#include "common.cuh" #include "cross-entropy-loss.cuh" #include "sum.cuh" #include #include static __global__ void cross_entropy_loss_f32(const float * logits, const float * labels, float * dst, const int nclasses, const int k) { const int warp_id = threadIdx.x / WARP_SIZE; const int lane_id = threadIdx.x % WARP_SIZE; const int i0 = blockDim.x*blockIdx.x + warp_id*WARP_SIZE; const int ne_tmp = WARP_SIZE*nclasses; extern __shared__ float tmp_all[]; float * tmp_logits = tmp_all + (2*warp_id + 0)*ne_tmp; float * tmp_labels = tmp_all + (2*warp_id + 1)*ne_tmp; // Each warp first loads ne_tmp logits/labels into shared memory: for (int i = lane_id; i < ne_tmp; i += WARP_SIZE) { const int ig = i0*nclasses + i; // ig == i global tmp_logits[i] = ig < k*nclasses ? logits[ig] : 0.0f; tmp_labels[i] = ig < k*nclasses ? labels[ig] : 0.0f; } // Each thread in the warp then calculates the cross entropy loss for a single row. // TODO: pad in order to avoid shared memory bank conflicts. // Find maximum for softmax: float max = -INFINITY; for (int i = 0; i < nclasses; ++i) { max = fmaxf(max, tmp_logits[lane_id*nclasses + i]); } // Calculate log(softmax(logits)) which is just logits - max: float sum = 0.0f; for (int i = 0; i < nclasses; ++i) { float val = tmp_logits[lane_id*nclasses + i] - max; sum += expf(val); tmp_logits[lane_id*nclasses + i] = val; } sum = logf(sum); // log(exp(logits - max) / sum) = (logits - max) - log(sum) float loss = 0.0f; for (int i = 0; i < nclasses; ++i) { loss += (tmp_logits[lane_id*nclasses + i] - sum) * tmp_labels[lane_id*nclasses + i]; } loss = -warp_reduce_sum(loss) / (float)k; __syncthreads(); if (lane_id == 0) { tmp_all[warp_id] = loss; } __syncthreads(); if (warp_id != 0) { return; } loss = lane_id < CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE/WARP_SIZE ? tmp_all[lane_id] : 0.0f; loss = warp_reduce_sum(loss); if (lane_id != 0) { return; } dst[blockIdx.x] = loss; } static __global__ void cross_entropy_loss_back_f32(const float * logits, const float * labels, const float * loss, float * dst, const int nclasses) { extern __shared__ float tmp[]; float maxval = -INFINITY; for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) { const float val = logits[blockIdx.x*nclasses + i]; maxval = fmaxf(maxval, val); tmp[i] = val; } maxval = warp_reduce_max(maxval); float sum = 0.0f; for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) { const float val = expf(tmp[i] - maxval); sum += val; tmp[i] = val; } sum = warp_reduce_sum(sum); const float sm_scale = 1.0f/sum; const float d_by_nrows = *loss/gridDim.x; for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) { dst[blockIdx.x*nclasses + i] = (tmp[i]*sm_scale - labels[blockIdx.x*nclasses + i])*d_by_nrows; } } void ggml_cuda_cross_entropy_loss(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src1)); GGML_ASSERT(ggml_is_contiguous(dst)); const int64_t ne00 = src0->ne[0]; const int64_t nrows = ggml_nrows(src0); const float * src0_d = (const float *) src0->data; const float * src1_d = (const float *) src1->data; float * dst_d = (float *) dst->data; ggml_cuda_pool & pool = ctx.pool(); cudaStream_t stream = ctx.stream(); const dim3 blocks_dim(CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE, 1, 1); const dim3 blocks_num((nrows + CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE - 1) / CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE, 1, 1); const int shmem = 2*CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE*ne00*sizeof(float); ggml_cuda_pool_alloc dst_tmp(pool, blocks_num.x); cross_entropy_loss_f32<<>>(src0_d, src1_d, dst_tmp.ptr, ne00, nrows); // Combine results from individual blocks: sum_f32_cuda(pool, dst_tmp.ptr, dst_d, blocks_num.x, stream); } void ggml_cuda_cross_entropy_loss_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; const ggml_tensor * opt0 = dst->src[2]; GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT(opt0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src1)); GGML_ASSERT(ggml_is_contiguous(opt0)); GGML_ASSERT(ggml_is_contiguous(dst)); GGML_ASSERT(ggml_are_same_shape(src0, src1)); GGML_ASSERT(ggml_are_same_shape(src0, dst)); const int64_t ne00 = src0->ne[0]; const int64_t nrows = ggml_nrows(src0); const float * src0_d = (const float *) src0->data; const float * src1_d = (const float *) src1->data; const float * opt0_d = (const float *) opt0->data; float * dst_d = (float *) dst->data; cudaStream_t stream = ctx.stream(); const dim3 blocks_dim(WARP_SIZE, 1, 1); const dim3 blocks_num(nrows, 1, 1); const int shmem = ne00*sizeof(float); cross_entropy_loss_back_f32<<>>(src0_d, src1_d, opt0_d, dst_d, ne00); }