#include "ggml-vulkan.h" #include #if defined(GGML_VULKAN_RUN_TESTS) || defined(GGML_VULKAN_PERF) || defined(GGML_VULKAN_CHECK_RESULTS) #include #include "ggml-cpu.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ggml-impl.h" #include "ggml-backend-impl.h" #include "ggml-vulkan-shaders.hpp" #define VK_API_VERSION VK_API_VERSION_1_2 #define CEIL_DIV(M, N) (((M) + (N)-1) / (N)) #define VK_VENDOR_ID_AMD 0x1002 #define VK_VENDOR_ID_APPLE 0x106b #define VK_VENDOR_ID_INTEL 0x8086 #define VK_VENDOR_ID_NVIDIA 0x10de #define VK_DEVICE_DESCRIPTOR_POOL_SIZE 32 #define GGML_VK_MAX_NODES 8192 #define MAX_VK_BUFFERS 256 #define VK_CHECK(err, msg) \ do { \ vk::Result err_ = (err); \ if (err_ != vk::Result::eSuccess) { \ fprintf(stderr, "ggml_vulkan: %s error %s at %s:%d\n", \ #err, to_string(err_).c_str(), __FILE__, __LINE__); \ exit(1); \ } \ } while (0) #ifdef GGML_VULKAN_DEBUG #define VK_LOG_DEBUG(msg) std::cerr << msg << std::endl #else #define VK_LOG_DEBUG(msg) ((void) 0) #endif // GGML_VULKAN_DEBUG struct ggml_backend_vk_context; struct vk_queue { uint32_t queue_family_index; vk::Queue queue; vk::CommandPool pool; uint32_t cmd_buffer_idx; std::vector cmd_buffers; vk::PipelineStageFlags stage_flags; bool transfer_only; }; struct vk_pipeline_struct { std::string name; vk::ShaderModule shader_module; vk::DescriptorSetLayout dsl; std::vector descriptor_pools; std::vector descriptor_sets; uint32_t descriptor_set_idx; vk::PipelineLayout layout; vk::Pipeline pipeline; uint32_t push_constant_size; uint32_t parameter_count; std::array wg_denoms; uint32_t align; }; typedef std::shared_ptr vk_pipeline; typedef std::weak_ptr vk_pipeline_ref; static void ggml_vk_destroy_pipeline(vk::Device& device, vk_pipeline& pipeline); struct vk_matmul_pipeline_struct { vk_pipeline l, m, s; vk_pipeline a_l, a_m, a_s; }; typedef std::shared_ptr vk_matmul_pipeline; struct vk_matmul_pipeline2 { vk_matmul_pipeline2() { f16acc = std::make_shared(); f32acc = std::make_shared(); } vk_matmul_pipeline f32acc; vk_matmul_pipeline f16acc; }; struct vk_device_struct; typedef std::shared_ptr vk_device; typedef std::weak_ptr vk_device_ref; struct vk_buffer_struct; typedef std::shared_ptr vk_buffer; typedef std::weak_ptr vk_buffer_ref; struct ggml_backend_vk_buffer_type_context { std::string name; vk_device device; }; static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft); static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size); static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft); static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft); static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor); static ggml_backend_buffer_type_i ggml_backend_vk_buffer_type_interface = { /* .get_name = */ ggml_backend_vk_buffer_type_name, /* .alloc_buffer = */ ggml_backend_vk_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_vk_buffer_type_get_alignment, /* .get_max_size = */ ggml_backend_vk_buffer_type_get_max_size, /* .get_alloc_size = */ ggml_backend_vk_buffer_type_get_alloc_size, /* .is_host = */ NULL, }; #ifdef GGML_VULKAN_MEMORY_DEBUG class vk_memory_logger; #endif #ifdef GGML_VULKAN_PERF class vk_perf_logger; #endif static void ggml_vk_destroy_buffer(vk_buffer& buf); struct vk_device_struct { std::mutex mutex; vk::PhysicalDevice physical_device; vk::PhysicalDeviceProperties properties; std::string name; uint64_t max_memory_allocation_size; bool fp16; bool pipeline_robustness; vk::Device device; uint32_t vendor_id; vk_queue compute_queue; vk_queue transfer_queue; bool single_queue; uint32_t subgroup_size; uint32_t shader_core_count; bool uma; bool float_controls_rte_fp16; bool subgroup_size_control; uint32_t subgroup_min_size; uint32_t subgroup_max_size; bool subgroup_require_full_support; bool coopmat_support; bool coopmat_acc_f32_support; bool coopmat_acc_f16_support; uint32_t coopmat_m; uint32_t coopmat_n; uint32_t coopmat_k; bool coopmat2; size_t idx; bool mul_mat_l; bool mul_mat_m; bool mul_mat_s; bool mul_mat_id_l; bool mul_mat_id_m; bool mul_mat_id_s; vk_matmul_pipeline pipeline_matmul_f32; vk_matmul_pipeline pipeline_matmul_f32_f16; vk_matmul_pipeline2 pipeline_matmul_f16; vk_matmul_pipeline2 pipeline_matmul_f16_f32; vk_pipeline pipeline_matmul_split_k_reduce; vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_COUNT]; vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat[GGML_TYPE_COUNT]; vk_matmul_pipeline pipeline_matmul_id_f32; vk_matmul_pipeline2 pipeline_matmul_id_f16; vk_matmul_pipeline2 pipeline_matmul_id_f16_f32; vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat_id[GGML_TYPE_COUNT]; vk_pipeline pipeline_dequant[GGML_TYPE_COUNT]; vk_pipeline pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_COUNT]; vk_pipeline pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_COUNT]; vk_pipeline pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_COUNT]; vk_pipeline pipeline_mul_mat_vec_p021_f16_f32; vk_pipeline pipeline_mul_mat_vec_nc_f16_f32; vk_pipeline pipeline_get_rows[GGML_TYPE_COUNT]; vk_pipeline pipeline_get_rows_f32[GGML_TYPE_COUNT]; vk_pipeline pipeline_acc_f32; vk_pipeline pipeline_add_f32, pipeline_add_f32_norepeat; vk_pipeline pipeline_add_f16_f32_f16, pipeline_add_f16_f32_f16_norepeat; vk_pipeline pipeline_mul_f32, pipeline_mul_f32_norepeat; vk_pipeline pipeline_div_f32, pipeline_div_f32_norepeat; vk_pipeline pipeline_concat_f32, pipeline_concat_f16, pipeline_concat_i32; vk_pipeline pipeline_upscale_f32; vk_pipeline pipeline_scale_f32; vk_pipeline pipeline_sqr_f32; vk_pipeline pipeline_sin_f32; vk_pipeline pipeline_cos_f32; vk_pipeline pipeline_clamp_f32; vk_pipeline pipeline_pad_f32; vk_pipeline pipeline_repeat_f32; vk_pipeline pipeline_cpy_f32_f32, pipeline_cpy_f32_f16, pipeline_cpy_f16_f16; vk_pipeline pipeline_contig_cpy_f32_f32, pipeline_contig_cpy_f32_f16, pipeline_contig_cpy_f16_f16; vk_pipeline pipeline_norm_f32; vk_pipeline pipeline_group_norm_f32; vk_pipeline pipeline_rms_norm_f32; vk_pipeline pipeline_gelu_f32; vk_pipeline pipeline_gelu_quick_f32; vk_pipeline pipeline_silu_f32; vk_pipeline pipeline_relu_f32; vk_pipeline pipeline_leaky_relu_f32; vk_pipeline pipeline_tanh_f32; vk_pipeline pipeline_diag_mask_inf_f32; vk_pipeline pipeline_soft_max_f32, pipeline_soft_max_f32_f16; vk_pipeline pipeline_soft_max_f32_wg512, pipeline_soft_max_f32_f16_wg512; vk_pipeline pipeline_rope_norm_f32, pipeline_rope_norm_f16; vk_pipeline pipeline_rope_neox_f32, pipeline_rope_neox_f16; vk_pipeline pipeline_argsort_f32; vk_pipeline pipeline_sum_rows_f32; vk_pipeline pipeline_im2col_f32, pipeline_im2col_f32_f16; vk_pipeline pipeline_timestep_embedding_f32; vk_pipeline pipeline_pool2d_f32; vk_pipeline pipeline_rwkv_wkv6_f32; // [2][2][2] is for {f16acc,f32acc}x{large,small_rows}x{unaligned, aligned} vk_pipeline pipeline_flash_attn_f32_f16_D64[GGML_TYPE_COUNT][2][2][2]; vk_pipeline pipeline_flash_attn_f32_f16_D80[GGML_TYPE_COUNT][2][2][2]; vk_pipeline pipeline_flash_attn_f32_f16_D96[GGML_TYPE_COUNT][2][2][2]; vk_pipeline pipeline_flash_attn_f32_f16_D112[GGML_TYPE_COUNT][2][2][2]; vk_pipeline pipeline_flash_attn_f32_f16_D128[GGML_TYPE_COUNT][2][2][2]; vk_pipeline pipeline_flash_attn_f32_f16_D256[GGML_TYPE_COUNT][2][2][2]; std::unordered_map pipelines; std::unordered_map pipeline_descriptor_set_requirements; std::vector> pinned_memory; vk::Fence fence; vk_buffer sync_staging; ggml_backend_buffer_type buffer_type; #ifdef GGML_VULKAN_MEMORY_DEBUG std::unique_ptr memory_logger; #endif #ifdef GGML_VULKAN_PERF std::unique_ptr perf_logger; #endif ~vk_device_struct() { VK_LOG_DEBUG("destroy device " << name); device.destroyFence(fence); ggml_vk_destroy_buffer(sync_staging); device.destroyCommandPool(compute_queue.pool); if (!single_queue) { device.destroyCommandPool(transfer_queue.pool); } for (auto& pipeline : pipelines) { if (pipeline.second.expired()) { continue; } vk_pipeline pl = pipeline.second.lock(); ggml_vk_destroy_pipeline(device, pl); } pipelines.clear(); device.destroy(); } }; struct vk_buffer_struct { vk::Buffer buffer = VK_NULL_HANDLE; vk::DeviceMemory device_memory = VK_NULL_HANDLE; vk::MemoryPropertyFlags memory_property_flags; void * ptr; size_t size = 0; vk_device device; ~vk_buffer_struct() { if (size == 0) { return; } VK_LOG_DEBUG("~vk_buffer_struct(" << buffer << ", " << size << ")"); device->device.freeMemory(device_memory); device->device.destroyBuffer(buffer); } }; struct vk_subbuffer { vk_buffer buffer; uint64_t offset; uint64_t size; operator vk::DescriptorBufferInfo() const { return { buffer->buffer, offset, size }; } }; struct vk_semaphore { vk::Semaphore s; uint64_t value; }; struct vk_submission { vk::CommandBuffer buffer; std::vector wait_semaphores; std::vector signal_semaphores; }; typedef std::vector vk_sequence; struct vk_mat_mat_push_constants { uint32_t M; uint32_t N; uint32_t K; uint32_t stride_a; uint32_t stride_b; uint32_t stride_d; uint32_t batch_stride_a; uint32_t batch_stride_b; uint32_t batch_stride_d; uint32_t k_split; uint32_t ne02; uint32_t ne12; uint32_t broadcast2; uint32_t broadcast3; }; struct vk_mat_vec_push_constants { uint32_t ncols; uint32_t stride_a; uint32_t stride_b; uint32_t stride_d; uint32_t batch_stride_a; uint32_t batch_stride_b; uint32_t batch_stride_d; uint32_t ne02; uint32_t ne12; uint32_t broadcast2; uint32_t broadcast3; }; struct vk_mat_mat_id_push_constants { uint32_t M; uint32_t N; uint32_t K; uint32_t stride_a; uint32_t stride_b; uint32_t stride_d; uint32_t batch_stride_a; uint32_t batch_stride_b; uint32_t batch_stride_d; uint32_t nei0; uint32_t nei1; uint32_t nbi1; uint32_t ne11; }; struct vk_mat_vec_id_push_constants { uint32_t ncols; uint32_t stride_a; uint32_t stride_b; uint32_t stride_d; uint32_t batch_stride_a; uint32_t batch_stride_b; uint32_t batch_stride_d; uint32_t nei0; uint32_t ne11; }; struct vk_flash_attn_push_constants { uint32_t N; uint32_t KV; uint32_t ne1; uint32_t ne2; uint32_t ne3; uint32_t neq2; uint32_t neq3; uint32_t nek2; uint32_t nek3; uint32_t nev2; uint32_t nev3; uint32_t nem1; uint32_t nb02; uint32_t nb03; uint32_t nb12; uint32_t nb13; uint32_t nb22; uint32_t nb23; uint32_t nb31; float scale; float max_bias; float logit_softcap; uint32_t mask; uint32_t n_head_log2; float m0; float m1; }; struct vk_op_push_constants { uint32_t KX; uint32_t KY; float param1; float param2; }; struct vk_op_unary_push_constants { uint32_t ne; uint32_t ne00; uint32_t ne01; uint32_t ne02; uint32_t ne03; uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03; uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13; uint32_t nb10; uint32_t nb11; uint32_t nb12; uint32_t nb13; uint32_t d_offset; float param1; float param2; uint32_t ne0_012mp; uint32_t ne0_012L; uint32_t ne0_01mp; uint32_t ne0_01L; uint32_t ne0_0mp; uint32_t ne0_0L; uint32_t ne1_012mp; uint32_t ne1_012L; uint32_t ne1_01mp; uint32_t ne1_01L; uint32_t ne1_0mp; uint32_t ne1_0L; }; static_assert(sizeof(vk_op_unary_push_constants) <= 128, "sizeof(vk_op_unary_push_constants) must be <= 128"); // See https://gmplib.org/~tege/divcnst-pldi94.pdf figure 4.1. // Precompute mp (m' in the paper) and L such that division // can be computed using a multiply (high 32b of 64b result) // and a shift: // // n/d = (mulhi(n, mp) + n) >> L; static void init_fastdiv_values(uint32_t d, uint32_t &mp, uint32_t &L) { // compute L = ceil(log2(d)); L = 0; while (L < 32 && (uint32_t{1} << L) < d) { L++; } mp = (uint32_t)((uint64_t{1} << 32) * ((uint64_t{1} << L) - d) / d + 1); } template void init_pushconst_fastdiv(T &p) { GGML_UNUSED(p); static_assert(!std::is_const::value, "unexpected type"); } template <> void init_pushconst_fastdiv(vk_op_unary_push_constants &p) { // Compute magic values to divide by these six numbers. init_fastdiv_values(p.ne02*p.ne01*p.ne00, p.ne0_012mp, p.ne0_012L); init_fastdiv_values(p.ne01*p.ne00, p.ne0_01mp, p.ne0_01L); init_fastdiv_values(p.ne00, p.ne0_0mp, p.ne0_0L); init_fastdiv_values(p.ne12*p.ne11*p.ne10, p.ne1_012mp, p.ne1_012L); init_fastdiv_values(p.ne11*p.ne10, p.ne1_01mp, p.ne1_01L); init_fastdiv_values(p.ne10, p.ne1_0mp, p.ne1_0L); } struct vk_op_binary_push_constants { uint32_t ne; uint32_t ne00; uint32_t ne01; uint32_t ne02; uint32_t ne03; uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03; uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13; uint32_t nb10; uint32_t nb11; uint32_t nb12; uint32_t nb13; uint32_t ne20; uint32_t ne21; uint32_t ne22; uint32_t ne23; uint32_t nb20; uint32_t nb21; uint32_t nb22; uint32_t nb23; uint32_t d_offset; float param1; float param2; int32_t param3; }; struct vk_op_diag_mask_push_constants { uint32_t ncols; uint32_t rows_per_channel; int32_t n_past; }; struct vk_op_rope_push_constants { uint32_t ncols; uint32_t n_dims; float freq_scale; uint32_t p_delta_rows; float freq_base; float ext_factor; float attn_factor; float corr_dims[2]; float theta_scale; uint32_t has_ff; }; struct vk_op_soft_max_push_constants { uint32_t KX; uint32_t KY; float scale; float max_bias; float m0; float m1; uint32_t n_head_log2; uint32_t nrows_x; }; struct vk_op_argsort_push_constants { uint32_t ncols; uint32_t ncols_pad; int32_t order; }; struct vk_op_im2col_push_constants { uint32_t batch_offset; uint32_t offset_delta; uint32_t IC; uint32_t IW; uint32_t IH; uint32_t OW; uint32_t OH; uint32_t KW; uint32_t KH; uint32_t pelements; uint32_t CHW; int32_t s0; int32_t s1; int32_t p0; int32_t p1; int32_t d0; int32_t d1; }; struct vk_op_timestep_embedding_push_constants { uint32_t nb1; uint32_t dim; uint32_t max_period; }; struct vk_op_pool2d_push_constants { uint32_t IW; uint32_t IH; uint32_t OW; uint32_t OH; uint32_t OC; uint32_t pelements; uint32_t op; int32_t k0; int32_t k1; int32_t s0; int32_t s1; int32_t p0; int32_t p1; }; struct vk_op_rwkv_wkv6_push_constants { uint32_t B; uint32_t T; uint32_t C; uint32_t H; }; // Allow pre-recording command buffers struct vk_staging_memcpy { vk_staging_memcpy(void * _dst, const void * _src, size_t _n) : dst(_dst), src(_src), n(_n) {} void * dst; const void * src; size_t n; }; struct vk_op_upscale_push_constants { uint32_t ne; uint32_t d_offset; uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03; uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13; float sf0; float sf1; float sf2; float sf3; }; struct vk_context_struct { vk_submission * s; std::vector seqs; int exit_tensor_idx; std::vector in_memcpys; std::vector out_memcpys; vk_queue * q; }; typedef std::shared_ptr vk_context; typedef std::weak_ptr vk_context_ref; struct ggml_vk_garbage_collector { std::vector tl_semaphores; std::vector semaphores; std::vector events; std::vector temp_buffers; std::vector contexts; }; #if defined(GGML_VULKAN_MEMORY_DEBUG) || defined(GGML_VULKAN_DEBUG) #define VK_LOG_MEMORY(msg) std::cerr << "ggml_vulkan memory: " << msg << std::endl static std::string format_size(size_t size) { const size_t kib = 1024; const size_t mib = kib * 1024; const size_t gib = mib * 1024; std::ostringstream oss; oss << std::fixed << std::setprecision(2); if (size >= gib) { oss << static_cast(size) / gib << " GiB"; } else if (size >= mib) { oss << static_cast(size) / mib << " MiB"; } else if (size >= kib) { oss << static_cast(size) / kib << " KiB"; } else { oss << size << " B"; } return oss.str(); } static std::mutex log_mutex; class vk_memory_logger { public: vk_memory_logger(): total_device(0), total_host(0) {} void log_allocation(vk_buffer_ref buf_ref, size_t size); void log_deallocation(vk_buffer_ref buf_ref); private: std::map allocations; // Track allocations size_t total_device; size_t total_host; }; #else #define VK_LOG_MEMORY(msg) ((void) 0) #endif // GGML_VULKAN_MEMORY_DEBUG #if defined(GGML_VULKAN_PERF) class vk_perf_logger { public: void print_timings() { std::cerr << "----------------\nVulkan Timings:" << std::endl; for (const auto& t : timings) { uint64_t total = 0; for (const auto& time : t.second) { total += time; } std::cerr << t.first << ": " << t.second.size() << " x " << (total / t.second.size() / 1000.0) << " ms" << std::endl; } timings.clear(); } void log_timing(const ggml_tensor * node, uint64_t time) { if (node->op == GGML_OP_UNARY) { timings[ggml_unary_op_name(ggml_get_unary_op(node))].push_back(time); return; } if (node->op == GGML_OP_MUL_MAT || node->op == GGML_OP_MUL_MAT_ID) { const uint64_t m = node->src[0]->ne[1]; const uint64_t n = node->src[1]->ne[1]; const uint64_t k = node->src[1]->ne[0]; std::string name = ggml_op_name(node->op); if (n == 1) { name += "_VEC m=" + std::to_string(m) + " k=" + std::to_string(k); } else { name += " m=" + std::to_string(m) + " n=" + std::to_string(n) + " k=" + std::to_string(k); } timings[name].push_back(time); return; } timings[ggml_op_name(node->op)].push_back(time); } private: std::map> timings; }; #endif // GGML_VULKAN_PERF struct ggml_backend_vk_context { std::string name; vk_device device; size_t semaphore_idx, event_idx; ggml_vk_garbage_collector gc; size_t prealloc_size_x, prealloc_size_y, prealloc_size_split_k; vk_buffer prealloc_x, prealloc_y, prealloc_split_k; vk::Fence fence; vk_buffer buffer_pool[MAX_VK_BUFFERS]; vk_context_ref compute_ctx; vk_context_ref transfer_ctx; std::vector tensor_ctxs; }; static void * const vk_ptr_base = (void *)(uintptr_t) 0x1000; // NOLINT static uint64_t vk_tensor_offset(const ggml_tensor * tensor) { if (tensor->view_src) { return (uint8_t *) tensor->view_src->data - (uint8_t *) vk_ptr_base; } return (uint8_t *) tensor->data - (uint8_t *) vk_ptr_base; } struct ggml_backend_vk_buffer_context { vk_device_ref device; vk_buffer dev_buffer; std::string name; ggml_backend_vk_buffer_context(vk_device_ref device, vk_buffer&& dev_buffer, std::string& name) : device(device), dev_buffer(dev_buffer), name(name) { } ~ggml_backend_vk_buffer_context() { ggml_vk_destroy_buffer(dev_buffer); } }; #ifdef GGML_VULKAN_MEMORY_DEBUG void vk_memory_logger::log_allocation(vk_buffer_ref buf_ref, size_t size) { std::lock_guard guard(log_mutex); vk_buffer buf = buf_ref.lock(); const bool device = bool(buf->memory_property_flags & vk::MemoryPropertyFlagBits::eDeviceLocal); const std::string type = device ? "device" : "host"; allocations[buf->buffer] = size; total_device += device ? size : 0; total_host += device ? 