image\n", __func__); delete[] img_res_v.data; return false; } const int64_t t_img_enc_start_us = ggml_time_us(); const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip); if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) { // flat / default llava-1.5 type embedding *n_img_pos = clip_n_patches(ctx_clip); bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096 delete[] img_res_v.data; if (!encoded) { LOG_TEE("Unable to encode image\n"); return false; } } else { // spatial_unpad llava-1.6 type embedding // TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working std::vector<float *> image_embd_v; image_embd_v.resize(img_res_v.size); for (size_t i = 0; i < img_res_v.size; i++) { image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184 const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside if (!encoded) { LOG_TEE("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size); return false; } } const int64_t t_img_enc_batch_us = ggml_time_us(); LOG_TEE("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0); const int32_t * image_grid = clip_image_grid(ctx_clip); std::vector<std::pair<int, int>> grid_pinpoints; for (int i = 0; i < 32 && image_grid[i] != 0; i += 2) { grid_pinpoints.push_back({image_grid[i], image_grid[i+1]}); } // free all img_res_v - not needed anymore delete[] img_res_v.data; img_res_v.size = 0; img_res_v.data = nullptr; const int32_t image_size = clip_image_size(ctx_clip); struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size); int n_img_pos_out; clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out); *n_img_pos = n_img_pos_out; for (size_t i = 0; i < image_embd_v.size(); i++) { free(image_embd_v[i]); } image_embd_v.clear(); // debug image/segment/normalization content: // clip_image_u8 * tmp = clip_image_u8_init(); // clip_image_convert_f32_to_u8(*image_feature, *tmp); // clip_image_save_to_bmp(*tmp, "image_feature.bmp"); } LOG_TEE("%s: image embedding created: %d tokens\n", __func__, *n_img_pos); const int64_t t_img_enc_end_us = ggml_time_us(); float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0; LOG_TEE("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos); return true; } bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) { // make sure that the correct mmproj was used, i.e., compare apples to apples int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama)); auto n_image_embd = clip_n_mmproj_embd(ctx_clip); if (n_image_embd != n_llama_embd) { LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd); return false; } return true; } bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) { float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*6); // TODO: base on gridsize/llava model if (!image_embd) { LOG_TEE("Unable to allocate memory for image embeddings\n"); return false; } int n_img_pos; if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) { LOG_TEE("%s: cannot encode image, aborting\n", __func__); free(image_embd); return false; } *image_embd_out = image_embd; *n_img_pos_out = n_img_pos; return true; } bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) { int n_embd = llama_n_embd(llama_get_model(ctx_llama)); for (int i = 0; i < image_embed->n_image_pos; i += n_batch) { int n_eval = image_embed->n_image_pos - i; if (n_eval > n_batch) { n_eval = n_batch; } llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, }; if (llama_decode(ctx_llama, batch)) { LOG_TEE("%s : failed to eval\n", __func__); return false; } *n_past += n_eval; } return true; } struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) { clip_image_u8 * img = clip_image_u8_init(); if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) { clip_image_u8_free(img); LOG_TEE("%s: can't load image from bytes, is it a valid image?", __func__); return NULL; } float* image_embed = NULL; int n_image_pos = 0; bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, img, &image_embed, &n_image_pos); if (!image_embed_result) { clip_image_u8_free(img); LOG_TEE("%s: coulnd't embed the image\n", __func__); return NULL; } clip_image_u8_free(img); auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed)); result->embed = image_embed; result->n_image_pos = n_image_pos; return result; } static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) { auto file = fopen(path, "rb"); if (file == NULL) { LOG_TEE("%s: can't read file %s\n", __func__, path); return false; } fseek(file, 0, SEEK_END); auto fileSize = ftell(file); fseek(file, 0, SEEK_SET); auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data if (buffer == NULL) { LOG_TEE("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path); perror("Memory allocation error"); fclose(file); return false; } errno = 0; size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer if (ferror(file)) { die_fmt("read error: %s", strerror(errno)); } if (ret != (size_t) fileSize) { die("unexpectedly reached end of file"); } fclose(file); // Close the file *bytesOut = buffer; *sizeOut = fileSize; return true; } struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) { unsigned char* image_bytes; long image_bytes_length; auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length); if (!loaded) { LOG_TEE("%s: failed to load %s\n", __func__, image_path); return NULL; } llava_image_embed *embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, image_bytes, image_bytes_length); free(image_bytes); return embed; } void llava_image_embed_free(struct llava_image_embed * embed) { free(embed->embed); free(embed); }