#pragma once #include "llama.h" #include "common.h" // Change JSON_ASSERT from assert() to GGML_ASSERT: #define JSON_ASSERT GGML_ASSERT #include "json.hpp" #include #include #include #include #define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613" using json = nlohmann::ordered_json; // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11 enum error_type { ERROR_TYPE_INVALID_REQUEST, ERROR_TYPE_AUTHENTICATION, ERROR_TYPE_SERVER, ERROR_TYPE_NOT_FOUND, ERROR_TYPE_PERMISSION, ERROR_TYPE_UNAVAILABLE, // custom error ERROR_TYPE_NOT_SUPPORTED, // custom error }; extern bool server_verbose; extern bool server_log_json; #ifndef SERVER_VERBOSE #define SERVER_VERBOSE 1 #endif #if SERVER_VERBOSE != 1 #define LOG_VERBOSE(MSG, ...) #else #define LOG_VERBOSE(MSG, ...) \ do \ { \ if (server_verbose) \ { \ server_log("VERB", __func__, __LINE__, MSG, __VA_ARGS__); \ } \ } while (0) #endif #define LOG_ERROR( MSG, ...) server_log("ERR", __func__, __LINE__, MSG, __VA_ARGS__) #define LOG_WARNING(MSG, ...) server_log("WARN", __func__, __LINE__, MSG, __VA_ARGS__) #define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__) static inline void server_log(const char * level, const char * function, int line, const char * message, const json & extra); template static T json_value(const json & body, const std::string & key, const T & default_value) { // Fallback null to default value if (body.contains(key) && !body.at(key).is_null()) { try { return body.at(key); } catch (NLOHMANN_JSON_NAMESPACE::detail::type_error const &) { std::stringstream ss; ss << "Wrong type supplied for parameter '" << key << "'. Expected '" << json(default_value).type_name() << "', using default value."; LOG_WARNING(ss.str().c_str(), body); return default_value; } } else { return default_value; } } static inline void server_log(const char * level, const char * function, int line, const char * message, const json & extra) { std::stringstream ss_tid; ss_tid << std::this_thread::get_id(); json log = json{ {"tid", ss_tid.str()}, {"timestamp", time(nullptr)}, }; if (server_log_json) { log.merge_patch({ {"level", level}, {"function", function}, {"line", line}, {"msg", message}, }); if (!extra.empty()) { log.merge_patch(extra); } printf("%s\n", log.dump(-1, ' ', false, json::error_handler_t::replace).c_str()); } else { char buf[1024]; snprintf(buf, 1024, "%4s [%24s] %s", level, function, message); if (!extra.empty()) { log.merge_patch(extra); } std::stringstream ss; ss << buf << " |"; for (const auto & el : log.items()) { const std::string value = el.value().dump(-1, ' ', false, json::error_handler_t::replace); ss << " " << el.key() << "=" << value; } const std::string str = ss.str(); printf("%.*s\n", (int)str.size(), str.data()); } fflush(stdout); } // // chat template utils // // Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid inline bool verify_custom_template(const std::string & tmpl) { llama_chat_message chat[] = {{"user", "test"}}; int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0); return res >= 0; } // Format given chat. If tmpl is empty, we take the template from model metadata inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector & messages) { size_t alloc_size = 0; // vector holding all allocated string to be passed to llama_chat_apply_template std::vector str(messages.size() * 2); std::vector chat(messages.size()); for (size_t i = 0; i < messages.size(); ++i) { const auto & curr_msg = messages[i]; str[i*2 + 0] = json_value(curr_msg, "role", std::string("")); str[i*2 + 1] = json_value(curr_msg, "content", std::string("")); alloc_size += str[i*2 + 1].length(); chat[i].role = str[i*2 + 0].c_str(); chat[i].content = str[i*2 + 1].c_str(); } const char * ptr_tmpl = tmpl.empty() ? nullptr : tmpl.c_str(); std::vector buf(alloc_size * 2); // run the first time to get the total output length int32_t res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size()); // if it turns out that our buffer is too small, we resize it if ((size_t) res > buf.size()) { buf.resize(res); res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size()); } const std::string formatted_chat(buf.data(), res); LOG_VERBOSE("formatted_chat", {{"text", formatted_chat.c_str()}}); return formatted_chat; } // // base64 