0 : size; VK_LOG_MEMORY(buf->device->name << ": +" << format_size(size) << " " << type << " at " << buf->buffer << ". Total device: " << format_size(total_device) << ", total host: " << format_size(total_host)); } void vk_memory_logger::log_deallocation(vk_buffer_ref buf_ref) { if (buf_ref.expired() || buf_ref.lock()->size == 0) { return; } std::lock_guard guard(log_mutex); vk_buffer buf = buf_ref.lock(); const bool device = bool(buf->memory_property_flags & vk::MemoryPropertyFlagBits::eDeviceLocal); std::string type = device ? "device" : "host"; auto it = allocations.find(buf->buffer); total_device -= device ? it->second : 0; total_host -= device ? 0 : it->second; if (it != allocations.end()) { VK_LOG_MEMORY(buf->device->name << ": -" << format_size(it->second) << " " << type << " at " << buf->buffer << ". Total device: " << format_size(total_device) << ", total host: " << format_size(total_host)); allocations.erase(it); } else { VK_LOG_MEMORY("ERROR " << buf->device->name << ": Attempted to deallocate unknown " << type << " memory at " << buf->buffer); } } #endif // GGML_VULKAN_MEMORY_DEBUG struct vk_instance_t { vk::Instance instance; std::vector device_indices; vk_device devices[GGML_VK_MAX_DEVICES]; }; static bool vk_instance_initialized = false; static vk_instance_t vk_instance; #ifdef GGML_VULKAN_CHECK_RESULTS static size_t vk_skip_checks; static size_t vk_output_tensor; static void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name); static void ggml_vk_check_results_0(ggml_tensor * tensor); static void ggml_vk_check_results_1(ggml_tensor * tensor); #endif typedef void (*ggml_vk_func_t)(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); static void ggml_backend_vk_free(ggml_backend_t backend); // variables to track number of compiles in progress static uint32_t compile_count = 0; static std::mutex compile_count_mutex; static std::condition_variable compile_count_cond; static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipeline, const std::string name, size_t spv_size, const void* spv_data, const std::string entrypoint, uint32_t parameter_count, uint32_t push_constant_size, std::array wg_denoms, std::vector specialization_constants, uint32_t align, bool disable_robustness, bool require_full_subgroups, uint32_t required_subgroup_size) { VK_LOG_DEBUG("ggml_vk_create_pipeline(" << device->name << ", " << name << ", " << entrypoint << ", " << parameter_count << ", " << push_constant_size << ", (" << wg_denoms[0] << "," << wg_denoms[1] << "," << wg_denoms[2] << "), specialization_constants, " << align << ", " << disable_robustness << ", " << require_full_subgroups << ", " << required_subgroup_size << ")"); GGML_ASSERT(parameter_count > 0); GGML_ASSERT(wg_denoms[0] > 0 && wg_denoms[1] > 0 && wg_denoms[2] > 0); // NOLINT pipeline = std::make_shared(); pipeline->name = name; pipeline->parameter_count = parameter_count; pipeline->push_constant_size = push_constant_size; pipeline->wg_denoms = wg_denoms; pipeline->align = align; vk::ShaderModuleCreateInfo shader_module_create_info({}, spv_size, reinterpret_cast(spv_data)); pipeline->shader_module = device->device.createShaderModule(shader_module_create_info); std::vector dsl_binding; std::vector dsl_binding_flags; for (uint32_t i = 0; i < parameter_count; i++) { dsl_binding.push_back({i, vk::DescriptorType::eStorageBuffer, 1, vk::ShaderStageFlagBits::eCompute}); dsl_binding_flags.push_back({}); } vk::DescriptorSetLayoutBindingFlagsCreateInfo dslbfci = { dsl_binding_flags }; vk::PushConstantRange pcr( vk::ShaderStageFlagBits::eCompute, 0, pipeline->push_constant_size ); vk::DescriptorSetLayoutCreateInfo descriptor_set_layout_create_info( {}, dsl_binding); descriptor_set_layout_create_info.setPNext(&dslbfci); pipeline->dsl = device->device.createDescriptorSetLayout(descriptor_set_layout_create_info); vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, pipeline->parameter_count * VK_DEVICE_DESCRIPTOR_POOL_SIZE); vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, VK_DEVICE_DESCRIPTOR_POOL_SIZE, descriptor_pool_size); pipeline->descriptor_pools.push_back(device->device.createDescriptorPool(descriptor_pool_create_info)); pipeline->descriptor_set_idx = 0; vk::PipelineLayoutCreateInfo pipeline_layout_create_info(vk::PipelineLayoutCreateFlags(), pipeline->dsl, pcr); pipeline->layout = device->device.createPipelineLayout(pipeline_layout_create_info); std::vector specialization_entries(specialization_constants.size()); for (size_t i = 0; i < specialization_constants.size(); i++) { specialization_entries[i].constantID = i; specialization_entries[i].offset = i * sizeof(uint32_t); specialization_entries[i].size = sizeof(uint32_t); } vk::SpecializationInfo specialization_info( specialization_entries.size(), specialization_entries.data(), specialization_constants.size() * sizeof(uint32_t), specialization_constants.data() ); vk::PipelineShaderStageCreateFlags pipeline_shader_stage_create_flags{}; if (device->subgroup_require_full_support && require_full_subgroups) { pipeline_shader_stage_create_flags |= vk::PipelineShaderStageCreateFlagBits::eRequireFullSubgroupsEXT; } vk::PipelineShaderStageCreateInfo pipeline_shader_create_info( pipeline_shader_stage_create_flags, vk::ShaderStageFlagBits::eCompute, pipeline->shader_module, entrypoint.c_str(), &specialization_info); vk::PipelineShaderStageRequiredSubgroupSizeCreateInfoEXT pipeline_shader_stage_required_subgroup_size_create_info; pipeline_shader_stage_required_subgroup_size_create_info.requiredSubgroupSize = required_subgroup_size; if (device->subgroup_size_control && required_subgroup_size > 0) { GGML_ASSERT(device->subgroup_min_size <= required_subgroup_size && required_subgroup_size <= device->subgroup_max_size); pipeline_shader_create_info.setPNext(&pipeline_shader_stage_required_subgroup_size_create_info); } vk::ComputePipelineCreateInfo compute_pipeline_create_info( vk::PipelineCreateFlags{}, pipeline_shader_create_info, pipeline->layout); vk::PipelineRobustnessCreateInfoEXT rci; if (device->pipeline_robustness && disable_robustness) { rci.storageBuffers = vk::PipelineRobustnessBufferBehaviorEXT::eDisabled; rci.uniformBuffers = vk::PipelineRobustnessBufferBehaviorEXT::eDisabled; compute_pipeline_create_info.setPNext(&rci); } pipeline->pipeline = device->device.createComputePipeline(VK_NULL_HANDLE, compute_pipeline_create_info).value; { std::lock_guard guard(device->mutex); device->pipelines.insert({ pipeline->name, pipeline }); } { std::lock_guard guard(compile_count_mutex); assert(compile_count > 0); compile_count--; // "Progress bar" for shader compiles static uint32_t total_compile_count = 0; if ((total_compile_count++ % 10) == 0) { std::cerr << "."; } } compile_count_cond.notify_all(); } static void ggml_vk_destroy_pipeline(vk::Device& device, vk_pipeline& pipeline) { VK_LOG_DEBUG("ggml_pipeline_destroy_pipeline(" << pipeline->name << ")"); for (auto& pool : pipeline->descriptor_pools) { device.destroyDescriptorPool(pool); } pipeline->descriptor_pools.clear(); pipeline->descriptor_sets.clear(); pipeline->descriptor_set_idx = 0; device.destroyDescriptorSetLayout(pipeline->dsl); device.destroyPipelineLayout(pipeline->layout); device.destroyShaderModule(pipeline->shader_module); device.destroyPipeline(pipeline->pipeline); } static void ggml_pipeline_request_descriptor_sets(vk_device& device, vk_pipeline& pipeline, uint32_t n) { VK_LOG_DEBUG("ggml_pipeline_request_descriptor_sets(" << pipeline->name << ", " << n << ")"); device->pipeline_descriptor_set_requirements[pipeline->name] += n; } static void ggml_pipeline_allocate_descriptor_sets(vk_device& device) { std::lock_guard guard(device->mutex); for (auto& pair : device->pipeline_descriptor_set_requirements) { vk_pipeline pipeline = device->pipelines.at(pair.first).lock(); const uint64_t n = pair.second; VK_LOG_DEBUG("ggml_pipeline_allocate_descriptor_sets(" << pipeline->name << ", " << n << ")"); if (pipeline->descriptor_sets.size() >= pipeline->descriptor_set_idx + n) { // Enough descriptors are available continue; } uint32_t to_alloc = pipeline->descriptor_set_idx + n - pipeline->descriptor_sets.size(); uint32_t pool_remaining = VK_DEVICE_DESCRIPTOR_POOL_SIZE - pipeline->descriptor_sets.size() % VK_DEVICE_DESCRIPTOR_POOL_SIZE; uint32_t pool_idx = pipeline->descriptor_sets.size() / VK_DEVICE_DESCRIPTOR_POOL_SIZE; while (to_alloc > 0) { const uint32_t alloc_count = std::min(pool_remaining, to_alloc); to_alloc -= alloc_count; pool_remaining = VK_DEVICE_DESCRIPTOR_POOL_SIZE; if (pool_idx >= pipeline->descriptor_pools.size()) { vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, pipeline->parameter_count * VK_DEVICE_DESCRIPTOR_POOL_SIZE); vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, VK_DEVICE_DESCRIPTOR_POOL_SIZE, descriptor_pool_size); pipeline->descriptor_pools.push_back(device->device.createDescriptorPool(descriptor_pool_create_info)); } std::vector layouts(alloc_count); for (uint32_t i = 0; i < alloc_count; i++) { layouts[i] = pipeline->dsl; } vk::DescriptorSetAllocateInfo descriptor_set_alloc_info(pipeline->descriptor_pools[pool_idx], alloc_count, layouts.data()); std::vector sets = device->device.allocateDescriptorSets(descriptor_set_alloc_info); pipeline->descriptor_sets.insert(pipeline->descriptor_sets.end(), sets.begin(), sets.end()); pool_idx++; } } } static void ggml_pipeline_cleanup(vk_pipeline& pipeline) { VK_LOG_DEBUG("ggml_pipeline_cleanup(" << pipeline->name << ")"); pipeline->descriptor_set_idx = 0; } static vk::CommandBuffer ggml_vk_create_cmd_buffer(vk_device& device, vk_queue& q) { VK_LOG_DEBUG("ggml_vk_create_cmd_buffer()"); std::lock_guard guard(device->mutex); if (q.cmd_buffers.size() > q.cmd_buffer_idx) { // Reuse command buffer return q.cmd_buffers[q.cmd_buffer_idx++]; } vk::CommandBufferAllocateInfo command_buffer_alloc_info( q.pool, vk::CommandBufferLevel::ePrimary, 1); const std::vector cmd_buffers = device->device.allocateCommandBuffers(command_buffer_alloc_info); auto buf = cmd_buffers.front(); q.cmd_buffers.push_back(buf); q.cmd_buffer_idx++; return buf; } static vk_submission ggml_vk_create_submission(vk_device& device, vk_queue& q, std::vector wait_semaphores, std::vector signal_semaphores) { VK_LOG_DEBUG("ggml_vk_create_submission()"); vk_submission s; s.buffer = ggml_vk_create_cmd_buffer(device, q); s.wait_semaphores = std::move(wait_semaphores); s.signal_semaphores = std::move(signal_semaphores); return s; } static void ggml_vk_submit(vk_context& ctx, vk::Fence fence) { if (ctx->seqs.empty()) { if (fence) { ctx->q->queue.submit({}, fence); } return; } VK_LOG_DEBUG("ggml_vk_submit(" << ctx << ", " << fence << ")"); std::vector> tl_wait_vals; std::vector> tl_signal_vals; std::vector> tl_wait_semaphores; std::vector> tl_signal_semaphores; std::vector tl_submit_infos; std::vector submit_infos; int idx = -1; std::vector> stage_flags; size_t reserve = 0; for (const auto& sequence : ctx->seqs) { reserve += sequence.size(); } // Pre-reserve vectors to prevent reallocation, which invalidates pointers tl_wait_semaphores.reserve(reserve); tl_wait_vals.reserve(reserve); tl_signal_semaphores.reserve(reserve); tl_signal_vals.reserve(reserve); tl_submit_infos.reserve(reserve); submit_infos.reserve(reserve); stage_flags.reserve(reserve); for (const auto& sequence : ctx->seqs) { for (const auto& submission : sequence) { stage_flags.push_back({}); idx++; tl_wait_vals.push_back({}); tl_wait_semaphores.push_back({}); tl_signal_vals.push_back({}); tl_signal_semaphores.push_back({}); for (size_t i = 0; i < submission.wait_semaphores.size(); i++) { stage_flags[idx].push_back(ctx->q->stage_flags); tl_wait_vals[idx].push_back(submission.wait_semaphores[i].value); tl_wait_semaphores[idx].push_back(submission.wait_semaphores[i].s); } for (size_t i = 0; i < submission.signal_semaphores.size(); i++) { tl_signal_vals[idx].push_back(submission.signal_semaphores[i].value); tl_signal_semaphores[idx].push_back(submission.signal_semaphores[i].s); } tl_submit_infos.push_back({ (uint32_t) submission.wait_semaphores.size(), tl_wait_vals[idx].data(), (uint32_t) submission.signal_semaphores.size(), tl_signal_vals[idx].data(), }); tl_submit_infos[idx].sType = vk::StructureType::eTimelineSemaphoreSubmitInfo; tl_submit_infos[idx].pNext = nullptr; vk::SubmitInfo si{ (uint32_t) submission.wait_semaphores.size(), tl_wait_semaphores[idx].data(), stage_flags[idx].data(), 1, &submission.buffer, (uint32_t) submission.signal_semaphores.size(), tl_signal_semaphores[idx].data(), }; si.setPNext(&tl_submit_infos[idx]); submit_infos.push_back(si); } } ctx->q->queue.submit(submit_infos, fence); ctx->seqs.clear(); } static uint32_t ggml_vk_find_queue_family_index(std::vector& queue_family_props, const vk::QueueFlags& required, const vk::QueueFlags& avoid, int32_t compute_index, uint32_t min_num_queues) { VK_LOG_DEBUG("ggml_vk_find_queue_family_index()"); const uint32_t qfsize = queue_family_props.size(); // Try with avoid preferences first for (uint32_t i = 0; i < qfsize; i++) { if (queue_family_props[i].queueCount >= min_num_queues && (compute_index < 0 || i != (uint32_t) compute_index) && queue_family_props[i].queueFlags & required && !(queue_family_props[i].queueFlags & avoid)) { return i; } } // Fall back to only required for (size_t i = 0; i < qfsize; i++) { if (queue_family_props[i].queueCount >= min_num_queues && (compute_index < 0 || i != (uint32_t) compute_index) && queue_family_props[i].queueFlags & required) { return i; } } // Fall back to reusing compute queue for (size_t i = 0; i < qfsize; i++) { if (queue_family_props[i].queueCount >= min_num_queues && queue_family_props[i].queueFlags & required) { return i; } } // Fall back to ignoring min_num_queries for (size_t i = 0; i < qfsize; i++) { if (queue_family_props[i].queueFlags & required) { return i; } } // All commands that are allowed on a queue that supports transfer operations are also allowed on a queue that supports either graphics or compute operations. // Thus, if the capabilities of a queue family include VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT, then reporting the VK_QUEUE_TRANSFER_BIT capability separately for that queue family is optional. if (compute_index >= 0) { return compute_index; } std::cerr << "ggml_vulkan: No suitable queue family index found." << std::endl; for(auto &q_family : queue_family_props) { std::cerr << "Queue number: " + std::to_string(q_family.queueCount) << " flags: " + to_string(q_family.queueFlags) << std::endl; } abort(); } static void ggml_vk_create_queue(vk_device& device, vk_queue& q, uint32_t queue_family_index, uint32_t queue_index, vk::PipelineStageFlags&& stage_flags, bool transfer_only) { VK_LOG_DEBUG("ggml_vk_create_queue()"); std::lock_guard guard(device->mutex); q.queue_family_index = queue_family_index; q.transfer_only = transfer_only; vk::CommandPoolCreateInfo command_pool_create_info_compute(vk::CommandPoolCreateFlags(VK_COMMAND_POOL_CREATE_TRANSIENT_BIT), queue_family_index); q.pool = device->device.createCommandPool(command_pool_create_info_compute); q.cmd_buffer_idx = 0; q.queue = device->device.getQueue(queue_family_index, queue_index); q.stage_flags = stage_flags; } static vk_context ggml_vk_create_context(ggml_backend_vk_context * ctx, vk_queue& q) { vk_context result = std::make_shared(); VK_LOG_DEBUG("ggml_vk_create_context(" << result << ")"); ctx->gc.contexts.emplace_back(result); result->q = &q; return result; } static vk_context ggml_vk_create_temporary_context(vk_queue& q) { vk_context result = std::make_shared(); VK_LOG_DEBUG("ggml_vk_create_temporary_context(" << result << ")"); result->q = &q; return result; } static vk_semaphore * ggml_vk_create_binary_semaphore(ggml_backend_vk_context * ctx) { VK_LOG_DEBUG("ggml_vk_create_timeline_semaphore()"); vk::SemaphoreTypeCreateInfo tci{ vk::SemaphoreType::eBinary, 0 }; vk::SemaphoreCreateInfo ci{}; ci.setPNext(&tci); vk::Semaphore semaphore = ctx->device->device.createSemaphore(ci); ctx->gc.semaphores.push_back({ semaphore, 0 }); return &ctx->gc.semaphores[ctx->gc.semaphores.size() - 1]; } static vk_semaphore * ggml_vk_create_timeline_semaphore(ggml_backend_vk_context * ctx) { VK_LOG_DEBUG("ggml_vk_create_timeline_semaphore()"); if (ctx->semaphore_idx >= ctx->gc.tl_semaphores.size()) { vk::SemaphoreTypeCreateInfo tci{ vk::SemaphoreType::eTimeline, 0 }; vk::SemaphoreCreateInfo ci{}; ci.setPNext(&tci); vk::Semaphore semaphore = ctx->device->device.createSemaphore(ci); ctx->gc.tl_semaphores.push_back({ semaphore, 0 }); } return &ctx->gc.tl_semaphores[ctx->semaphore_idx++]; } static vk::Event ggml_vk_create_event(ggml_backend_vk_context * ctx) { if (ctx->event_idx >= ctx->gc.events.size()) { ctx->gc.events.push_back(ctx->device->device.createEvent({})); } return ctx->gc.events[ctx->event_idx++]; } static void ggml_vk_queue_cleanup(vk_device& device, vk_queue& q) { VK_LOG_DEBUG("ggml_vk_queue_cleanup()"); std::lock_guard guard(device->mutex); // Requires command buffers to be done device->device.resetCommandPool(q.pool); q.cmd_buffer_idx = 0; } static uint32_t find_properties(const vk::PhysicalDeviceMemoryProperties* mem_props, vk::MemoryRequirements* mem_req, vk::MemoryPropertyFlags flags) { for (uint32_t i = 0; i < mem_props->memoryTypeCount; ++i) { vk::MemoryType memory_type = mem_props->memoryTypes[i]; if ((mem_req->memoryTypeBits & ((uint64_t)1 << i)) && (flags & memory_type.propertyFlags) == flags && mem_props->memoryHeaps[memory_type.heapIndex].size >= mem_req->size) { return static_cast(i); } } return UINT32_MAX; } static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, vk::MemoryPropertyFlags req_flags, vk::MemoryPropertyFlags fallback_flags = vk::MemoryPropertyFlags(0)) { VK_LOG_DEBUG("ggml_vk_create_buffer(" << device->name << ", " << size << ", " << to_string(req_flags) << ", " << to_string(fallback_flags) << ")"); if (size > device->max_memory_allocation_size) { throw vk::OutOfDeviceMemoryError("Requested buffer size exceeds device memory allocation limit"); } std::lock_guard guard(device->mutex); vk_buffer buf = std::make_shared(); if (size == 0) { buf->size = 0; return buf; } vk::BufferCreateInfo buffer_create_info{ vk::BufferCreateFlags(), size, vk::BufferUsageFlagBits::eStorageBuffer | vk::BufferUsageFlagBits::eTransferSrc | vk::BufferUsageFlagBits::eTransferDst, vk::SharingMode::eExclusive, 0, nullptr, }; buf->buffer = device->device.createBuffer(buffer_create_info); vk::MemoryRequirements mem_req = device->device.getBufferMemoryRequirements(buf->buffer); vk::PhysicalDeviceMemoryProperties mem_props = device->physical_device.getMemoryProperties(); uint32_t memory_type_index = UINT32_MAX; memory_type_index = find_properties(&mem_props, &mem_req, req_flags); buf->memory_property_flags = req_flags; if (memory_type_index == UINT32_MAX && fallback_flags) { memory_type_index = find_properties(&mem_props, &mem_req, fallback_flags); buf->memory_property_flags = fallback_flags; } if (memory_type_index == UINT32_MAX) { device->device.destroyBuffer(buf->buffer); throw vk::OutOfDeviceMemoryError("No suitable memory type found"); } try { buf->device_memory = device->device.allocateMemory({ mem_req.size, memory_type_index }); } catch (const vk::SystemError& e) { if (buf->memory_property_flags != fallback_flags) { // Try again with fallback flags memory_type_index = find_properties(&mem_props, &mem_req, fallback_flags); buf->memory_property_flags = fallback_flags; try { buf->device_memory = device->device.allocateMemory({ mem_req.size, memory_type_index }); } catch (const vk::SystemError& e) { device->device.destroyBuffer(buf->buffer); throw e; } } else { // Out of Host/Device memory, clean up buffer device->device.destroyBuffer(buf->buffer); throw e; } } buf->ptr = nullptr; if (buf->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) { buf->ptr = device->device.mapMemory(buf->device_memory, 0, VK_WHOLE_SIZE); } device->device.bindBufferMemory(buf->buffer, buf->device_memory, 0); buf->device = device; buf->size = size; #ifdef GGML_VULKAN_MEMORY_DEBUG device->memory_logger->log_allocation(buf, size); #endif return buf; } static vk_buffer ggml_vk_create_buffer_check(vk_device& device, size_t size, vk::MemoryPropertyFlags req_flags, vk::MemoryPropertyFlags fallback_flags = vk::MemoryPropertyFlags(0)) { try { return ggml_vk_create_buffer(device, size, req_flags, fallback_flags); } catch (const vk::SystemError& e) { std::cerr << "ggml_vulkan: Memory allocation of size " << size << " failed." << std::endl; std::cerr << "ggml_vulkan: " << e.what() << std::endl; throw e; } } static vk_buffer ggml_vk_create_buffer_device(vk_device& device, size_t size) { vk_buffer buf; try { if (device->uma) { // Fall back to host memory type buf = ggml_vk_create_buffer(device, size, vk::MemoryPropertyFlagBits::eDeviceLocal, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent); } else { // use rebar if available, otherwise fallback to device only visible memory buf = ggml_vk_create_buffer(device, size, vk::MemoryPropertyFlagBits::eDeviceLocal | vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent, vk::MemoryPropertyFlagBits::eDeviceLocal); } } catch (const vk::SystemError& e) { std::cerr << "ggml_vulkan: Device memory allocation of size " << size << " failed." << std::endl; std::cerr << "ggml_vulkan: " << e.what() << std::endl; throw e; } return buf; } static void ggml_vk_destroy_buffer(vk_buffer& buf) { if (buf == nullptr) { return; } #ifdef GGML_VULKAN_MEMORY_DEBUG if (buf->device != nullptr) { buf->device->memory_logger->log_deallocation(buf); } #endif buf.reset(); } static vk_subbuffer ggml_vk_subbuffer(vk_buffer& buf) { return { buf, 0, VK_WHOLE_SIZE }; } static void ggml_vk_sync_buffers(vk_context& ctx) { VK_LOG_DEBUG("ggml_vk_sync_buffers()"); const bool transfer_queue = ctx->q->transfer_only; ctx->s->buffer.pipelineBarrier( ctx->q->stage_flags, ctx->q->stage_flags, {}, { { { !transfer_queue ? (vk::AccessFlagBits::eShaderRead | vk::AccessFlagBits::eShaderWrite | vk::AccessFlagBits::eTransferRead | vk::AccessFlagBits::eTransferWrite) : (vk::AccessFlagBits::eTransferRead | vk::AccessFlagBits::eTransferWrite) }, { !transfer_queue ? (vk::AccessFlagBits::eShaderRead | vk::AccessFlagBits::eShaderWrite | vk::AccessFlagBits::eTransferRead | vk::AccessFlagBits::eTransferWrite) : (vk::AccessFlagBits::eTransferRead | vk::AccessFlagBits::eTransferWrite) } } }, {}, {} ); } static void ggml_vk_wait_events(vk_context& ctx, std::vector&& events) { VK_LOG_DEBUG("ggml_vk_wait_events()"); if (events.empty()) { return; } ctx->s->buffer.waitEvents( events, ctx->q->stage_flags, ctx->q->stage_flags, {}, {}, {} ); } // number of rows/cols for flash attention shader static constexpr uint32_t flash_attention_num_small_rows = 32; static std::array fa_rows_cols(uint32_t D, uint32_t clamp, ggml_type type, bool small_rows) { GGML_UNUSED(clamp); // small rows, large cols if (small_rows) { return {flash_attention_num_small_rows, 128}; } // small cols to reduce register count if (ggml_is_quantized(type) || D == 256) { return {64, 32}; } return {64, 64}; }; static bool ggml_vk_matmul_shmem_support(const vk_device& device, const std::vector& warptile, bool mul_mat_id) { // Needs to be kept up to date on shader changes const uint32_t bank_conflict_offset = device->coopmat_support ? 8 : 1; const uint32_t type_size = device->fp16 ? sizeof(ggml_fp16_t) : sizeof(float); const uint32_t warps = warptile[0] / warptile[10]; const uint32_t load_bufs = (warptile[1] + warptile[2]) * (warptile[3] + bank_conflict_offset) * type_size; const uint32_t mmid_row_ids = mul_mat_id ? 3072 * sizeof(uint32_t) : 0; const uint32_t coopmat_stage = device->coopmat_support ? warptile[7] * warptile[8] / warps * sizeof(float) : 0; return (load_bufs + mmid_row_ids + coopmat_stage) <= device->properties.limits.maxComputeSharedMemorySize; } static void ggml_vk_load_shaders(vk_device& device) { VK_LOG_DEBUG("ggml_vk_load_shaders(" << device->name << ")"); std::cerr << "ggml_vulkan: Compiling shaders"; // some shaders have a minimum subgroup size const uint32_t subgroup_size_16 = std::max(device->subgroup_size, 16u); const uint32_t subgroup_size_32 = std::max(device->subgroup_size, 32u); // mulmat std::vector l_warptile, m_warptile, s_warptile, l_warptile_mmq, m_warptile_mmq, s_warptile_mmq, l_warptile_mmq_k, m_warptile_mmq_k, s_warptile_mmq_k, l_warptile_mmqid, m_warptile_mmqid, s_warptile_mmqid; std::array l_wg_denoms, m_wg_denoms, s_wg_denoms, l_mmq_wg_denoms, m_mmq_wg_denoms, s_mmq_wg_denoms, l_mmq_wg_denoms_k, m_mmq_wg_denoms_k, s_mmq_wg_denoms_k, l_mmqid_wg_denoms, m_mmqid_wg_denoms, s_mmqid_wg_denoms; uint32_t l_align, m_align, s_align; if (device->coopmat2) { // spec constants and tile sizes for non-quant matmul/matmul_id l_warptile = { 256, 128, 256, 64 }; m_warptile = { 256, 128, 128, 64 }; s_warptile = { 128, 32, 16, 64 }; l_wg_denoms = {128, 256, 1 }; m_wg_denoms = {128, 128, 1 }; s_wg_denoms = { 32, 16, 1 }; // spec constants and tile sizes for quant matmul (non-Qi_K) l_warptile_mmq = { 256, 128, 256, 64 }; m_warptile_mmq = { 256, 128, 128, 64 }; s_warptile_mmq = { 256, 128, 128, 64 }; l_mmq_wg_denoms = { 128, 256, 1 }; m_mmq_wg_denoms = { 128, 128, 1 }; s_mmq_wg_denoms = { 128, 128, 1 }; // spec constants and tile sizes for quant matmul (Qi_K) l_warptile_mmq_k = { 256, 128, 512, 16 }; m_warptile_mmq_k = { 256, 128, 256, 16 }; s_warptile_mmq_k = { 256, 32, 128, 64 }; l_mmq_wg_denoms_k = { 128, 512, 1 }; m_mmq_wg_denoms_k = { 128, 256, 1 }; s_mmq_wg_denoms_k = { 32, 128, 1 }; // spec constants and tile sizes for quant matmul_id l_warptile_mmqid = { 256, 128, 128, 16 }; m_warptile_mmqid = { 256, 128, 64, 16 }; s_warptile_mmqid = { 256, 64, 64, 16 }; l_mmqid_wg_denoms = { 128, 128, 1 }; m_mmqid_wg_denoms = { 128, 64, 1 }; s_mmqid_wg_denoms = { 64, 64, 1 }; l_align = 128; m_align = 64; s_align = 32; } else { // Matrix cores require different warp group sizes const uint32_t tm_l = device->coopmat_support ? device->coopmat_m : 4; const uint32_t tm_m = device->coopmat_support ? device->coopmat_m : 4; const uint32_t tm_s = device->coopmat_support ? device->coopmat_m : 2; const uint32_t tn_l = device->coopmat_support ? device->coopmat_n : 4; const uint32_t tn_m = device->coopmat_support ? device->coopmat_n : 2; const uint32_t tn_s = device->coopmat_support ? device->coopmat_n : 2; const uint32_t tk_l = device->coopmat_support ? device->coopmat_k : 1; const uint32_t tk_m = device->coopmat_support ? device->coopmat_k : 1; const uint32_t tk_s = device->coopmat_support ? device->coopmat_k : 1; l_warptile = { 128, 128, 128, 16, device->subgroup_size * 2, 64, 2, tm_l, tn_l, tk_l, device->subgroup_size }; m_warptile = { 128, 64, 64, 16, device->subgroup_size, 32, 2, tm_m, tn_m, tk_m, device->subgroup_size }; s_warptile = { subgroup_size_16, 32, 32, 16, 32, 32, 2, tm_s, tn_s, tk_s, device->subgroup_size }; l_warptile_mmq = { 128, 128, 128, 32, device->subgroup_size * 2, 64, 2, tm_l, tn_l, tk_l, device->subgroup_size }; m_warptile_mmq = { 128, 64, 64, 32, device->subgroup_size, 32, 2, tm_m, tn_m, tk_m, device->subgroup_size }; s_warptile_mmq = { subgroup_size_32, 32, 32, 32, 32, 32, 2, tm_s, tn_s, tk_s, device->subgroup_size }; l_mmq_wg_denoms = l_wg_denoms = {128, 128, 1 }; m_mmq_wg_denoms = m_wg_denoms = { 64, 64, 1 }; s_mmq_wg_denoms = s_wg_denoms = { 32, 32, 1 }; l_align = 128; m_align = 64; s_align = 32; // Fallback to smaller sizes if there's not enough shared memory. Given the current shaders // and tile sizes, this should handle 16KB, 32KB, and 48KB+. // This logic doesn't explicitly account for the 12KB row_ids in the mul_mat_mat_id shaders. // But the numbers happen to work out for 32KB shared memory size that when using the medium // size there's enough room for everything, and we assert for this. uint32_t shmem_needed = (l_warptile[1] + l_warptile[2]) * (l_warptile[3] + 1) * sizeof(float); if (shmem_needed > device->properties.limits.maxComputeSharedMemorySize) { l_warptile = m_warptile; l_wg_denoms = m_wg_denoms; shmem_needed = (l_warptile[1] + l_warptile[2]) * (l_warptile[3] + 1) * sizeof(float); GGML_ASSERT(shmem_needed <= device->properties.limits.maxComputeSharedMemorySize); } if (device->properties.limits.maxComputeSharedMemorySize >= 32768) { // assert mul_mat_mat_id shaders will fit. GGML_ASSERT(shmem_needed + 3072*4 <= device->properties.limits.maxComputeSharedMemorySize); } shmem_needed = (l_warptile_mmq[1] + l_warptile_mmq[2]) * (l_warptile_mmq[3] + 1) * sizeof(float); if (shmem_needed > device->properties.limits.maxComputeSharedMemorySize) { if (device->properties.limits.maxComputeSharedMemorySize == 32768) { l_warptile_mmq = m_warptile_mmq; l_mmq_wg_denoms = m_mmq_wg_denoms; } else { l_warptile_mmq = s_warptile_mmq; l_mmq_wg_denoms = s_mmq_wg_denoms; } shmem_needed = (l_warptile_mmq[1] + l_warptile_mmq[2]) * (l_warptile_mmq[3] + 1) * sizeof(float); GGML_ASSERT(shmem_needed <= device->properties.limits.maxComputeSharedMemorySize); } if (device->properties.limits.maxComputeSharedMemorySize >= 32768) { // assert mul_mat_mat_id shaders will fit. GGML_ASSERT(shmem_needed + 3072*4 <= device->properties.limits.maxComputeSharedMemorySize); } // Disable medium and large matrix multiplication if not enough shared memory is available // Check mmq warptiles as the largest configuration // Throw an error if not enough for any matrix multiplication is available if (!ggml_vk_matmul_shmem_support(device, s_warptile_mmq, false)) { std::cerr << "ggml_vulkan: Error: Shared memory size too small for matrix multiplication." << std::endl; throw std::runtime_error("Shared memory size too small for matrix multiplication."); } else if (!ggml_vk_matmul_shmem_support(device, m_warptile_mmq, false)) { device->mul_mat_m = false; device->mul_mat_l = false; } else if (!ggml_vk_matmul_shmem_support(device, l_warptile_mmq, false)) { device->mul_mat_l = false; } // Disable mul_mat_id if not enough shared memory is available if (!ggml_vk_matmul_shmem_support(device, s_warptile_mmq, true)) { device->mul_mat_id_s = false; device->mul_mat_id_m = false; device->mul_mat_id_l = false; } else if (!ggml_vk_matmul_shmem_support(device, m_warptile_mmq, true)) { device->mul_mat_id_m = false; device->mul_mat_id_l = false; } else if (!ggml_vk_matmul_shmem_support(device, l_warptile_mmq, true)) { device->mul_mat_id_l = false; } } device->pipeline_matmul_f32 = std::make_shared(); device->pipeline_matmul_f32_f16 = std::make_shared(); device->pipeline_matmul_id_f32 = std::make_shared(); std::vector> compiles; auto const &ggml_vk_create_pipeline = [&](vk_device& device, vk_pipeline& pipeline, const std::string &name, size_t spv_size, const void* spv_data, const std::string &entrypoint, uint32_t parameter_count, uint32_t push_constant_size, std::array wg_denoms, const std::vector& specialization_constants, uint32_t align, bool disable_robustness = false, bool require_full_subgroups = false, uint32_t required_subgroup_size = 0) { { // wait until fewer than N compiles are in progress uint32_t N = std::max(1u, std::thread::hardware_concurrency()); std::unique_lock guard(compile_count_mutex); while (compile_count >= N) { compile_count_cond.wait(guard); } compile_count++; } compiles.push_back(std::async(ggml_vk_create_pipeline_func, std::ref(device), std::ref(pipeline), name, spv_size, spv_data, entrypoint, parameter_count, push_constant_size, wg_denoms, specialization_constants, align, disable_robustness, require_full_subgroups, required_subgroup_size)); }; #if defined(VK_NV_cooperative_matrix2) && defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT) if (device->coopmat2) { auto const &fa_wg_denoms = [&](uint32_t D, uint32_t clamp, ggml_type type, bool small_rows) -> std::array { return {fa_rows_cols(D, clamp, type, small_rows)[0], 1, 1}; }; auto const &fa_spec_constants = [&](uint32_t D, uint32_t clamp, ggml_type type, bool small_rows) -> std::vector { // For large number of rows, 128 invocations seems to work best. // For small number of rows (e.g. N==1), 256 works better. But matrix granularity for 256 is 32, so we // can't use 256 for D==80. uint32_t wg_size = (small_rows && (D % 32) == 0) ? 256 : 128; auto rows_cols = fa_rows_cols(D, clamp, type, small_rows); return {wg_size, rows_cols[0], rows_cols[1], (D), clamp}; }; #define CREATE_FA2(TYPE, NAMELC, D) \ ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D[TYPE][0][0][0], "flash_attn_f32_f16_D" #D "_f16acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc_cm2_len, flash_attn_f32_f16_ ## NAMELC ## _f16acc_cm2_data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(D,1,TYPE,false), fa_spec_constants(D,1,TYPE,false), 1); \ ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D[TYPE][0][0][1], "flash_attn_f32_f16_D" #D "_aligned_f16acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc_cm2_len, flash_attn_f32_f16_ ## NAMELC ## _f16acc_cm2_data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(D,0,TYPE,false), fa_spec_constants(D,0,TYPE,false), fa_rows_cols(D,0,TYPE,false)[1]); \ ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D[TYPE][1][0][0], "flash_attn_f32_f16_D" #D "_f32acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _cm2_len, flash_attn_f32_f16_ ## NAMELC ## _cm2_data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(D,1,TYPE,false), fa_spec_constants(D,1,TYPE,false), 1); \ ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D[TYPE][1][0][1], "flash_attn_f32_f16_D" #D "_aligned_f32acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _cm2_len, flash_attn_f32_f16_ ## NAMELC ## _cm2_data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(D,0,TYPE,false), fa_spec_constants(D,0,TYPE,false), fa_rows_cols(D,0,TYPE,false)[1]); \ ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D[TYPE][0][1][0], "flash_attn_f32_f16_D" #D "_f16acc_smallrows" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc_cm2_len, flash_attn_f32_f16_ ## NAMELC ## _f16acc_cm2_data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(D,1,TYPE,true), fa_spec_constants(D,1,TYPE,true), 1); \ ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D[TYPE][0][1][1], "flash_attn_f32_f16_D" #D "_aligned_f16acc_smallrows" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc_cm2_len, flash_attn_f32_f16_ ## NAMELC ## _f16acc_cm2_data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(D,0,TYPE,true), fa_spec_constants(D,0,TYPE,true), fa_rows_cols(D,0,TYPE,true)[1]); \ ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D[TYPE][1][1][0], "flash_attn_f32_f16_D" #D "_f32acc_smallrows" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _cm2_len, flash_attn_f32_f16_ ## NAMELC ## _cm2_data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(D,1,TYPE,true), fa_spec_constants(D,1,TYPE,true), 1); \ ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D[TYPE][1][1][1], "flash_attn_f32_f16_D" #D "_aligned_f32acc_smallrows" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _cm2_len, flash_attn_f32_f16_ ## NAMELC ## _cm2_data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(D,0,TYPE,true), fa_spec_constants(D,0,TYPE,true), fa_rows_cols(D,0,TYPE,true)[1]); \ #define CREATE_FA(TYPE, NAMELC) \ CREATE_FA2(TYPE, NAMELC, 64) \ CREATE_FA2(TYPE, NAMELC, 80) \ CREATE_FA2(TYPE, NAMELC, 96) \ CREATE_FA2(TYPE, NAMELC, 112) \ CREATE_FA2(TYPE, NAMELC, 128) \ CREATE_FA2(TYPE, NAMELC, 256) CREATE_FA(GGML_TYPE_F16, f16) CREATE_FA(GGML_TYPE_Q4_0, q4_0) CREATE_FA(GGML_TYPE_Q4_1, q4_1) CREATE_FA(GGML_TYPE_Q5_0, q5_0) CREATE_FA(GGML_TYPE_Q5_1, q5_1) CREATE_FA(GGML_TYPE_Q8_0, q8_0) // K dequants currently disabled because D dimension is rounded up to 256 and runs inefficiently //CREATE_FA(GGML_TYPE_Q2_K, q2_k) //CREATE_FA(GGML_TYPE_Q3_K, q3_k) //CREATE_FA(GGML_TYPE_Q4_K, q4_k) //CREATE_FA(GGML_TYPE_Q5_K, q5_k) //CREATE_FA(GGML_TYPE_Q6_K, q6_k) CREATE_FA(GGML_TYPE_IQ4_NL, iq4_nl) #undef CREATE_FA // Create 6 variants, {s,m,l}x{unaligned,aligned} #define CREATE_MM(PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT) \ ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _cm2_len, NAMELC ## F16ACC ## _cm2_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1); \ ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _cm2_len, NAMELC ## F16ACC ## _cm2_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1); \ ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _cm2_len, NAMELC ## F16ACC ## _cm2_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1); \ ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_l, #NAMELC #F16ACC "_aligned_l", NAMELC ## _aligned ## F16ACC ## _cm2_len, NAMELC ## _aligned ## F16ACC ## _cm2_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, l_align); \ ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_m, #NAMELC #F16ACC "_aligned_m", NAMELC ## _aligned ## F16ACC ## _cm2_len, NAMELC ## _aligned ## F16ACC ## _cm2_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, m_align); \ ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_s, #NAMELC #F16ACC "_aligned_s", NAMELC ## _aligned ## F16ACC ## _cm2_len, NAMELC ## _aligned ## F16ACC ## _cm2_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, s_align); \ // Create 2 variants, {f16,f32} accumulator #define CREATE_MM2(PIPELINE_NAME, NAMELC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT) \ CREATE_MM(PIPELINE_NAME . f16acc, NAMELC, _f16acc, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT) \ CREATE_MM(PIPELINE_NAME . f32acc, NAMELC, , WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT) \ CREATE_MM(pipeline_matmul_f32, matmul_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3) CREATE_MM(pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3) CREATE_MM2(pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3) CREATE_MM2(pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3) CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3) CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3) CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3) CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q5_1].f16acc, matmul_q5_1_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3) CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q8_0].f16acc, matmul_q8_0_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3) CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q2_K].f16acc, matmul_q2_k_f16, _f16acc, mmq_wg_denoms_k, warptile_mmq_k, vk_mat_mat_push_constants, 3) CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q3_K].f16acc, matmul_q3_k_f16, _f16acc, mmq_wg_denoms_k, warptile_mmq_k, vk_mat_mat_push_constants, 3) CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q4_K].f16acc, matmul_q4_k_f16, _f16acc, mmq_wg_denoms_k, warptile_mmq_k, vk_mat_mat_push_constants, 3) CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q5_K].f16acc, matmul_q5_k_f16, _f16acc, mmq_wg_denoms_k, warptile_mmq_k, vk_mat_mat_push_constants, 3) CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q6_K].f16acc, matmul_q6_k_f16, _f16acc, mmq_wg_denoms_k, warptile_mmq_k, vk_mat_mat_push_constants, 3) CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3) CREATE_MM(pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4) CREATE_MM2(pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_id_push_constants, 4) CREATE_MM2(pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_id_push_constants, 4) CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f16acc, matmul_id_q5_1_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f16acc, matmul_id_q8_0_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f16acc, matmul_id_q2_k_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f16acc, matmul_id_q3_k_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f16acc, matmul_id_q4_k_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f16acc, matmul_id_q5_k_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) #undef CREATE_MM #undef CREATE_MM2 } else #endif // defined(VK_NV_cooperative_matrix2) && defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT) if (device->coopmat_support) { // Create 6 variants, {s,m,l}x{unaligned,aligned} #define CREATE_MM(PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \ if (device->mul_mat ## ID ## _l) \ ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _coopmat_len, NAMELC ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1, false, true); \ if (device->mul_mat ## ID ## _m) \ ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _coopmat_len, NAMELC ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1, false, true); \ if (device->mul_mat ## ID ## _s) \ ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _coopmat_len, NAMELC ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1, false, true); \ if (device->mul_mat ## ID ## _l) \ ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_l, #NAMELC #F16ACC "_aligned_l", NAMELC ## _aligned ## F16ACC ## _coopmat_len, NAMELC ## _aligned ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, l_align, false, true); \ if (device->mul_mat ## ID ## _m) \ ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_m, #NAMELC #F16ACC "_aligned_m", NAMELC ## _aligned ## F16ACC ## _coopmat_len, NAMELC ## _aligned ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, m_align, false, true); \ if (device->mul_mat ## ID ## _s) \ ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_s, #NAMELC #F16ACC "_aligned_s", NAMELC ## _aligned ## F16ACC ## _coopmat_len, NAMELC ## _aligned ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, s_align, false, true); \ // Create 2 variants, {f16,f32} accumulator #define CREATE_MM2(PIPELINE_NAME, NAMELC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \ if (device->coopmat_acc_f16_support) { \ CREATE_MM(PIPELINE_NAME . f16acc, NAMELC, _f16acc, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \ } \ if (device->coopmat_acc_f32_support) { \ CREATE_MM(PIPELINE_NAME . f32acc, NAMELC, , WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \ } \ CREATE_MM(pipeline_matmul_f32, matmul_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, ); CREATE_MM2(pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3, ); CREATE_MM2(pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3, ); if (device->coopmat_acc_f16_support) { CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1].f16acc, matmul_q5_1_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0].f16acc, matmul_q8_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K].f16acc, matmul_q2_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K].f16acc, matmul_q3_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K].f16acc, matmul_q4_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K].f16acc, matmul_q5_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K].f16acc, matmul_q6_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); } else { CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1].f16acc, matmul_q5_1_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0].f16acc, matmul_q8_0_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K].f16acc, matmul_q2_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K].f16acc, matmul_q3_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K].f16acc, matmul_q4_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K].f16acc, matmul_q5_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K].f16acc, matmul_q6_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); } // If there's not enough shared memory for row_ids and the result tile, don't create these pipelines. if (device->mul_mat_id_s || device->mul_mat_id_m || device->mul_mat_id_l) { CREATE_MM(pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id); CREATE_MM2(pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id); CREATE_MM2(pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id); if (device->coopmat_acc_f16_support) { CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f16acc, matmul_id_q5_1_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f16acc, matmul_id_q8_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f16acc, matmul_id_q2_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f16acc, matmul_id_q3_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f16acc, matmul_id_q4_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f16acc, matmul_id_q5_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); } else { CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f16acc, matmul_id_q5_1_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f16acc, matmul_id_q8_0_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f16acc, matmul_id_q2_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f16acc, matmul_id_q3_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f16acc, matmul_id_q4_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f16acc, matmul_id_q5_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); } } #undef CREATE_MM2 #undef CREATE_MM } else if (device->fp16) { // Create 6 variants, {s,m,l}x{unaligned,aligned} #define CREATE_MM(PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \ if (device->mul_mat ## ID ## _l) \ ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _len, NAMELC ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1); \ if (device->mul_mat ## ID ## _m) \ ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _len, NAMELC ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1); \ if (device->mul_mat ## ID ## _s) \ ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _len, NAMELC ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1); \ if (device->mul_mat ## ID ## _l) \ ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_l, #NAMELC #F16ACC "_aligned_l", NAMELC ## _aligned ## F16ACC ## _len, NAMELC ## _aligned ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, l_align); \ if (device->mul_mat ## ID ## _m) \ ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_m, #NAMELC #F16ACC "_aligned_m", NAMELC ## _aligned ## F16ACC ## _len, NAMELC ## _aligned ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, m_align); \ if (device->mul_mat ## ID ## _s) \ ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_s, #NAMELC #F16ACC "_aligned_s", NAMELC ## _aligned ## F16ACC ## _len, NAMELC ## _aligned ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, s_align); \ // Create 2 variants, {f16,f32} accumulator #define CREATE_MM2(PIPELINE_NAME, NAMELC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \ CREATE_MM(PIPELINE_NAME . f16acc, NAMELC, _f16acc, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \ CREATE_MM(PIPELINE_NAME . f32acc, NAMELC, , WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \ CREATE_MM(pipeline_matmul_f32, matmul_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, ); CREATE_MM2(pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3, ); CREATE_MM2(pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1].f16acc, matmul_q5_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0].f16acc, matmul_q8_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K].f16acc, matmul_q2_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K].f16acc, matmul_q3_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K].f16acc, matmul_q4_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K].f16acc, matmul_q5_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K].f16acc, matmul_q6_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); // If there's not enough shared memory for row_ids and the result tile, don't create these pipelines. if (device->mul_mat_id_s || device->mul_mat_id_m || device->mul_mat_id_l) { CREATE_MM(pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id); CREATE_MM2(pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id); CREATE_MM2(pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f16acc, matmul_id_q5_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f16acc, matmul_id_q8_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f16acc, matmul_id_q2_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f16acc, matmul_id_q3_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f16acc, matmul_id_q4_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f16acc, matmul_id_q5_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); } #undef CREATE_MM2 #undef CREATE_MM } else { // Create 6 variants, {s,m,l}x{unaligned,aligned} #define CREATE_MM(PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \ if (device->mul_mat ## ID ## _l) \ ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1); \ if (device->mul_mat ## ID ## _m) \ ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1); \ if (device->mul_mat ## ID ## _s) \ ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1); \ if (device->mul_mat ## ID ## _l) \ ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_l, #NAMELC #F16ACC "_aligned_l", NAMELC ## _aligned ## F16ACC ## _fp32_len, NAMELC ## _aligned ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, l_align); \ if (device->mul_mat ## ID ## _m) \ ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_m, #NAMELC #F16ACC "_aligned_m", NAMELC ## _aligned ## F16ACC ## _fp32_len, NAMELC ## _aligned ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, m_align); \ if (device->mul_mat ## ID ## _s) \ ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_s, #NAMELC #F16ACC "_aligned_s", NAMELC ## _aligned ## F16ACC ## _fp32_len, NAMELC ## _aligned ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, s_align); \ CREATE_MM(pipeline_matmul_f32, matmul_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_matmul_f16.f32acc, matmul_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_matmul_f16_f32.f32acc, matmul_f16_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f32acc, matmul_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f32acc, matmul_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f32acc, matmul_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1].f32acc, matmul_q5_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0].f32acc, matmul_q8_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K].f32acc, matmul_q2_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K].f32acc, matmul_q3_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K].f32acc, matmul_q4_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K].f32acc, matmul_q5_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K].f32acc, matmul_q6_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f32acc, matmul_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); // If there's not enough shared memory for row_ids and the result tile, don't create these pipelines. if (device->mul_mat_id_s || device->mul_mat_id_m || device->mul_mat_id_l) { CREATE_MM(pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id); CREATE_MM(pipeline_matmul_id_f16.f32acc, matmul_id_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id); CREATE_MM(pipeline_matmul_id_f16_f32.f32acc, matmul_id_f16_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f32acc, matmul_id_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f32acc, matmul_id_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f32acc, matmul_id_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f32acc, matmul_id_q5_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f32acc, matmul_id_q8_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f32acc, matmul_id_q2_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f32acc, matmul_id_q3_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f32acc, matmul_id_q4_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f32acc, matmul_id_q5_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f32acc, matmul_id_q6_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f32acc, matmul_id_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); } #undef CREATE_MM } // mul mat vec // AMD GCN and Intel graphics cards perform best when the number of rows per shader is doubled uint32_t rm = 1; if ((device->vendor_id == VK_VENDOR_ID_AMD && device->subgroup_min_size == 64 && device->subgroup_max_size == 64) || device->vendor_id == VK_VENDOR_ID_INTEL) rm = 2; // computing additional rows per workgroup is a benefit for Q4_0 -> Q5_1, but not for Q8_0. ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f32_f32", mul_mat_vec_f32_f32_f32_len, mul_mat_vec_f32_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f32_f32", mul_mat_vec_f16_f32_f32_len, mul_mat_vec_f16_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f32_f32", mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f32_f32", mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f32_f32", mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f32_f32", mul_mat_vec_q5_1_f32_f32_len, mul_mat_vec_q5_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f32_f32", mul_mat_vec_q8_0_f32_f32_len, mul_mat_vec_q8_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm, 1, 1}, {device->subgroup_size, 1*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f32_f32", mul_mat_vec_q2_k_f32_f32_len, mul_mat_vec_q2_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f32_f32", mul_mat_vec_q3_k_f32_f32_len, mul_mat_vec_q3_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f32_f32", mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f32_f32", mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f32_f32", mul_mat_vec_q6_k_f32_f32_len, mul_mat_vec_q6_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f32_f32", mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f16_f32", mul_mat_vec_f32_f16_f32_len, mul_mat_vec_f32_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f16_f32", mul_mat_vec_f16_f16_f32_len, mul_mat_vec_f16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f16_f32", mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f16_f32", mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f16_f32", mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f16_f32", mul_mat_vec_q5_1_f16_f32_len, mul_mat_vec_q5_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f16_f32", mul_mat_vec_q8_0_f16_f32_len, mul_mat_vec_q8_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm, 1, 1}, {device->subgroup_size, 1*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f16_f32", mul_mat_vec_q2_k_f16_f32_len, mul_mat_vec_q2_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f16_f32", mul_mat_vec_q3_k_f16_f32_len, mul_mat_vec_q3_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f16_f32", mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f16_f32", mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f16_f32", mul_mat_vec_q6_k_f16_f32_len, mul_mat_vec_q6_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f16_f32", mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32", mul_mat_vec_id_f32_f32_len, mul_mat_vec_id_f32_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F16 ], "mul_mat_vec_id_f16_f32", mul_mat_vec_id_f16_f32_len, mul_mat_vec_id_f16_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_f32", mul_mat_vec_id_q5_1_f32_len, mul_mat_vec_id_q5_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_f32", mul_mat_vec_id_q8_0_f32_len, mul_mat_vec_id_q8_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1*rm, 