#include "arg.h" #include "common.h" #include "log.h" #include "llama.h" #include <vector> static void print_usage(int, char ** argv) { LOG("\nexample usage:\n"); LOG("\n %s -m model.gguf -p \"Hello my name is\" -n 32\n", argv[0]); LOG("\n"); } int main(int argc, char ** argv) { gpt_params params; params.prompt = "Hello my name is"; params.n_predict = 32; if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) { return 1; } gpt_init(); // total length of the sequence including the prompt const int n_predict = params.n_predict; // init LLM llama_backend_init(); llama_numa_init(params.numa); // initialize the model llama_model_params model_params = llama_model_params_from_gpt_params(params); llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); if (model == NULL) { fprintf(stderr , "%s: error: unable to load model\n" , __func__); return 1; } // initialize the context llama_context_params ctx_params = llama_context_params_from_gpt_params(params); llama_context * ctx = llama_new_context_with_model(model, ctx_params); if (ctx == NULL) { fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); return 1; } auto sparams = llama_sampler_chain_default_params(); sparams.no_perf = false; llama_sampler * smpl = llama_sampler_chain_init(sparams); llama_sampler_chain_add(smpl, llama_sampler_init_greedy()); // tokenize the prompt std::vector<llama_token> tokens_list; tokens_list = ::llama_tokenize(ctx, params.prompt, true); const int n_ctx = llama_n_ctx(ctx); const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size()); LOG("\n"); LOG_INF("%s: n_predict = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, n_kv_req); // make sure the KV cache is big enough to hold all the prompt and generated tokens if (n_kv_req > n_ctx) { LOG_ERR("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__); LOG_ERR("%s: either reduce n_predict or increase n_ctx\n", __func__); return 1; } // print the prompt token-by-token LOG("\n"); for (auto id : tokens_list) { LOG("%s", llama_token_to_piece(ctx, id).c_str()); } // create a llama_batch with size 512 // we use this object to submit token data for decoding llama_batch batch = llama_batch_init(512, 0, 1); // evaluate the initial prompt for (size_t i = 0; i < tokens_list.size(); i++) { llama_batch_add(batch, tokens_list[i], i, { 0 }, false); } // llama_decode will output logits only for the last token of the prompt batch.logits[batch.n_tokens - 1] = true; if (llama_decode(ctx, batch) != 0) { LOG("%s: llama_decode() failed\n", __func__); return 1; } // main loop int n_cur = batch.n_tokens; int n_decode = 0; const auto t_main_start = ggml_time_us(); while (n_cur <= n_predict) { // sample the next token { const llama_token new_token_id = llama_sampler_sample(smpl, ctx, -1); // is it an end of generation? if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) { LOG("\n"); break; } LOG("%s", llama_token_to_piece(ctx, new_token_id).c_str()); fflush(stdout); // prepare the next batch llama_batch_clear(batch); // push this new token for next evaluation llama_batch_add(batch, new_token_id, n_cur, { 0 }, true); n_decode += 1; } n_cur += 1; // evaluate the current batch with the transformer model if (llama_decode(ctx, batch)) { LOG_ERR("%s : failed to eval, return code %d\n", __func__, 1); return 1; } } LOG("\n"); const auto t_main_end = ggml_time_us(); LOG_INF("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n", __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f)); LOG("\n"); llama_perf_sampler_print(smpl); llama_perf_context_print(ctx); LOG("\n"); llama_batch_free(batch); llama_sampler_free(smpl); llama_free(ctx); llama_free_model(model); llama_backend_free(); return 0; }