utils (TODO: move to common in the future) // static const std::string base64_chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz" "0123456789+/"; static inline bool is_base64(uint8_t c) { return (isalnum(c) || (c == '+') || (c == '/')); } static inline std::vector base64_decode(const std::string & encoded_string) { int i = 0; int j = 0; int in_ = 0; int in_len = encoded_string.size(); uint8_t char_array_4[4]; uint8_t char_array_3[3]; std::vector ret; while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) { char_array_4[i++] = encoded_string[in_]; in_++; if (i == 4) { for (i = 0; i < 4; i++) { char_array_4[i] = base64_chars.find(char_array_4[i]); } char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4); char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2); char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3]; for (i = 0; (i < 3); i++) { ret.push_back(char_array_3[i]); } i = 0; } } if (i) { for (j = i; j < 4; j++) { char_array_4[j] = 0; } for (j = 0; j < 4; j++) { char_array_4[j] = base64_chars.find(char_array_4[j]); } char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4); char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2); char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3]; for (j = 0; j < i - 1; j++) { ret.push_back(char_array_3[j]); } } return ret; } // // random string / id // static std::string random_string() { static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"); std::random_device rd; std::mt19937 generator(rd()); std::string result(32, ' '); for (int i = 0; i < 32; ++i) { result[i] = str[generator() % str.size()]; } return result; } static std::string gen_chatcmplid() { std::stringstream chatcmplid; chatcmplid << "chatcmpl-" << random_string(); return chatcmplid.str(); } // // other common utils // static size_t common_part(const std::vector & a, const std::vector & b) { size_t i; for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {} return i; } static bool ends_with(const std::string & str, const std::string & suffix) { return str.size() >= suffix.size() && 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix); } static size_t find_partial_stop_string(const std::string &stop, const std::string &text) { if (!text.empty() && !stop.empty()) { const char text_last_char = text.back(); for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) { if (stop[char_index] == text_last_char) { const std::string current_partial = stop.substr(0, char_index + 1); if (ends_with(text, current_partial)) { return text.size() - char_index - 1; } } } } return std::string::npos; } // TODO: reuse llama_detokenize template static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) { std::string ret; for (; begin != end; ++begin) { ret += llama_token_to_piece(ctx, *begin); } return ret; } // format incomplete utf-8 multibyte character for output static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) { std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token); // if the size is 1 and first bit is 1, meaning it's a partial character // (size > 1 meaning it's already a known token) if (out.size() == 1 && (out[0] & 0x80) == 0x80) { std::stringstream ss; ss << std::hex << (out[0] & 0xff); std::string res(ss.str()); out = "byte: \\x" + res; } return out; } struct completion_token_output { llama_token tok; std::string text_to_send; struct token_prob { llama_token tok; float prob; }; std::vector probs; }; // convert a vector of completion_token_output to json static json probs_vector_to_json(const llama_context * ctx, const std::vector & probs) { json out = json::array(); for (const auto & prob : probs) { json probs_for_token = json::array(); for (const auto & p : prob.probs) { const std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok); probs_for_token.push_back(json { {"tok_str", tok_str}, {"prob", p.prob}, }); } const std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok); out.push_back(json { {"content", tok_str}, {"probs", probs_for_token}, }); } return out; } // // OAI utils // static json oaicompat_completion_params_parse( const struct llama_model * model, const json & body, /* openai api json semantics */ const std::string & chat_template) { json llama_params; llama_params["__oaicompat"] = true; // Map