1, 1}, {device->subgroup_size, 1*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", mul_mat_vec_id_q2_k_f32_len, mul_mat_vec_id_q2_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", mul_mat_vec_id_q3_k_f32_len, mul_mat_vec_id_q3_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_f32", mul_mat_vec_id_q6_k_f32_len, mul_mat_vec_id_q6_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true); // dequant shaders ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_F32 ], "f32_to_f16", dequant_f32_len, dequant_f32_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q4_0], "dequant_q4_0", dequant_q4_0_len, dequant_q4_0_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q4_1], "dequant_q4_1", dequant_q4_1_len, dequant_q4_1_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q5_0], "dequant_q5_0", dequant_q5_0_len, dequant_q5_0_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q5_1], "dequant_q5_1", dequant_q5_1_len, dequant_q5_1_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q8_0], "dequant_q8_0", dequant_q8_0_len, dequant_q8_0_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q2_K], "dequant_q2_k", dequant_q2_k_len, dequant_q2_k_data, "main", 2, 5 * sizeof(uint32_t), {256 * 64, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q3_K], "dequant_q3_k", dequant_q3_k_len, dequant_q3_k_data, "main", 2, 5 * sizeof(uint32_t), {256 * 64, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q4_K], "dequant_q4_k", dequant_q4_k_len, dequant_q4_k_data, "main", 2, 5 * sizeof(uint32_t), {256 * 32, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q5_K], "dequant_q5_k", dequant_q5_k_len, dequant_q5_k_data, "main", 2, 5 * sizeof(uint32_t), {256 * 64, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q6_K], "dequant_q6_k", dequant_q6_k_len, dequant_q6_k_data, "main", 2, 5 * sizeof(uint32_t), {256 * 64, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_IQ4_NL], "dequant_iq4_nl", dequant_iq4_nl_len, dequant_iq4_nl_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1); // get_rows ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_F32 ], "get_rows_f32", get_rows_f32_len, get_rows_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_F16 ], "get_rows_f16", get_rows_f16_len, get_rows_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q4_0], "get_rows_q4_0", get_rows_q4_0_len, get_rows_q4_0_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q4_1], "get_rows_q4_1", get_rows_q4_1_len, get_rows_q4_1_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q5_0], "get_rows_q5_0", get_rows_q5_0_len, get_rows_q5_0_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q5_1], "get_rows_q5_1", get_rows_q5_1_len, get_rows_q5_1_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q8_0], "get_rows_q8_0", get_rows_q8_0_len, get_rows_q8_0_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_IQ4_NL], "get_rows_iq4_nl", get_rows_iq4_nl_len, get_rows_iq4_nl_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_F32 ], "get_rows_f32_f32", get_rows_f32_f32_len, get_rows_f32_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_F16 ], "get_rows_f16_f32", get_rows_f16_f32_len, get_rows_f16_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q4_0], "get_rows_q4_0_f32", get_rows_q4_0_f32_len, get_rows_q4_0_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q4_1], "get_rows_q4_1_f32", get_rows_q4_1_f32_len, get_rows_q4_1_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q5_0], "get_rows_q5_0_f32", get_rows_q5_0_f32_len, get_rows_q5_0_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q5_1], "get_rows_q5_1_f32", get_rows_q5_1_f32_len, get_rows_q5_1_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q8_0], "get_rows_q8_0_f32", get_rows_q8_0_f32_len, get_rows_q8_0_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_IQ4_NL], "get_rows_iq4_nl_f32", get_rows_iq4_nl_f32_len, get_rows_iq4_nl_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_matmul_split_k_reduce, "split_k_reduce", split_k_reduce_len, split_k_reduce_data, "main", 2, 2 * sizeof(uint32_t), {256 * 4, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_p021_f16_f32, "mul_mat_vec_p021_f16_f32", mul_mat_vec_p021_f16_f32_len, mul_mat_vec_p021_f16_f32_data, "main", 3, 6 * sizeof(uint32_t), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_nc_f16_f32, "mul_mat_vec_nc_f16_f32", mul_mat_vec_nc_f16_f32_len, mul_mat_vec_nc_f16_f32_data, "main", 3, 7 * sizeof(uint32_t), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_norm_f32, "norm_f32", norm_f32_len, norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_group_norm_f32, "group_norm_f32", group_norm_f32_len, group_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_rms_norm_f32, "rms_norm_f32", rms_norm_f32_len, rms_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_f32, "cpy_f32_f32", cpy_f32_f32_len, cpy_f32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_f16, "cpy_f32_f16", cpy_f32_f16_len, cpy_f32_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_cpy_f16_f16, "cpy_f16_f16", cpy_f16_f16_len, cpy_f16_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_f32, "contig_cpy_f32_f32", contig_cpy_f32_f32_len, contig_cpy_f32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_f16, "contig_cpy_f32_f16", contig_cpy_f32_f16_len, contig_cpy_f32_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f16_f16, "contig_cpy_f16_f16", contig_cpy_f16_f16_len, contig_cpy_f16_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_add_f32, "add_f32", add_f32_len, add_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1); ggml_vk_create_pipeline(device, device->pipeline_add_f32_norepeat, "add_f32_norepeat", add_f32_len, add_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1); ggml_vk_create_pipeline(device, device->pipeline_add_f16_f32_f16, "add_f16_f32_f16", add_f16_f32_f16_len, add_f16_f32_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1); ggml_vk_create_pipeline(device, device->pipeline_add_f16_f32_f16_norepeat, "add_f16_f32_f16_norepeat", add_f16_f32_f16_len, add_f16_f32_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1); ggml_vk_create_pipeline(device, device->pipeline_acc_f32, "acc_f32", acc_f32_len, acc_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_mul_f32, "mul_f32", mul_f32_len, mul_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1); ggml_vk_create_pipeline(device, device->pipeline_mul_f32_norepeat, "mul_f32_norepeat", mul_f32_len, mul_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1); ggml_vk_create_pipeline(device, device->pipeline_div_f32, "div_f32", div_f32_len, div_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1); ggml_vk_create_pipeline(device, device->pipeline_div_f32_norepeat, "div_f32_norepeat", div_f32_len, div_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1); ggml_vk_create_pipeline(device, device->pipeline_concat_f32, "concat_f32", concat_f32_len, concat_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_concat_f16, "concat_f16", concat_f16_len, concat_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_concat_i32, "concat_i32", concat_i32_len, concat_i32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_upscale_f32, "upscale_f32", upscale_f32_len, upscale_f32_data, "main", 2, sizeof(vk_op_upscale_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_scale_f32, "scale_f32", scale_f32_len, scale_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_sqr_f32, "sqr_f32", sqr_f32_len, sqr_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_sin_f32, "sin_f32", sin_f32_len, sin_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_cos_f32, "cos_f32", cos_f32_len, cos_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_clamp_f32, "clamp_f32", clamp_f32_len, clamp_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_pad_f32, "pad_f32", pad_f32_len, pad_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_repeat_f32, "repeat_f32", repeat_f32_len, repeat_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_gelu_f32, "gelu_f32", gelu_f32_len, gelu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_gelu_quick_f32, "gelu_quick_f32", gelu_quick_f32_len, gelu_quick_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_silu_f32, "silu_f32", silu_f32_len, silu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_relu_f32, "relu_f32", relu_f32_len, relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_leaky_relu_f32, "leaky_relu_f32", leaky_relu_f32_len, leaky_relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_tanh_f32, "tanh_f32", tanh_f32_len, tanh_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_diag_mask_inf_f32, "diag_mask_inf_f32", diag_mask_inf_f32_len, diag_mask_inf_f32_data, "main", 2, sizeof(vk_op_diag_mask_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32, "soft_max_f32", soft_max_f32_len, soft_max_f32_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { device->subgroup_size }, 1); ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_wg512, "soft_max_f32_wg512", soft_max_f32_len, soft_max_f32_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { 512 }, 1); ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_f16, "soft_max_f32_f16", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { device->subgroup_size }, 1); ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_f16_wg512, "soft_max_f32_f16_wg512", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { 512 }, 1); ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f32, "rope_norm_f32", rope_norm_f32_len, rope_norm_f32_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f32, "rope_neox_f32", rope_neox_f32_len, rope_neox_f32_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1); if (device->float_controls_rte_fp16) { ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f16, "rope_norm_f16", rope_norm_f16_rte_len, rope_norm_f16_rte_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f16, "rope_neox_f16", rope_neox_f16_rte_len, rope_neox_f16_rte_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1); } else { ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f16, "rope_norm_f16", rope_norm_f16_len, rope_norm_f16_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f16, "rope_neox_f16", rope_neox_f16_len, rope_neox_f16_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1); } ggml_vk_create_pipeline(device, device->pipeline_argsort_f32, "argsort_f32", argsort_f32_len, argsort_f32_data, "main", 2, sizeof(vk_op_argsort_push_constants), {1024, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_sum_rows_f32, "sum_rows_f32", sum_rows_f32_len, sum_rows_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, { device->subgroup_size }, 1); ggml_vk_create_pipeline(device, device->pipeline_im2col_f32, "im2col_f32", im2col_f32_len, im2col_f32_data, "main", 2, sizeof(vk_op_im2col_push_constants), {256, 1, 1}, {}, 1); if (device->float_controls_rte_fp16) { ggml_vk_create_pipeline(device, device->pipeline_im2col_f32_f16, "im2col_f32_f16", im2col_f32_f16_rte_len, im2col_f32_f16_rte_data, "main", 2, sizeof(vk_op_im2col_push_constants), {256, 1, 1}, {}, 1); } else { ggml_vk_create_pipeline(device, device->pipeline_im2col_f32_f16, "im2col_f32_f16", im2col_f32_f16_len, im2col_f32_f16_data, "main", 2, sizeof(vk_op_im2col_push_constants), {256, 1, 1}, {}, 1); } ggml_vk_create_pipeline(device, device->pipeline_timestep_embedding_f32, "timestep_embedding_f32", timestep_embedding_f32_len, timestep_embedding_f32_data, "main", 2, sizeof(vk_op_timestep_embedding_push_constants), {256, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_pool2d_f32, "pool2d_f32", pool2d_f32_len, pool2d_f32_data, "main", 2, sizeof(vk_op_pool2d_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_rwkv_wkv6_f32, "rwkv_wkv6_f32", rwkv_wkv6_f32_len, rwkv_wkv6_f32_data, "main", 7, sizeof(vk_op_rwkv_wkv6_push_constants), {1, 1, 1}, {device->subgroup_size}, 1); for (auto &c : compiles) { c.wait(); } std::cerr << "Done!" << std::endl; } static vk_device ggml_vk_get_device(size_t idx) { VK_LOG_DEBUG("ggml_vk_get_device(" << idx << ")"); if (vk_instance.devices[idx] == nullptr) { VK_LOG_DEBUG("Initializing new vk_device"); vk_device device = std::make_shared(); vk_instance.devices[idx] = device; #ifdef GGML_VULKAN_MEMORY_DEBUG device->memory_logger = std::unique_ptr(new vk_memory_logger()); #endif #ifdef GGML_VULKAN_PERF device->perf_logger = std::unique_ptr(new vk_perf_logger()); #endif size_t dev_num = vk_instance.device_indices[idx]; std::vector physical_devices = vk_instance.instance.enumeratePhysicalDevices(); if (dev_num >= physical_devices.size()) { std::cerr << "ggml_vulkan: Device with index " << dev_num << " does not exist." << std::endl; throw std::runtime_error("Device not found"); } device->physical_device = physical_devices[dev_num]; const std::vector ext_props = device->physical_device.enumerateDeviceExtensionProperties(); bool fp16_storage = false; bool fp16_compute = false; bool maintenance4_support = false; bool sm_builtins = false; bool amd_shader_core_properties2 = false; bool pipeline_robustness = false; bool coopmat2_support = false; device->coopmat_support = false; // Check if maintenance4 is supported for (const auto& properties : ext_props) { if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) { maintenance4_support = true; } else if (strcmp("VK_KHR_16bit_storage", properties.extensionName) == 0) { fp16_storage = true; } else if (strcmp("VK_KHR_shader_float16_int8", properties.extensionName) == 0) { fp16_compute = true; } else if (strcmp("VK_NV_shader_sm_builtins", properties.extensionName) == 0) { sm_builtins = true; } else if (strcmp("VK_AMD_shader_core_properties2", properties.extensionName) == 0) { amd_shader_core_properties2 = true; } else if (strcmp("VK_EXT_pipeline_robustness", properties.extensionName) == 0) { pipeline_robustness = true; } else if (strcmp("VK_EXT_subgroup_size_control", properties.extensionName) == 0) { device->subgroup_size_control = true; } else if (strcmp("VK_KHR_cooperative_matrix", properties.extensionName) == 0 && !getenv("GGML_VK_DISABLE_COOPMAT")) { device->coopmat_support = true; device->coopmat_m = 0; device->coopmat_n = 0; device->coopmat_k = 0; } else if (strcmp("VK_NV_cooperative_matrix2", properties.extensionName) == 0 && !getenv("GGML_VK_DISABLE_COOPMAT2")) { coopmat2_support = true; } } vk::PhysicalDeviceProperties2 props2; vk::PhysicalDeviceMaintenance3Properties props3; vk::PhysicalDeviceMaintenance4Properties props4; vk::PhysicalDeviceSubgroupProperties subgroup_props; vk::PhysicalDeviceDriverProperties driver_props; vk::PhysicalDeviceShaderSMBuiltinsPropertiesNV sm_props; vk::PhysicalDeviceShaderCoreProperties2AMD amd_shader_core_properties2_props; vk::PhysicalDeviceVulkan12Properties vk12_props; vk::PhysicalDeviceSubgroupSizeControlPropertiesEXT subgroup_size_control_props; props2.pNext = &props3; props3.pNext = &subgroup_props; subgroup_props.pNext = &driver_props; driver_props.pNext = &vk12_props; VkBaseOutStructure * last_struct = (VkBaseOutStructure *)&vk12_props; if (maintenance4_support) { last_struct->pNext = (VkBaseOutStructure *)&props4; last_struct = (VkBaseOutStructure *)&props4; } if (sm_builtins) { last_struct->pNext = (VkBaseOutStructure *)&sm_props; last_struct = (VkBaseOutStructure *)&sm_props; } if (amd_shader_core_properties2) { last_struct->pNext = (VkBaseOutStructure *)&amd_shader_core_properties2_props; last_struct = (VkBaseOutStructure *)&amd_shader_core_properties2_props; } if (device->subgroup_size_control) { last_struct->pNext = (VkBaseOutStructure *)&subgroup_size_control_props; last_struct = (VkBaseOutStructure *)&subgroup_size_control_props; } #if defined(VK_NV_cooperative_matrix2) vk::PhysicalDeviceCooperativeMatrix2PropertiesNV coopmat2_props; if (coopmat2_support) { last_struct->pNext = (VkBaseOutStructure *)&coopmat2_props; last_struct = (VkBaseOutStructure *)&coopmat2_props; } #endif device->physical_device.getProperties2(&props2); device->properties = props2.properties; const char* GGML_VK_FORCE_MAX_ALLOCATION_SIZE = getenv("GGML_VK_FORCE_MAX_ALLOCATION_SIZE"); if (GGML_VK_FORCE_MAX_ALLOCATION_SIZE != nullptr) { device->max_memory_allocation_size = std::stoul(GGML_VK_FORCE_MAX_ALLOCATION_SIZE); } else if (maintenance4_support) { device->max_memory_allocation_size = std::min(props3.maxMemoryAllocationSize, props4.maxBufferSize); } else { device->max_memory_allocation_size = props3.maxMemoryAllocationSize; } device->vendor_id = device->properties.vendorID; device->subgroup_size = subgroup_props.subgroupSize; device->uma = device->properties.deviceType == vk::PhysicalDeviceType::eIntegratedGpu; if (sm_builtins) { device->shader_core_count = sm_props.shaderSMCount; } else if (amd_shader_core_properties2) { device->shader_core_count = amd_shader_core_properties2_props.activeComputeUnitCount; } else { device->shader_core_count = 0; } device->float_controls_rte_fp16 = vk12_props.shaderRoundingModeRTEFloat16; const bool force_disable_f16 = getenv("GGML_VK_DISABLE_F16") != nullptr; device->fp16 = !force_disable_f16 && fp16_storage && fp16_compute; if (device->vendor_id == VK_VENDOR_ID_INTEL || (device->vendor_id == VK_VENDOR_ID_AMD && (driver_props.driverID == vk::DriverId::eAmdProprietary || driver_props.driverID == vk::DriverId::eAmdOpenSource))) { // Intel drivers don't support coopmat properly yet // Only RADV supports coopmat properly on AMD device->coopmat_support = false; } std::vector queue_family_props = device->physical_device.getQueueFamilyProperties(); // Try to find a non-graphics compute queue and transfer-focused queues const uint32_t compute_queue_family_index = ggml_vk_find_queue_family_index(queue_family_props, vk::QueueFlagBits::eCompute, vk::QueueFlagBits::eGraphics, -1, 1); const uint32_t transfer_queue_family_index = ggml_vk_find_queue_family_index(queue_family_props, vk::QueueFlagBits::eTransfer, vk::QueueFlagBits::eCompute | vk::QueueFlagBits::eGraphics, compute_queue_family_index, 1); const float priorities[] = { 1.0f, 1.0f }; device->single_queue = compute_queue_family_index == transfer_queue_family_index && queue_family_props[compute_queue_family_index].queueCount == 1; std::vector device_queue_create_infos; if (compute_queue_family_index != transfer_queue_family_index) { device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), compute_queue_family_index, 1, priorities}); device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), transfer_queue_family_index, 1, priorities + 1}); } else if(!device->single_queue) { device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), compute_queue_family_index, 2, priorities}); } else { device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), compute_queue_family_index, 1, priorities}); } vk::DeviceCreateInfo device_create_info; std::vector device_extensions; vk::PhysicalDeviceFeatures device_features = device->physical_device.getFeatures(); VkPhysicalDeviceFeatures2 device_features2; device_features2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2; device_features2.pNext = nullptr; device_features2.features = (VkPhysicalDeviceFeatures)device_features; VkPhysicalDeviceVulkan11Features vk11_features; vk11_features.pNext = nullptr; vk11_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES; device_features2.pNext = &vk11_features; VkPhysicalDeviceVulkan12Features vk12_features; vk12_features.pNext = nullptr; vk12_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES; vk11_features.pNext = &vk12_features; last_struct = (VkBaseOutStructure *)&vk12_features; VkPhysicalDevicePipelineRobustnessFeaturesEXT pl_robustness_features; pl_robustness_features.pNext = nullptr; pl_robustness_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_ROBUSTNESS_FEATURES_EXT; pl_robustness_features.pipelineRobustness = VK_FALSE; if (pipeline_robustness) { last_struct->pNext = (VkBaseOutStructure *)&pl_robustness_features; last_struct = (VkBaseOutStructure *)&pl_robustness_features; device_extensions.push_back("VK_EXT_pipeline_robustness"); } VkPhysicalDeviceSubgroupSizeControlFeaturesEXT subgroup_size_control_features; subgroup_size_control_features.pNext = nullptr; subgroup_size_control_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT; subgroup_size_control_features.computeFullSubgroups = false; subgroup_size_control_features.subgroupSizeControl = false; if (device->subgroup_size_control) { last_struct->pNext = (VkBaseOutStructure *)&subgroup_size_control_features; last_struct = (VkBaseOutStructure *)&subgroup_size_control_features; } VkPhysicalDeviceCooperativeMatrixFeaturesKHR coopmat_features; coopmat_features.pNext = nullptr; coopmat_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_FEATURES_KHR; coopmat_features.cooperativeMatrix = VK_FALSE; if (device->coopmat_support) { last_struct->pNext = (VkBaseOutStructure *)&coopmat_features; last_struct = (VkBaseOutStructure *)&coopmat_features; } #if defined(VK_NV_cooperative_matrix2) VkPhysicalDeviceCooperativeMatrix2FeaturesNV coopmat2_features {}; coopmat2_features.pNext = nullptr; coopmat2_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_2_FEATURES_NV; if (coopmat2_support) { last_struct->pNext = (VkBaseOutStructure *)&coopmat2_features; last_struct = (VkBaseOutStructure *)&coopmat2_features; device_extensions.push_back("VK_NV_cooperative_matrix2"); } #endif vkGetPhysicalDeviceFeatures2(device->physical_device, &device_features2); device->fp16 = device->fp16 && vk12_features.shaderFloat16; device->pipeline_robustness = pl_robustness_features.pipelineRobustness; if (device->subgroup_size_control) { device->subgroup_min_size = subgroup_size_control_props.minSubgroupSize; device->subgroup_max_size = subgroup_size_control_props.maxSubgroupSize; } device->subgroup_size_control = device->subgroup_size_control && (subgroup_size_control_props.requiredSubgroupSizeStages & vk::ShaderStageFlagBits::eCompute) && subgroup_size_control_features.subgroupSizeControl; if (device->subgroup_size_control) { device->subgroup_require_full_support = subgroup_size_control_features.computeFullSubgroups; device_extensions.push_back("VK_EXT_subgroup_size_control"); } device->coopmat_support = device->coopmat_support && coopmat_features.cooperativeMatrix; if (coopmat2_support) { #if defined(VK_NV_cooperative_matrix2) && defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT) if (coopmat2_features.cooperativeMatrixWorkgroupScope && coopmat2_features.cooperativeMatrixFlexibleDimensions && coopmat2_features.cooperativeMatrixReductions && coopmat2_features.cooperativeMatrixConversions && coopmat2_features.cooperativeMatrixPerElementOperations && coopmat2_features.cooperativeMatrixTensorAddressing && coopmat2_features.cooperativeMatrixBlockLoads && vk12_features.bufferDeviceAddress) { std::vector flexible_dimensions; uint32_t count = 0; PFN_vkGetPhysicalDeviceCooperativeMatrixFlexibleDimensionsPropertiesNV _vkGetPhysicalDeviceCooperativeMatrixFlexibleDimensionsPropertiesNV = (PFN_vkGetPhysicalDeviceCooperativeMatrixFlexibleDimensionsPropertiesNV) vk_instance.instance.getProcAddr("vkGetPhysicalDeviceCooperativeMatrixFlexibleDimensionsPropertiesNV"); _vkGetPhysicalDeviceCooperativeMatrixFlexibleDimensionsPropertiesNV(device->physical_device, &count, nullptr); VkCooperativeMatrixFlexibleDimensionsPropertiesNV empty_prop {}; empty_prop.sType = VK_STRUCTURE_TYPE_COOPERATIVE_MATRIX_FLEXIBLE_DIMENSIONS_PROPERTIES_NV; flexible_dimensions.resize(count, empty_prop); _vkGetPhysicalDeviceCooperativeMatrixFlexibleDimensionsPropertiesNV(device->physical_device, &count, flexible_dimensions.data()); bool found_fp16_128 = false, found_fp16_256 = false, found_fp32_128 = false, found_fp32_256 = false; // need to support fp16*fp16 with fp16/fp32 accumulator, for workgroupsize 128 // with 32x16x16 and 256 with 32x32x16. for (auto &prop : flexible_dimensions) { if (prop.saturatingAccumulation == VK_FALSE && prop.scope == VK_SCOPE_WORKGROUP_KHR && prop.AType == VK_COMPONENT_TYPE_FLOAT16_KHR && prop.BType == VK_COMPONENT_TYPE_FLOAT16_KHR) { if (prop.workgroupInvocations == 128 && prop.MGranularity <= 32 && prop.NGranularity <= 16 && prop.KGranularity <= 16) { if (prop.CType == VK_COMPONENT_TYPE_FLOAT16_KHR && prop.ResultType == VK_COMPONENT_TYPE_FLOAT16_KHR) { found_fp16_128 = true; } if (prop.CType == VK_COMPONENT_TYPE_FLOAT32_KHR && prop.ResultType == VK_COMPONENT_TYPE_FLOAT32_KHR) { found_fp32_128 = true; } } if (prop.workgroupInvocations == 256 && prop.MGranularity <= 32 && prop.NGranularity <= 32 && prop.KGranularity <= 16) { if (prop.CType == VK_COMPONENT_TYPE_FLOAT16_KHR && prop.ResultType == VK_COMPONENT_TYPE_FLOAT16_KHR) { found_fp16_256 = true; } if (prop.CType == VK_COMPONENT_TYPE_FLOAT32_KHR && prop.ResultType == VK_COMPONENT_TYPE_FLOAT32_KHR) { found_fp32_256 = true; } } } } if (found_fp16_128 && found_fp16_256 && found_fp32_128 && found_fp32_256 && coopmat2_props.cooperativeMatrixFlexibleDimensionsMaxDimension >= 512) { device->coopmat2 = true; } } #endif } if (!vk11_features.storageBuffer16BitAccess) { std::cerr << "ggml_vulkan: device " << GGML_VK_NAME << idx << " does not support 16-bit storage." << std::endl; throw std::runtime_error("Unsupported device"); } device_extensions.push_back("VK_KHR_16bit_storage"); #ifdef GGML_VULKAN_VALIDATE device_extensions.push_back("VK_KHR_shader_non_semantic_info"); #endif if (device->fp16) { device_extensions.push_back("VK_KHR_shader_float16_int8"); } if (device->coopmat_support) { // Query supported shapes std::vector cm_props; PFN_vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR pfn_vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR = (PFN_vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR)vkGetInstanceProcAddr(vk_instance.instance, "vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR"); uint32_t cm_props_num; pfn_vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR(device->physical_device, &cm_props_num, nullptr); cm_props.resize(cm_props_num); for (auto& prop : cm_props) { prop.sType = VK_STRUCTURE_TYPE_COOPERATIVE_MATRIX_PROPERTIES_KHR; } pfn_vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR(device->physical_device, &cm_props_num, cm_props.data()); VK_LOG_DEBUG("ggml_vulkan: Cooperative Matrix Shapes: " << cm_props.size()); for (auto& prop : cm_props) { VK_LOG_DEBUG("ggml_vulkan: M: " << prop.MSize << " N: " << prop.NSize << " K: " << prop.KSize << " A: " << vk::to_string((vk::ComponentTypeKHR)prop.AType) << " B: " << vk::to_string((vk::ComponentTypeKHR)prop.BType) << " C: " << vk::to_string((vk::ComponentTypeKHR)prop.CType) << " Result: " << vk::to_string((vk::ComponentTypeKHR)prop.ResultType) << " saturatingAccumulation: " << prop.saturatingAccumulation << " scope: " << vk::to_string((vk::ScopeKHR)prop.scope)); if ((vk::ComponentTypeKHR)prop.AType == vk::ComponentTypeKHR::eFloat16 && (vk::ComponentTypeKHR)prop.BType == vk::ComponentTypeKHR::eFloat16 && (vk::ScopeKHR)prop.scope == vk::ScopeKHR::eSubgroup ) { if ((vk::ComponentTypeKHR)prop.CType == vk::ComponentTypeKHR::eFloat32 && (vk::ComponentTypeKHR)prop.ResultType == vk::ComponentTypeKHR::eFloat32) { // coopmat sizes not set yet if (device->coopmat_m == 0) { device->coopmat_acc_f32_support = true; device->coopmat_m = prop.MSize; device->coopmat_n = prop.NSize; device->coopmat_k = prop.KSize; } else if (device->coopmat_m == prop.MSize && device->coopmat_n == prop.NSize && device->coopmat_k == prop.KSize) { // Only enable if shape is identical device->coopmat_acc_f32_support = true; } } else if ((vk::ComponentTypeKHR)prop.CType == vk::ComponentTypeKHR::eFloat16 && (vk::ComponentTypeKHR)prop.ResultType == vk::ComponentTypeKHR::eFloat16) { // coopmat sizes not set yet if (device->coopmat_m == 0) { device->coopmat_acc_f16_support = true; device->coopmat_m = prop.MSize; device->coopmat_n = prop.NSize; device->coopmat_k = prop.KSize; } else if (device->coopmat_m == prop.MSize && device->coopmat_n == prop.NSize && device->coopmat_k == prop.KSize) { // Only enable if shape is identical device->coopmat_acc_f16_support = true; } } } } if (device->coopmat_m == 0 || !device->coopmat_acc_f32_support) { // No suitable matmul mode found GGML_LOG_DEBUG("ggml_vulkan: WARNING: No suitable matrix core mode found. Disabling matrix cores.\n"); device->coopmat_support = false; } } if (device->coopmat_support) { device_extensions.push_back("VK_KHR_cooperative_matrix"); } device->name = GGML_VK_NAME + std::to_string(idx); device_create_info = { vk::DeviceCreateFlags(), device_queue_create_infos, {}, device_extensions }; device_create_info.setPNext(&device_features2); device->device = device->physical_device.createDevice(device_create_info); // Queues ggml_vk_create_queue(device, device->compute_queue, compute_queue_family_index, 0, { vk::PipelineStageFlagBits::eComputeShader | vk::PipelineStageFlagBits::eTransfer }, false); // Shaders // Disable matmul tile sizes early if performance low or not supported switch (device->vendor_id) { #ifndef GGML_VULKAN_RUN_TESTS case VK_VENDOR_ID_AMD: case VK_VENDOR_ID_INTEL: device->mul_mat_l = false; device->mul_mat_m = true; device->mul_mat_s = true; device->mul_mat_id_l = false; device->mul_mat_id_m = true; device->mul_mat_id_s = true; break; case VK_VENDOR_ID_APPLE: device->mul_mat_l = false; device->mul_mat_m = true; device->mul_mat_s = false; device->mul_mat_id_l = false; device->mul_mat_id_m = true; device->mul_mat_id_s = false; break; #endif default: device->mul_mat_l = true; device->mul_mat_m = true; device->mul_mat_s = true; device->mul_mat_id_l = true; device->mul_mat_id_m = true; device->mul_mat_id_s = true; break; } ggml_vk_load_shaders(device); if (!device->single_queue) { const uint32_t transfer_queue_index = compute_queue_family_index == transfer_queue_family_index ? 1 : 0; ggml_vk_create_queue(device, device->transfer_queue, transfer_queue_family_index, transfer_queue_index, { vk::PipelineStageFlagBits::eTransfer }, true); } else { // TODO: Use pointer or reference to avoid copy device->transfer_queue = device->compute_queue; } device->buffer_type = { /* .iface = */ ggml_backend_vk_buffer_type_interface, /* .device = */ ggml_backend_reg_dev_get(ggml_backend_vk_reg(), idx), /* .context = */ new ggml_backend_vk_buffer_type_context{ device->name, device }, }; device->fence = device->device.createFence({}); device->idx = idx; return device; } return vk_instance.devices[idx]; } static void ggml_vk_print_gpu_info(size_t idx) { GGML_ASSERT(idx < vk_instance.device_indices.size()); size_t dev_num = vk_instance.device_indices[idx]; VK_LOG_DEBUG("ggml_vk_print_gpu_info(" << dev_num << ")"); GGML_ASSERT(vk_instance_initialized); std::vector devices = vk_instance.instance.enumeratePhysicalDevices(); if (dev_num >= devices.size()) { std::cerr << "ggml_vulkan: Device with index " << dev_num << " does not exist." << std::endl; throw std::runtime_error("Device not found"); } vk::PhysicalDevice physical_device = devices[dev_num]; std::vector ext_props = physical_device.enumerateDeviceExtensionProperties(); vk::PhysicalDeviceProperties2 props2; vk::PhysicalDeviceMaintenance3Properties props3; vk::PhysicalDeviceSubgroupProperties subgroup_props; vk::PhysicalDeviceDriverProperties driver_props; props2.pNext = &props3; props3.pNext = &subgroup_props; subgroup_props.pNext = &driver_props; physical_device.getProperties2(&props2); const size_t subgroup_size = subgroup_props.subgroupSize; const bool uma = props2.properties.deviceType == vk::PhysicalDeviceType::eIntegratedGpu; bool fp16_storage = false; bool fp16_compute = false; bool coopmat_support = false; bool coopmat2_support = false; for (auto properties : ext_props) { if (strcmp("VK_KHR_16bit_storage", properties.extensionName) == 0) { fp16_storage = true; } else if (strcmp("VK_KHR_shader_float16_int8", properties.extensionName) == 0) { fp16_compute = true; } else if (strcmp("VK_KHR_cooperative_matrix", properties.extensionName) == 0 && !getenv("GGML_VK_DISABLE_COOPMAT")) { coopmat_support = true; #if defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT) } else if (strcmp("VK_NV_cooperative_matrix2", properties.extensionName) == 0 && !getenv("GGML_VK_DISABLE_COOPMAT2")) { coopmat2_support = true; #endif } } if (props2.properties.vendorID == VK_VENDOR_ID_INTEL || (props2.properties.vendorID == VK_VENDOR_ID_AMD && (driver_props.driverID == vk::DriverId::eAmdProprietary || driver_props.driverID == vk::DriverId::eAmdOpenSource))) { // Intel drivers don't support coopmat properly yet // Only RADV supports coopmat properly on AMD coopmat_support = false; } const char* GGML_VK_DISABLE_F16 = getenv("GGML_VK_DISABLE_F16"); bool force_disable_f16 = GGML_VK_DISABLE_F16 != nullptr; bool fp16 = !force_disable_f16 && fp16_storage && fp16_compute; vk::PhysicalDeviceFeatures device_features = physical_device.getFeatures(); VkPhysicalDeviceFeatures2 device_features2; device_features2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2; device_features2.pNext = nullptr; device_features2.features = (VkPhysicalDeviceFeatures)device_features; VkPhysicalDeviceVulkan11Features vk11_features; vk11_features.pNext = nullptr; vk11_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES; device_features2.pNext = &vk11_features; VkPhysicalDeviceVulkan12Features vk12_features; vk12_features.pNext = nullptr; vk12_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES; vk11_features.pNext = &vk12_features; // Pointer to the last chain element VkBaseOutStructure * last_struct = (VkBaseOutStructure *)&vk12_features; VkPhysicalDeviceCooperativeMatrixFeaturesKHR coopmat_features; coopmat_features.pNext = nullptr; coopmat_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_FEATURES_KHR; coopmat_features.cooperativeMatrix = VK_FALSE; if (coopmat_support) { last_struct->pNext = (VkBaseOutStructure *)&coopmat_features; last_struct = (VkBaseOutStructure *)&coopmat_features; } vkGetPhysicalDeviceFeatures2(physical_device, &device_features2); fp16 = fp16 && vk12_features.shaderFloat16; coopmat_support = coopmat_support && coopmat_features.cooperativeMatrix; std::string matrix_cores = coopmat2_support ? "NV_coopmat2" : coopmat_support ? "KHR_coopmat" : "none"; std::string device_name = props2.properties.deviceName.data(); GGML_LOG_DEBUG("ggml_vulkan: %zu = %s (%s) | uma: %d | fp16: %d | warp size: %zu | matrix cores: %s\n", idx, device_name.c_str(), driver_props.driverName.data(), uma, fp16, subgroup_size, matrix_cores.c_str()); if (props2.properties.deviceType == vk::PhysicalDeviceType::eCpu) { GGML_LOG_DEBUG("ggml_vulkan: Warning: Device type is CPU. This is probably not the device you want.