#include "common.cuh" #include "gla.cuh" template static __global__ void gated_linear_attn_f32(const int B, const int T, const int C, const int H, const float scale, const float * k, const float * v, const float * r, const float * td, const float * s, float * dst) { const int tid = threadIdx.x; const int bid = blockIdx.x; const int head_size = HEAD_SIZE; const int batch_i = bid / H; const int head_i = bid % H; const int state_size = C * head_size; const int n_seq_tokens = T / B; float state[head_size]; __shared__ float _k[head_size], _r[head_size], _td[head_size]; #pragma unroll for (int i = 0; i < head_size; i++) { state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid]; } for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid; t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid; t += C) { __syncthreads(); _k[tid] = k[t]; _r[tid] = r[t]; _td[tid] = td[t]; __syncthreads(); const float _v = v[t]; float y = 0; for (int j = 0; j < head_size; j += 4) { const float4 & k = (float4 &)(_k[j]); const float4 & r = (float4 &)(_r[j]); const float4 & td = (float4 &)(_td[j]); float4 & s = (float4 &)(state[j]); float4 kv; kv.x = k.x * _v; kv.y = k.y * _v; kv.z = k.z * _v; kv.w = k.w * _v; s.x = s.x * td.x + kv.x; s.y = s.y * td.y + kv.y; s.z = s.z * td.z + kv.z; s.w = s.w * td.w + kv.w; y += r.x * s.x; y += r.y * s.y; y += r.z * s.z; y += r.w * s.w; } dst[t] = y * scale; } #pragma unroll for (int i = 0; i < head_size; i++) { dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i]; } } void ggml_cuda_op_gated_linear_attn(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const float * k_d = (const float *)dst->src[0]->data; const float * v_d = (const float *)dst->src[1]->data; const float * r_d = (const float *)dst->src[2]->data; const float * td_d = (const float *)dst->src[3]->data; const float * s_d = (const float *)dst->src[4]->data; const int64_t B = dst->src[4]->ne[1]; const int64_t T = dst->src[0]->ne[2]; const int64_t C = dst->ne[0]; const int64_t H = dst->src[0]->ne[1]; float scale; memcpy(&scale, (float*)dst->op_params, sizeof(float)); float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(dst->src[4]->type == GGML_TYPE_F32); GGML_ASSERT(C % H == 0); GGML_ASSERT(C / H == 64 || C / H == 128); if (C / H == 64) { gated_linear_attn_f32<64><<>>(B, T, C, H, scale, k_d, v_d, r_d, td_d, s_d, dst_d); } else { gated_linear_attn_f32<128><<>>(B, T, C, H, scale, k_d, v_d, r_d, td_d, s_d, dst_d); } }