OpenAI parameters to llama.cpp parameters // // For parameters that are defined by the OpenAI documentation (e.g. // temperature), we explicitly specify OpenAI's intended default; we // need to do that because sometimes OpenAI disagrees with llama.cpp // // https://platform.openai.com/docs/api-reference/chat/create llama_sampling_params default_sparams; llama_params["model"] = json_value(body, "model", std::string("unknown")); llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0); llama_params["logit_bias"] = json_value(body, "logit_bias", json::object()); llama_params["n_predict"] = json_value(body, "max_tokens", -1); llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0); llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED); llama_params["stream"] = json_value(body, "stream", false); llama_params["temperature"] = json_value(body, "temperature", 0.0); llama_params["top_p"] = json_value(body, "top_p", 1.0); // Apply chat template to the list of messages llama_params["prompt"] = format_chat(model, chat_template, body.at("messages")); // Handle "stop" field if (body.contains("stop") && body.at("stop").is_string()) { llama_params["stop"] = json::array({body.at("stop").get()}); } else { llama_params["stop"] = json_value(body, "stop", json::array()); } // Handle "response_format" field if (body.contains("response_format")) { json response_format = json_value(body, "response_format", json::object()); std::string response_type = json_value(response_format, "type", std::string()); if (response_type == "json_object") { llama_params["json_schema"] = json_value(response_format, "schema", json::object()); } else if (!response_type.empty() && response_type != "text") { throw std::runtime_error("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type); } } // Handle "n" field int n_choices = json_value(body, "n", 1); if (n_choices != 1) { throw std::runtime_error("Only one completion choice is allowed"); } // Handle "logprobs" field // TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future if (body.contains("logprobs")) { llama_params["n_probs"] = json_value(body, "top_logprobs", 20); } else if (body.contains("top_logprobs")) { throw std::runtime_error("top_logprobs requires logprobs to be set to true"); } // Params supported by OAI but unsupported by llama.cpp static const std::vector unsupported_params { "tools", "tool_choice" }; for (auto & param : unsupported_params) { if (body.contains(param)) { throw std::runtime_error("Unsupported param: " + param); } } // Copy remaining properties to llama_params // This allows user to use llama.cpp-specific params like "mirostat", "tfs_z",... via OAI endpoint. // See "launch_slot_with_task()" for a complete list of params supported by llama.cpp for (const auto & item : body.items()) { // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens" if (!llama_params.contains(item.key()) || item.key() == "n_predict") { llama_params[item.key()] = item.value(); } } return llama_params; } static json format_final_response_oaicompat(const json & request, json result, const std::string & completion_id, bool streaming = false) { bool stopped_word = result.count("stopped_word") != 0; bool stopped_eos = json_value(result, "stopped_eos", false); int num_tokens_predicted = json_value(result, "tokens_predicted", 0); int num_prompt_tokens = json_value(result, "tokens_evaluated", 0); std::string content = json_value(result, "content", std::string("")); std::string finish_reason = "length"; if (stopped_word || stopped_eos) { finish_reason = "stop"; } json choices = streaming ? json::array({json{{"finish_reason", finish_reason}, {"index", 0}, {"delta", json::object()}}}) : json::array({json{{"finish_reason", finish_reason}, {"index", 0}, {"message", json{{"content", content}, {"role", "assistant"}}}}}); std::time_t t = std::time(0); json res = json { {"choices", choices}, {"created", t}, {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))}, {"object", streaming ? "chat.completion.chunk" : "chat.completion"}, {"usage", json { {"completion_tokens", num_tokens_predicted}, {"prompt_tokens", num_prompt_tokens}, {"total_tokens", num_tokens_predicted + num_prompt_tokens} }}, {"id", completion_id} }; if (server_verbose) { res["__verbose"] = result; } if (result.contains("completion_probabilities")) { res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array()); } return res; } // return value is vector as there is one case where we might need to generate two responses static std::vector format_partial_response_oaicompat(json result, const std::string & completion_id) { if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) { return std::vector({result}); } bool first = json_value(result, "oaicompat_token_ctr", 0) == 0; std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL)); bool stopped_word = json_value(result, "stopped_word", false); bool stopped_eos = json_value(result, "stopped_eos", false); bool stopped_limit = json_value(result, "stopped_limit", false); std::string content = json_value(result, "content", std::string("")); std::string finish_reason; if (stopped_word || stopped_eos) { finish_reason = "stop"; } if (stopped_limit) { finish_reason = "length"; } std::time_t t = std::time(0); json choices; if (!finish_reason.empty()) { choices = json::array({json{{"finish_reason", finish_reason}, {"index", 0}, {"delta", json::object()}}}); } else { if (first) { if (content.empty()) { choices = json::array({json{{"finish_reason", nullptr}, {"index", 0}, {"delta", json{{"role", "assistant"}}}}}); } else { // We have to send this as two updates to conform to openai behavior json initial_ret = json{{"choices", json::array({json{ {"finish_reason", nullptr}, {"index", 0}, {"delta", json{ {"role", "assistant"} }}}})}, {"created", t}, {"id", completion_id}, {"model", modelname}, {"object", "chat.completion.chunk"}}; json second_ret = json{ {"choices", json::array({json{{"finish_reason", nullptr}, {"index", 0}, {"delta", json{ {"content", content}}} }})}, {"created", t}, {"id", completion_id}, {"model", modelname}, {"object", "chat.completion.chunk"}}; return std::vector({initial_ret, second_ret}); } } else { // Some idiosyncrasy in task processing logic makes several trailing calls // with empty content, we ignore these at the calee site. if (content.empty()) { return std::vector({json::object()}); } choices = json::array({json{ {"finish_reason", nullptr}, {"index", 0}, {"delta", json{ {"content", content}, }}, }}); } } json ret = json { {"choices", choices}, {"created", t}, {"id", completion_id}, {"model", modelname}, {"object", "chat.completion.chunk"} }; if (!finish_reason.empty()) { int num_tokens_predicted = json_value(result, "tokens_predicted", 0); int num_prompt_tokens = json_value(result, "tokens_evaluated", 0); ret.push_back({"usage", json { {"completion_tokens", num_tokens_predicted}, {"prompt_tokens", num_prompt_tokens}, {"total_tokens", num_tokens_predicted + num_prompt_tokens} }}); } return std::vector({ret}); } static json format_embeddings_response_oaicompat(const json & request, const json & embeddings) { json data = json::array(); int i = 0; for (auto & elem : embeddings) { data.push_back(json{ {"embedding", json_value(elem, "embedding", json::array())}, {"index", i++}, {"object", "embedding"} }); } json res = json { {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))}, {"object", "list"}, {"usage", json { {"prompt_tokens", 0}, {"total_tokens", 0} }}, {"data", data} }; return res; } static json format_tokenizer_response(const std::vector & tokens) { return json { {"tokens", tokens} }; } static json format_detokenized_response(const std::string & content) { return json { {"content", content} }; } static json format_error_response(const std::string & message, const enum error_type type) { std::string type_str; int code = 500; switch (type) { case ERROR_TYPE_INVALID_REQUEST: type_str = "invalid_request_error"; code = 400; break; case ERROR_TYPE_AUTHENTICATION: type_str = "authentication_error"; code = 401; break; case ERROR_TYPE_NOT_FOUND: type_str = "not_found_error"; code = 404; break; case ERROR_TYPE_SERVER: type_str = "server_error"; code = 500; break; case ERROR_TYPE_PERMISSION: type_str = "permission_error"; code = 403; break; case ERROR_TYPE_NOT_SUPPORTED: type_str = "not_supported_error"; code = 501; break; case ERROR_TYPE_UNAVAILABLE: type_str = "unavailable_error"; code = 503; break; } return json { {"code", code}, {"message", message}, {"type", type_str}, }; }