\n"); } } static bool ggml_vk_instance_validation_ext_available(const std::vector& instance_extensions); static bool ggml_vk_instance_portability_enumeration_ext_available(const std::vector& instance_extensions); void ggml_vk_instance_init() { if (vk_instance_initialized) { return; } VK_LOG_DEBUG("ggml_vk_instance_init()"); vk_instance_initialized = true; vk::ApplicationInfo app_info{ "ggml-vulkan", 1, nullptr, 0, VK_API_VERSION }; const std::vector instance_extensions = vk::enumerateInstanceExtensionProperties(); const bool validation_ext = ggml_vk_instance_validation_ext_available(instance_extensions); #ifdef __APPLE__ const bool portability_enumeration_ext = ggml_vk_instance_portability_enumeration_ext_available(instance_extensions); #endif std::vector layers; if (validation_ext) { layers.push_back("VK_LAYER_KHRONOS_validation"); } std::vector extensions; if (validation_ext) { extensions.push_back("VK_EXT_validation_features"); } #ifdef __APPLE__ if (portability_enumeration_ext) { extensions.push_back("VK_KHR_portability_enumeration"); } #endif vk::InstanceCreateInfo instance_create_info(vk::InstanceCreateFlags{}, &app_info, layers, extensions); #ifdef __APPLE__ if (portability_enumeration_ext) { instance_create_info.flags |= vk::InstanceCreateFlagBits::eEnumeratePortabilityKHR; } #endif std::vector features_enable; vk::ValidationFeaturesEXT validation_features; if (validation_ext) { features_enable = { vk::ValidationFeatureEnableEXT::eBestPractices }; validation_features = { features_enable, {}, }; validation_features.setPNext(nullptr); instance_create_info.setPNext(&validation_features); GGML_LOG_DEBUG("ggml_vulkan: Validation layers enabled\n"); } vk_instance.instance = vk::createInstance(instance_create_info); size_t num_available_devices = vk_instance.instance.enumeratePhysicalDevices().size(); // Emulate behavior of CUDA_VISIBLE_DEVICES for Vulkan char * devices_env = getenv("GGML_VK_VISIBLE_DEVICES"); if (devices_env != nullptr) { std::string devices(devices_env); std::replace(devices.begin(), devices.end(), ',', ' '); std::stringstream ss(devices); size_t tmp; while (ss >> tmp) { if(tmp >= num_available_devices) { std::cerr << "ggml_vulkan: Invalid device index " << tmp << " in GGML_VK_VISIBLE_DEVICES." << std::endl; throw std::runtime_error("Invalid Vulkan device index"); } vk_instance.device_indices.push_back(tmp); } } else { std::vector devices = vk_instance.instance.enumeratePhysicalDevices(); // Make sure at least one device exists if (devices.empty()) { std::cerr << "ggml_vulkan: Error: No devices found." << std::endl; GGML_ABORT("fatal error"); } // Default to using all dedicated GPUs for (size_t i = 0; i < devices.size(); i++) { vk::PhysicalDeviceProperties2 new_props; vk::PhysicalDeviceDriverProperties new_driver; vk::PhysicalDeviceIDProperties new_id; new_props.pNext = &new_driver; new_driver.pNext = &new_id; devices[i].getProperties2(&new_props); if (new_props.properties.deviceType == vk::PhysicalDeviceType::eDiscreteGpu) { // Check if there are two physical devices corresponding to the same GPU auto old_device = std::find_if( vk_instance.device_indices.begin(), vk_instance.device_indices.end(), [&devices, &new_id](const size_t k){ vk::PhysicalDeviceProperties2 old_props; vk::PhysicalDeviceIDProperties old_id; old_props.pNext = &old_id; devices[k].getProperties2(&old_props); return std::equal(std::begin(old_id.deviceUUID), std::end(old_id.deviceUUID), std::begin(new_id.deviceUUID)); } ); if (old_device == vk_instance.device_indices.end()) { vk_instance.device_indices.push_back(i); } else { // There can be two physical devices corresponding to the same GPU if there are 2 different drivers // This can cause error when splitting layers aross the devices, need to keep only 1 VK_LOG_DEBUG("Device " << i << " and device " << *old_device << " have the same deviceUUID"); vk::PhysicalDeviceProperties2 old_props; vk::PhysicalDeviceDriverProperties old_driver; old_props.pNext = &old_driver; devices[*old_device].getProperties2(&old_props); std::map driver_priorities {}; int old_priority = std::numeric_limits::max(); int new_priority = std::numeric_limits::max(); // Check https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VkDriverId.html for the list of driver id // Smaller number -> higher priority switch (old_props.properties.vendorID) { case VK_VENDOR_ID_AMD: driver_priorities[vk::DriverId::eMesaRadv] = 1; driver_priorities[vk::DriverId::eAmdOpenSource] = 2; driver_priorities[vk::DriverId::eAmdProprietary] = 3; break; case VK_VENDOR_ID_INTEL: driver_priorities[vk::DriverId::eIntelOpenSourceMESA] = 1; driver_priorities[vk::DriverId::eIntelProprietaryWindows] = 2; break; case VK_VENDOR_ID_NVIDIA: driver_priorities[vk::DriverId::eNvidiaProprietary] = 1; #if defined(VK_API_VERSION_1_3) && VK_HEADER_VERSION >= 235 driver_priorities[vk::DriverId::eMesaNvk] = 2; #endif break; } if (driver_priorities.count(old_driver.driverID)) { old_priority = driver_priorities[old_driver.driverID]; } if (driver_priorities.count(new_driver.driverID)) { new_priority = driver_priorities[new_driver.driverID]; } if (new_priority < old_priority) { auto r = std::remove(vk_instance.device_indices.begin(), vk_instance.device_indices.end(), *old_device); vk_instance.device_indices.erase(r, vk_instance.device_indices.end()); vk_instance.device_indices.push_back(i); VK_LOG_DEBUG("Prioritize device " << i << " driver " << new_driver.driverName << " over device " << *old_device << " driver " << old_driver.driverName); } else { VK_LOG_DEBUG("Prioritize device " << *old_device << " driver " << old_driver.driverName << " over device " << i << " driver " << new_driver.driverName << std::endl); } } } } // If no dedicated GPUs found, fall back to GPU 0 if (vk_instance.device_indices.empty()) { vk_instance.device_indices.push_back(0); } } GGML_LOG_DEBUG("ggml_vulkan: Found %zu Vulkan devices:\n", vk_instance.device_indices.size()); for (size_t i = 0; i < vk_instance.device_indices.size(); i++) { ggml_vk_print_gpu_info(i); } } static void ggml_vk_init(ggml_backend_vk_context * ctx, size_t idx) { VK_LOG_DEBUG("ggml_vk_init(" << ctx->name << ", " << idx << ")"); ggml_vk_instance_init(); GGML_ASSERT(idx < vk_instance.device_indices.size()); ctx->name = GGML_VK_NAME + std::to_string(idx); ctx->device = ggml_vk_get_device(idx); ctx->semaphore_idx = 0; ctx->event_idx = 0; ctx->prealloc_size_x = 0; ctx->prealloc_size_y = 0; ctx->prealloc_size_split_k = 0; ctx->fence = ctx->device->device.createFence({}); #ifdef GGML_VULKAN_CHECK_RESULTS const char* skip_checks = getenv("GGML_VULKAN_SKIP_CHECKS"); vk_skip_checks = (skip_checks == NULL ? 0 : atoi(skip_checks)); const char* output_tensor = getenv("GGML_VULKAN_OUTPUT_TENSOR"); vk_output_tensor = (output_tensor == NULL ? 0 : atoi(output_tensor)); #endif } static vk_pipeline ggml_vk_get_to_fp16(ggml_backend_vk_context * ctx, ggml_type type) { VK_LOG_DEBUG("ggml_vk_get_to_fp16()"); switch (type) { case GGML_TYPE_F32: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: case GGML_TYPE_IQ4_NL: break; default: return nullptr; } return ctx->device->pipeline_dequant[type]; } static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_pipeline(ggml_backend_vk_context * ctx, ggml_type src0_type, ggml_type src1_type, ggml_prec prec) { VK_LOG_DEBUG("ggml_vk_get_mul_mat_mat_pipeline(" << ggml_type_name(src0_type) << ", " << ggml_type_name(src1_type) << ")"); if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) { return ctx->device->pipeline_matmul_f32; } if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) { return ctx->device->pipeline_matmul_f32_f16; } if (prec == GGML_PREC_DEFAULT && ctx->device->fp16 && !(ctx->device->coopmat_support && !ctx->device->coopmat_acc_f16_support)) { if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) { return ctx->device->pipeline_matmul_f16_f32.f16acc; } if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) { return ctx->device->pipeline_matmul_f16.f16acc; } } else { if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) { return ctx->device->pipeline_matmul_f16_f32.f32acc; } if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) { return ctx->device->pipeline_matmul_f16.f32acc; } } if (src1_type != GGML_TYPE_F32 && !ctx->device->coopmat2) { return nullptr; } switch (src0_type) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: case GGML_TYPE_IQ4_NL: break; default: return nullptr; } if (ctx->device->coopmat2) { assert(src1_type == GGML_TYPE_F16); return ctx->device->pipeline_dequant_mul_mat_mat_f16[src0_type].f16acc; } return ctx->device->fp16 ? ctx->device->pipeline_dequant_mul_mat_mat[src0_type].f16acc : ctx->device->pipeline_dequant_mul_mat_mat[src0_type].f32acc; } static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context * ctx, ggml_type a_type, ggml_type b_type) { VK_LOG_DEBUG("ggml_vk_get_dequantize_mul_mat_vec()"); GGML_ASSERT(b_type == GGML_TYPE_F32 || b_type == GGML_TYPE_F16); switch (a_type) { case GGML_TYPE_F32: case GGML_TYPE_F16: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: case GGML_TYPE_IQ4_NL: break; default: return nullptr; } return b_type == GGML_TYPE_F32 ? ctx->device->pipeline_dequant_mul_mat_vec_f32_f32[a_type] : ctx->device->pipeline_dequant_mul_mat_vec_f16_f32[a_type]; } static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_id_pipeline(ggml_backend_vk_context * ctx, ggml_type src0_type, ggml_type src1_type, ggml_prec prec) { VK_LOG_DEBUG("ggml_vk_get_mul_mat_mat_id_pipeline()"); if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) { return ctx->device->pipeline_matmul_id_f32; } if (prec == GGML_PREC_DEFAULT && ctx->device->fp16 && !(ctx->device->coopmat_support && !ctx->device->coopmat_acc_f16_support)) { if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) { return ctx->device->pipeline_matmul_id_f16_f32.f16acc; } if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) { return ctx->device->pipeline_matmul_id_f16.f16acc; } } else { if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) { return ctx->device->pipeline_matmul_id_f16_f32.f32acc; } if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) { return ctx->device->pipeline_matmul_id_f16.f32acc; } } GGML_ASSERT(src1_type == GGML_TYPE_F32); switch (src0_type) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: case GGML_TYPE_IQ4_NL: break; default: return nullptr; } return ctx->device->fp16 ? ctx->device->pipeline_dequant_mul_mat_mat_id[src0_type].f16acc : ctx->device->pipeline_dequant_mul_mat_mat_id[src0_type].f32acc; } static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec_id(ggml_backend_vk_context * ctx, ggml_type a_type, ggml_type b_type) { VK_LOG_DEBUG("ggml_vk_get_dequantize_mul_mat_vec()"); GGML_ASSERT(b_type == GGML_TYPE_F32); switch (a_type) { case GGML_TYPE_F32: case GGML_TYPE_F16: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: case GGML_TYPE_IQ4_NL: break; default: return nullptr; } return ctx->device->pipeline_dequant_mul_mat_vec_id_f32[a_type]; } static vk_buffer ggml_vk_pool_malloc(ggml_backend_vk_context * ctx, size_t size) { VK_LOG_DEBUG("ggml_vk_pool_malloc(" << size << ")"); VK_LOG_MEMORY("ggml_vk_pool_malloc"); int best_i = -1; size_t best_size = std::numeric_limits::max(); //smallest unused buffer that fits our needs int worst_i = -1; size_t worst_size = 0; //largest unused buffer seen so far for (int i = 0; i < MAX_VK_BUFFERS; ++i) { vk_buffer &b = ctx->buffer_pool[i]; if (b != nullptr && b->size >= size && b->size < best_size) { best_i = i; best_size = b->size; } if (b != nullptr && b->size > worst_size) { worst_i = i; worst_size = b->size; } } if(best_i != -1) { //found the smallest buffer that fits our needs vk_buffer b = ctx->buffer_pool[best_i]; ctx->buffer_pool[best_i].reset(); return b; } if(worst_i != -1) { //no buffer that fits our needs, resize largest one to save memory vk_buffer& b = ctx->buffer_pool[worst_i]; ggml_vk_destroy_buffer(b); } return ggml_vk_create_buffer_device(ctx->device, size); } static void ggml_vk_pool_free(ggml_backend_vk_context * ctx, vk_buffer& buffer) { VK_LOG_DEBUG("ggml_vk_pool_free(" << buffer->size << ")"); for (int i = 0; i < MAX_VK_BUFFERS; ++i) { vk_buffer& b = ctx->buffer_pool[i]; if (b == nullptr) { b = buffer; return; } } std::cerr << "ggml_vulkan: WARNING: vk buffer pool full, increase MAX_VK_BUFFERS" << std::endl; ggml_vk_destroy_buffer(buffer); } // Returns an available temporary buffer that may only be used temporarily, it will be reused static vk_buffer ggml_vk_create_buffer_temp(ggml_backend_vk_context * ctx, size_t size) { // Try to find existing temp buffer with enough capacity for (auto& buffer : ctx->gc.temp_buffers) { if (buffer->size >= size) { return buffer; } } VK_LOG_MEMORY("ggml_vk_create_buffer_temp(" << size << ")"); // Otherwise create new buffer vk_buffer buf = ggml_vk_pool_malloc(ctx, size); ctx->gc.temp_buffers.push_back(buf); return buf; } static void * ggml_vk_host_malloc(vk_device& device, size_t size) { VK_LOG_MEMORY("ggml_vk_host_malloc(" << size << ")"); vk_buffer buf = ggml_vk_create_buffer(device, size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent); if(!(buf->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible)) { fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory\n", size/1024.0/1024.0); device->device.freeMemory(buf->device_memory); device->device.destroyBuffer(buf->buffer); return nullptr; } device->pinned_memory.push_back(std::make_tuple(buf->ptr, size, buf)); return buf->ptr; } static void ggml_vk_host_free(vk_device& device, void* ptr) { if (ptr == nullptr) { return; } VK_LOG_MEMORY("ggml_vk_host_free(" << ptr << ")"); vk_buffer buf; size_t index; for (size_t i = 0; i < device->pinned_memory.size(); i++) { const uint8_t* addr = (const uint8_t*) std::get<0>(device->pinned_memory[i]); const uint8_t* endr = addr + std::get<1>(device->pinned_memory[i]); if (ptr >= addr && ptr < endr) { buf = std::get<2>(device->pinned_memory[i]); index = i; break; } } if (buf == nullptr) { fprintf(stderr, "WARNING: failed to free pinned memory: memory not in map\n"); return; } ggml_vk_destroy_buffer(buf); device->pinned_memory.erase(device->pinned_memory.begin() + index); } static void ggml_vk_host_get(vk_device& device, const void * ptr, vk_buffer& buf, size_t& buf_offset) { buf = nullptr; buf_offset = 0; for (size_t i = 0; i < device->pinned_memory.size(); i++) { const uint8_t* addr = (const uint8_t*) std::get<0>(device->pinned_memory[i]); const uint8_t* endr = addr + std::get<1>(device->pinned_memory[i]); if (ptr >= addr && ptr < endr) { buf = std::get<2>(device->pinned_memory[i]); buf_offset = ((const uint8_t *)ptr) - addr; break; } } } static vk_submission ggml_vk_begin_submission(vk_device& device, vk_queue& q, bool one_time = true) { vk_submission s; s.buffer = ggml_vk_create_cmd_buffer(device, q); if (one_time) { s.buffer.begin({ vk::CommandBufferUsageFlagBits::eOneTimeSubmit }); } else { s.buffer.begin({ vk::CommandBufferUsageFlags{} }); } return s; } static void ggml_vk_dispatch_pipeline(ggml_backend_vk_context* ctx, vk_context& subctx, vk_pipeline& pipeline, std::initializer_list const& descriptor_buffer_infos, size_t push_constant_size, const void* push_constants, std::array elements) { const uint32_t wg0 = CEIL_DIV(elements[0], pipeline->wg_denoms[0]); const uint32_t wg1 = CEIL_DIV(elements[1], pipeline->wg_denoms[1]); const uint32_t wg2 = CEIL_DIV(elements[2], pipeline->wg_denoms[2]); VK_LOG_DEBUG("ggml_vk_dispatch_pipeline(" << pipeline->name << ", {"; for (auto& buffer : descriptor_buffer_infos) { std::cerr << "(" << buffer.buffer << ", " << buffer.offset << ", " << buffer.range << "), "; } std::cerr << "}, (" << wg0 << "," << wg1 << "," << wg2 << "))"); GGML_ASSERT(pipeline->descriptor_set_idx < pipeline->descriptor_sets.size()); GGML_ASSERT(descriptor_buffer_infos.size() == pipeline->parameter_count); vk::DescriptorSet& descriptor_set = pipeline->descriptor_sets[pipeline->descriptor_set_idx++]; vk::WriteDescriptorSet write_descriptor_set{ descriptor_set, 0, 0, pipeline->parameter_count, vk::DescriptorType::eStorageBuffer, nullptr, descriptor_buffer_infos.begin() }; ctx->device->device.updateDescriptorSets({ write_descriptor_set }, {}); subctx->s->buffer.pushConstants(pipeline->layout, vk::ShaderStageFlagBits::eCompute, 0, push_constant_size, push_constants); subctx->s->buffer.bindPipeline(vk::PipelineBindPoint::eCompute, pipeline->pipeline); subctx->s->buffer.bindDescriptorSets(vk::PipelineBindPoint::eCompute, pipeline->layout, 0, { descriptor_set }, {}); subctx->s->buffer.dispatch(wg0, wg1, wg2); } static void ggml_vk_end_submission(vk_submission& s, std::vector wait_semaphores, std::vector signal_semaphores) { s.buffer.end(); s.wait_semaphores = std::move(wait_semaphores); s.signal_semaphores = std::move(signal_semaphores); } static void ggml_vk_ctx_end(vk_context& ctx) { VK_LOG_DEBUG("ggml_vk_ctx_end(" << ctx << ", " << ctx->seqs.size() << ")"); if (ctx->s == nullptr) { return; } ctx->s->buffer.end(); ctx->s = nullptr; } static void ggml_vk_ctx_begin(vk_device& device, vk_context& subctx) { VK_LOG_DEBUG("ggml_vk_ctx_begin(" << device->name << ")"); if (subctx->s != nullptr) { ggml_vk_ctx_end(subctx); } subctx->seqs.push_back({ ggml_vk_begin_submission(device, *subctx->q) }); subctx->s = subctx->seqs[subctx->seqs.size() - 1].data(); } static size_t ggml_vk_align_size(size_t width, size_t align) { VK_LOG_DEBUG("ggml_vk_align_size(" << width << ", " << align << ")"); return CEIL_DIV(width, align) * align; } static void deferred_memcpy(void * dst, const void * src, size_t size, std::vector* memcpys = nullptr) { if (memcpys == nullptr) { memcpy(dst, src, size); } else { memcpys->emplace_back(dst, src, size); } } static void ggml_vk_ensure_sync_staging_buffer(vk_device& device, size_t size) { if (device->sync_staging == nullptr || device->sync_staging->size < size) { VK_LOG_MEMORY("ggml_vk_ensure_sync_staging_buffer(" << size << ")"); ggml_vk_destroy_buffer(device->sync_staging); device->sync_staging = ggml_vk_create_buffer_check(device, size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent); } } static void ggml_vk_buffer_write_nc_async(ggml_backend_vk_context * ctx, vk_context& subctx, vk_buffer& dst, size_t offset, const ggml_tensor * tensor, bool sync_staging = false) { VK_LOG_DEBUG("ggml_vk_buffer_write_nc_async(" << tensor << ")"); GGML_ASSERT(!ggml_is_contiguous(tensor)); // Buffer is already mapped if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) { std::cerr << "ggml_vulkan: buffer_write_nc_async dst buffer is host_visible. Use synchronous write." << std::endl; GGML_ABORT("fatal error"); } // Check if src is pinned memory vk_buffer buf = nullptr; size_t buf_offset = 0; ggml_vk_host_get(ctx->device, tensor->data, buf, buf_offset); const uint64_t ne0 = tensor->ne[0]; const uint64_t ne1 = tensor->ne[1]; const uint64_t ne2 = tensor->ne[2]; const uint64_t ne3 = tensor->ne[3]; const uint64_t nb0 = tensor->nb[0]; const uint64_t nb1 = tensor->nb[1]; const uint64_t nb2 = tensor->nb[2]; const uint64_t nb3 = tensor->nb[3]; const ggml_type type = tensor->type; const uint64_t ts = ggml_type_size(type); const uint64_t bs = ggml_blck_size(type); const uint64_t dstnb0 = ts; const uint64_t dstnb1 = dstnb0*(ne0/bs); const uint64_t dstnb2 = dstnb1*ne1; const uint64_t dstnb3 = dstnb2*ne2; const uint64_t ne = ggml_nelements(tensor); if (buf != nullptr) { // Memory is pinned, use as staging buffer std::vector slices; for (uint64_t i3 = 0; i3 < ne3; i3++) { for (uint64_t i2 = 0; i2 < ne2; i2++) { // Find longest contiguous slice if (ne1*nb1 == dstnb2) { slices.push_back({ buf_offset + i3*nb3 + i2*nb2, offset + i3*dstnb3 + i2*dstnb2, dstnb2 }); } else { for (uint64_t i1 = 0; i1 < ne1; i1++) { if (ne0*nb0/bs == dstnb1) { slices.push_back({ buf_offset + i3*nb3 + i2*nb2 + i1*nb1, offset + i3*dstnb3 + i2*dstnb2 + i1*dstnb1, dstnb1 }); } else { const uint64_t s_off = buf_offset + i3*nb3 + i2*nb2 + i1*nb1; const uint64_t d_off = offset + i3*dstnb3 + i2*dstnb2 + i1*dstnb1; for (uint64_t i0 = 0; i0 < ne0; i0++) { slices.push_back({ s_off + i1*nb0, d_off + i0*dstnb0, dstnb0 }); } } } } } } ggml_vk_sync_buffers(subctx); subctx->s->buffer.copyBuffer(buf->buffer, dst->buffer, slices); return; } if (!sync_staging) { GGML_ABORT("Asynchronous write to non-pinned memory not supported"); } // Staging buffer required vk_buffer& staging = ctx->device->sync_staging; const uint64_t copy_size = ts*ne/bs; ggml_vk_ensure_sync_staging_buffer(ctx->device, copy_size); VkBufferCopy buf_copy{ 0, offset, copy_size }; ggml_vk_sync_buffers(subctx); vkCmdCopyBuffer(subctx->s->buffer, (VkBuffer)staging->buffer, (VkBuffer)dst->buffer, 1, &buf_copy); for (uint64_t i3 = 0; i3 < ne3; i3++) { for (uint64_t i2 = 0; i2 < ne2; i2++) { // Find longest contiguous slice if (ne1*nb1 == dstnb2) { deferred_memcpy((uint8_t *)staging->ptr + i3*dstnb3 + i2*dstnb2, (const uint8_t *) tensor->data + buf_offset + i3*nb3 + i2*nb2, dstnb2, &subctx->in_memcpys); } else { for (uint64_t i1 = 0; i1 < ne1; i1++) { if (ne0*nb0/bs == dstnb1) { deferred_memcpy((uint8_t *)staging->ptr + i3*dstnb3 + i2*dstnb2 + i1*dstnb1, (const uint8_t *) tensor->data + buf_offset + i3*nb3 + i2*nb2 + i1*nb1, dstnb1, &subctx->in_memcpys); } else { const uint64_t s_off = buf_offset + i3*nb3 + i2*nb2 + i1*nb1; const uint64_t d_off = i3*dstnb3 + i2*dstnb2 + i1*dstnb1; for (uint64_t i0 = 0; i0 < ne0; i0++) { deferred_memcpy((uint8_t *)staging->ptr + d_off + i0*dstnb0, (const uint8_t *) tensor->data + s_off + i0*nb0, dstnb0, &subctx->in_memcpys); } } } } } } } static void ggml_vk_buffer_write_2d_async(vk_context subctx, vk_buffer& dst, size_t offset, const void * src, size_t spitch, size_t width, size_t height, bool sync_staging = false) { VK_LOG_DEBUG("ggml_vk_buffer_write_2d_async(" << width << ", " << height << ")"); // Buffer is already mapped if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) { std::cerr << "ggml_vulkan: buffer_write_async dst buffer is host_visible. Use synchronous write." << std::endl; GGML_ABORT("fatal error"); } // Check if src is pinned memory vk_buffer buf = nullptr; size_t buf_offset = 0; ggml_vk_host_get(dst->device, src, buf, buf_offset); if (buf != nullptr) { // Memory is pinned, use as staging buffer std::vector slices(1); if (width == spitch) { // Only do single write if stride is equal slices[0].srcOffset = buf_offset; slices[0].dstOffset = offset; slices[0].size = width * height; } else { slices.resize(height); for (size_t i = 0; i < height; i++) { slices[i].srcOffset = buf_offset + i * spitch; slices[i].dstOffset = offset + i * width; slices[i].size = width; } } ggml_vk_sync_buffers(subctx); subctx->s->buffer.copyBuffer(buf->buffer, dst->buffer, slices); return; } VK_LOG_DEBUG("STAGING"); if (!sync_staging) { GGML_ABORT("Asynchronous write to non-pinned memory not supported"); } // Staging buffer required const size_t copy_size = width*height; ggml_vk_ensure_sync_staging_buffer(dst->device, copy_size); vk_buffer& staging_buffer = dst->device->sync_staging; VkBufferCopy buf_copy = { 0, offset, copy_size}; ggml_vk_sync_buffers(subctx); vkCmdCopyBuffer(subctx->s->buffer, (VkBuffer)staging_buffer->buffer, (VkBuffer)dst->buffer, 1, &buf_copy); if (width == spitch) { deferred_memcpy((uint8_t *)staging_buffer->ptr, src, width * height, &subctx->in_memcpys); } else { for (size_t i = 0; i < height; i++) { deferred_memcpy((uint8_t *)staging_buffer->ptr + i * width, (const uint8_t *) src + i * spitch, width, &subctx->in_memcpys); } } } static void ggml_vk_buffer_write_async(vk_context subctx, vk_buffer& dst, size_t offset, const void * src, size_t size, bool sync_staging = false) { VK_LOG_DEBUG("ggml_vk_buffer_write_async(" << size << ")"); return ggml_vk_buffer_write_2d_async(subctx, dst, offset, src, size, size, 1, sync_staging); } static void ggml_vk_buffer_write_2d(vk_buffer& dst, size_t offset, const void * src, size_t spitch, size_t width, size_t height) { VK_LOG_DEBUG("ggml_vk_buffer_write_2d(" << width << ", " << height << ")"); // Buffer is already mapped if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) { GGML_ASSERT(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostCoherent); for (size_t i = 0; i < height; i++) { memcpy((uint8_t *)dst->ptr + offset + i * width, (const uint8_t *) src + i * spitch, width); } } else { vk_context subctx = ggml_vk_create_temporary_context(dst->device->transfer_queue); ggml_vk_ctx_begin(dst->device, subctx); ggml_vk_buffer_write_2d_async(subctx, dst, offset, src, spitch, width, height, true); ggml_vk_ctx_end(subctx); for (auto& cpy : subctx->in_memcpys) { memcpy(cpy.dst, cpy.src, cpy.n); } ggml_vk_submit(subctx, dst->device->fence); VK_CHECK(dst->device->device.waitForFences({ dst->device->fence }, true, UINT64_MAX), "vk_buffer_write_2d waitForFences"); dst->device->device.resetFences({ dst->device->fence }); } } static void ggml_vk_buffer_write(vk_buffer& dst, size_t offset, const void * src, size_t size) { VK_LOG_DEBUG("ggml_vk_buffer_write(" << size << ")"); ggml_vk_buffer_write_2d(dst, offset, src, 0, size, 1); } static void ggml_vk_buffer_read_2d_async(vk_context subctx, vk_buffer& src, size_t offset, void * dst, size_t spitch, size_t dpitch, size_t width, size_t height, bool sync_staging = false) { VK_LOG_DEBUG("ggml_vk_buffer_read_2d_async(offset=" << offset << ", width=" << width << ", height=" << height << ")"); GGML_ASSERT(width > 0); GGML_ASSERT(height > 0); GGML_ASSERT(src != nullptr); // TODO: staging_offset is not used // Check if dst is pinned memory vk_buffer buf = nullptr; size_t buf_offset = 0; ggml_vk_host_get(src->device, dst, buf, buf_offset); std::vector slices(1); if (width == spitch && width == dpitch) { // Only do single write if stride is equal slices[0].srcOffset = offset; slices[0].dstOffset = buf_offset; slices[0].size = width * height; } else { slices.resize(height); for (size_t i = 0; i < height; i++) { slices[i].srcOffset = offset + i * spitch; slices[i].dstOffset = buf_offset + i * dpitch; slices[i].size = width; } } if (buf != nullptr) { // Memory is pinned, use as staging buffer ggml_vk_sync_buffers(subctx); subctx->s->buffer.copyBuffer(src->buffer, buf->buffer, slices); return; } VK_LOG_DEBUG("STAGING"); if (!sync_staging) { GGML_ABORT("Asynchronous read from non-pinned memory not supported"); } // Fall back to staging buffer const size_t copy_size = dpitch * height; ggml_vk_ensure_sync_staging_buffer(src->device, copy_size); vk_buffer& staging_buffer = src->device->sync_staging; ggml_vk_sync_buffers(subctx); subctx->s->buffer.copyBuffer(src->buffer, staging_buffer->buffer, slices); deferred_memcpy(dst, staging_buffer->ptr, copy_size, &subctx->out_memcpys); } static void ggml_vk_buffer_read_async(vk_context subctx, vk_buffer& src, size_t offset, void * dst, size_t size, bool sync_staging = false) { return ggml_vk_buffer_read_2d_async(subctx, src, offset, dst, size, size, size, 1, sync_staging); } static void ggml_vk_buffer_read(vk_buffer& src, size_t offset, void * dst, size_t size) { VK_LOG_DEBUG("ggml_vk_buffer_read(" << src->buffer << ", " << offset << ", " << size << ")"); // If the device is not an UMA device the memory is host-accessible through rebar. While writing // through PCIe is sufficient fast reading back data from PCIe is slower than going through // the HW device to host copy path. if(src->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible && src->device->uma) { GGML_ASSERT(src->memory_property_flags & vk::MemoryPropertyFlagBits::eHostCoherent); memcpy(dst, (uint8_t *) src->ptr + offset, size); } else { vk_context subctx = ggml_vk_create_temporary_context(src->device->transfer_queue); ggml_vk_ctx_begin(src->device, subctx); ggml_vk_buffer_read_async(subctx, src, offset, dst, size, true); ggml_vk_ctx_end(subctx); ggml_vk_submit(subctx, src->device->fence); VK_CHECK(src->device->device.waitForFences({ src->device->fence }, true, UINT64_MAX), "vk_buffer_read waitForFences"); src->device->device.resetFences({ src->device->fence }); for (auto& cpy : subctx->out_memcpys) { memcpy(cpy.dst, cpy.src, cpy.n); } } } static void ggml_vk_buffer_copy_async(vk_context& ctx, vk_buffer& dst, size_t dst_offset, vk_buffer& src, size_t src_offset, size_t size) { VK_LOG_DEBUG("ggml_vk_buffer_copy_async(" << size << ")"); // Make sure both buffers are on same device GGML_ASSERT(src->device == dst->device); VkBufferCopy bc{ src_offset, dst_offset, size }; vkCmdCopyBuffer(ctx->s->buffer, (VkBuffer)src->buffer, (VkBuffer)dst->buffer, 1, &bc); } static void ggml_vk_buffer_copy(vk_buffer& dst, size_t dst_offset, vk_buffer& src, size_t src_offset, size_t size) { if (src->device == dst->device) { VK_LOG_DEBUG("ggml_vk_buffer_copy(SINGLE_DEVICE, " << size << ")"); // Copy within the device vk_context subctx = ggml_vk_create_temporary_context(src->device->transfer_queue); ggml_vk_ctx_begin(src->device, subctx); ggml_vk_buffer_copy_async(subctx, dst, dst_offset, src, src_offset, size); ggml_vk_ctx_end(subctx); ggml_vk_submit(subctx, src->device->fence); VK_CHECK(src->device->device.waitForFences({ src->device->fence }, true, UINT64_MAX), "vk_buffer_copy waitForFences"); src->device->device.resetFences({ src->device->fence }); } else { VK_LOG_DEBUG("ggml_vk_buffer_copy(MULTI_DEVICE, " << size << ")"); // Copy device to device ggml_vk_ensure_sync_staging_buffer(src->device, size); ggml_vk_ensure_sync_staging_buffer(dst->device, size); // Copy to src staging buffer ggml_vk_buffer_copy(src->device->sync_staging, 0, src, src_offset, size); // memcpy to dst staging buffer memcpy(dst->device->sync_staging->ptr, src->device->sync_staging->ptr, size); // Copy to dst buffer ggml_vk_buffer_copy(dst, dst_offset, dst->device->sync_staging, 0, size); } } static void ggml_vk_buffer_memset(vk_buffer& dst, size_t offset, uint32_t c, size_t size) { VK_LOG_DEBUG("ggml_vk_buffer_memset(" << offset << ", " << c << ", " << size << ")"); vk_context subctx = ggml_vk_create_temporary_context(dst->device->transfer_queue); ggml_vk_ctx_begin(dst->device, subctx); subctx->s->buffer.fillBuffer(dst->buffer, offset, size, c); ggml_vk_ctx_end(subctx); ggml_vk_submit(subctx, dst->device->fence); VK_CHECK(dst->device->device.waitForFences({ dst->device->fence }, true, UINT64_MAX), "vk_memset waitForFences"); dst->device->device.resetFences({ dst->device->fence }); } static uint32_t ggml_vk_guess_split_k(ggml_backend_vk_context * ctx, int m, int n, int k, const vk_pipeline& pipeline) { VK_LOG_DEBUG("ggml_vk_guess_split_k(" << m << ", " << n << ", " << k << ")"); uint32_t split_k = 1; if (ctx->device->shader_core_count != 0 && m >= (int)pipeline->wg_denoms[0] && n >= (int)pipeline->wg_denoms[1]) { // If k is 'large' and the SMs will fill less than halfway, use split_k. uint32_t m_tiles = CEIL_DIV(m, pipeline->wg_denoms[0]); uint32_t n_tiles = CEIL_DIV(n, pipeline->wg_denoms[1]); if (k >= 2048 && m_tiles * n_tiles < ctx->device->shader_core_count / 2) { split_k = ctx->device->shader_core_count / (m_tiles * n_tiles); // Clamp to 2 or 4 split_k = std::min(split_k, 4u); if (split_k == 3) { split_k = 2; } } } return split_k; } static vk_pipeline ggml_vk_guess_matmul_pipeline(ggml_backend_vk_context * ctx, vk_matmul_pipeline& mmp, int m, int n, bool aligned) { VK_LOG_DEBUG("ggml_vk_guess_matmul_pipeline(" << m << ", " << n << ", " << aligned << ")"); if (ctx->device->coopmat2) { if ((ctx->device->mul_mat_l && (m % mmp->l->wg_denoms[0]) == 0 && (n % mmp->l->wg_denoms[1]) == 0) || (!ctx->device->mul_mat_m && !ctx->device->mul_mat_s)) { return aligned ? mmp->a_l : mmp->l; } if ((ctx->device->mul_mat_m && (m % mmp->m->wg_denoms[0]) == 0 && (n % mmp->m->wg_denoms[1]) == 0) || !ctx->device->mul_mat_s) { return aligned ? mmp->a_m : mmp->m; } return aligned ? mmp->a_s : mmp->s; } if ((ctx->device->mul_mat_s && (m <= 32 || n <= 32)) || (!ctx->device->mul_mat_m && !ctx->device->mul_mat_l)) { return aligned ? mmp->a_s : mmp->s; } if ((ctx->device->mul_mat_m && (m <= 64 || n <= 64)) || !ctx->device->mul_mat_l) { return aligned ? mmp->a_m : mmp->m; } return aligned ? mmp->a_l : mmp->l; } static uint32_t ggml_vk_guess_matmul_pipeline_align(ggml_backend_vk_context * ctx, vk_matmul_pipeline& mmp, int m, int n) { VK_LOG_DEBUG("ggml_vk_guess_matmul_pipeline_align(" << m << ", " << n << ")"); return ggml_vk_guess_matmul_pipeline(ctx, mmp, m, n, true)->align; } static void ggml_vk_matmul( ggml_backend_vk_context * ctx, vk_context& subctx, vk_pipeline& pipeline, vk_subbuffer&& a, vk_subbuffer&& b, vk_subbuffer&& d, vk_subbuffer&& split_k_buffer, uint32_t m, uint32_t n, uint32_t k, uint32_t stride_a, uint32_t stride_b, uint32_t stride_d, uint32_t batch_stride_a, uint32_t batch_stride_b, uint32_t batch_stride_d, uint32_t split_k, uint32_t batch, uint32_t ne02, uint32_t ne12, uint32_t broadcast2, uint32_t broadcast3) { VK_LOG_DEBUG("ggml_vk_matmul(a: (" << a.buffer->buffer << ", " << a.offset << ", " << a.size << "), b: (" << b.buffer->buffer << ", " << b.offset << ", " << b.size << "), d: (" << d.buffer->buffer << ", " << d.offset << ", " << d.size << "), split_k: (" << (split_k_buffer.buffer != nullptr ? split_k_buffer.buffer->buffer : VK_NULL_HANDLE) << ", " << split_k_buffer.offset << ", " << split_k_buffer.size << "), m: " << m << ", n: " << n << ", k: " << k << ", stride_a: " << stride_a << ", stride_b: " << stride_b << ", stride_d: " << stride_d << ", batch_stride_a: " << batch_stride_a << ", batch_stride_b: " << batch_stride_b << ", batch_stride_d: " << batch_stride_d << ", split_k: " << split_k << ", batch: " << batch << ", ne02: " << ne02 << ", ne12: " << ne12 << ", broadcast2: " << broadcast2 << ", broadcast3: " << broadcast3 << ")"); ggml_vk_sync_buffers(subctx); if (split_k == 1) { const vk_mat_mat_push_constants pc = { m, n, k, stride_a, stride_b, stride_d, batch_stride_a, batch_stride_b, batch_stride_d, k, ne02, ne12, broadcast2, broadcast3 }; ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, d }, sizeof(vk_mat_mat_push_constants), &pc, { m, n, batch }); return; } GGML_ASSERT(batch_stride_d == m * n); const vk_mat_mat_push_constants pc1 = { m, n, k, stride_a, stride_b, stride_d, batch_stride_a, batch_stride_b, batch_stride_d, CEIL_DIV(k, split_k), ne02, ne12, broadcast2, broadcast3 }; // Make sure enough workgroups get assigned for split k to work ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, split_k_buffer }, sizeof(vk_mat_mat_push_constants), &pc1, { (CEIL_DIV(m, pipeline->wg_denoms[0]) * pipeline->wg_denoms[0]) * split_k, n, batch }); ggml_vk_sync_buffers(subctx); const std::array pc2 = { (uint32_t)(m * n * batch), split_k }; ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_matmul_split_k_reduce, { split_k_buffer, d }, pc2.size() * sizeof(uint32_t), pc2.data(), { m * n * batch, 1, 1 }); } static vk_pipeline ggml_vk_guess_matmul_id_pipeline(ggml_backend_vk_context * ctx, vk_matmul_pipeline& mmp, int m, int n, bool aligned) { VK_LOG_DEBUG("ggml_vk_guess_matmul_pipeline(" << m << ", " << n << ", " << aligned << ")"); if (ctx->device->coopmat2) { if ((ctx->device->mul_mat_id_l && (m % mmp->l->wg_denoms[0]) == 0 && (n % mmp->l->wg_denoms[1]) == 0) || (!ctx->device->mul_mat_id_m && !ctx->device->mul_mat_id_s)) { return aligned ? mmp->a_l : mmp->l; } if ((ctx->device->mul_mat_id_m && (m % mmp->m->wg_denoms[0]) == 0 && (n % mmp->m->wg_denoms[1]) == 0) || !ctx->device->mul_mat_id_s) { return aligned ? mmp->a_m : mmp->m; } return aligned ? mmp->a_s : mmp->s; } if ((ctx->device->mul_mat_id_s && (m <= 32 || n <= 32)) || (!ctx->device->mul_mat_id_m && !ctx->device->mul_mat_id_l)) { return aligned ? mmp->a_s : mmp->s; } if ((ctx->device->mul_mat_id_m && (m <= 64 || n <= 64)) || !ctx->device->mul_mat_id_l) { return aligned ? mmp->a_m : mmp->m; } return aligned ? mmp->a_l : mmp->l; } static uint32_t ggml_vk_guess_matmul_id_pipeline_align(ggml_backend_vk_context * ctx, vk_matmul_pipeline& mmp, int m, int n) { VK_LOG_DEBUG("ggml_vk_guess_matmul_pipeline_align(" << m << ", " << n << ")"); return ggml_vk_guess_matmul_id_pipeline(ctx, mmp, m, n, true)->align; } static void ggml_vk_matmul_id( ggml_backend_vk_context * ctx, vk_context& subctx, vk_pipeline& pipeline, vk_subbuffer&& a, vk_subbuffer&& b, vk_subbuffer&& d, vk_subbuffer&& ids, uint32_t m, uint32_t n, uint32_t k, uint32_t stride_a, uint32_t stride_b, uint32_t stride_d, uint32_t batch_stride_a, uint32_t batch_stride_b, uint32_t batch_stride_d, uint32_t n_as, uint32_t nei0, uint32_t nei1, uint32_t nbi1, uint32_t ne11) { VK_LOG_DEBUG("ggml_vk_matmul_id(a: (" << a.buffer->buffer << ", " << a.offset << ", " << a.size << "), b: (" << b.buffer->buffer << ", " << b.offset << ", " << b.size << "), d: (" << d.buffer->buffer << ", " << d.offset << ", " << d.size << "), ids: (" << ids.buffer->buffer << ", " << ids.offset << ", " << ids.size << "), " << "m: " << m << ", n: " << n << ", k: " << k << ", stride_a: " << stride_a << ", stride_b: " << stride_b << ", stride_d: " << stride_d << ", " << "batch_stride_a: " << batch_stride_a << ", batch_stride_b: " << batch_stride_b << ", batch_stride_d: " << batch_stride_d << ", " << "n_as: " << n_as << ", nei0: " << nei0 << ", nei1: " << nei1 << ", nbi1: " << nbi1 << ", ne11: " << ne11 << ")"); ggml_vk_sync_buffers(subctx); const vk_mat_mat_id_push_constants pc = { m, n, k, stride_a, stride_b, stride_d, batch_stride_a, batch_stride_b, batch_stride_d, nei0, nei1, nbi1, ne11 }; ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, d, ids }, sizeof(vk_mat_mat_id_push_constants), &pc, { m, nei1, n_as }); } static bool ggml_vk_dim01_contiguous(const ggml_tensor * tensor) { return tensor->nb[0] == ggml_type_size(tensor->type) && tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) && tensor->nb[3] == tensor->nb[2]*tensor->ne[2]; } static vk_pipeline ggml_vk_get_cpy_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src, const ggml_tensor * dst, ggml_type to) { // Choose "contiguous copy" shader if src/dst are contiguous bool contig = ggml_is_contiguous(src) && (!dst || ggml_is_contiguous(dst)); if (src->type == GGML_TYPE_F32 && to == GGML_TYPE_F32) { if (contig) { return ctx->device->pipeline_contig_cpy_f32_f32; } else { return ctx->device->pipeline_cpy_f32_f32; } } if (src->type == GGML_TYPE_F32 && to == GGML_TYPE_F16) { if (contig) { return ctx->device->pipeline_contig_cpy_f32_f16; } else { return ctx->device->pipeline_cpy_f32_f16; } } if (src->type == GGML_TYPE_F16 && to == GGML_TYPE_F16) { if (contig) { return ctx->device->pipeline_contig_cpy_f16_f16; } else { return ctx->device->pipeline_cpy_f16_f16; } } std::cerr << "Missing CPY op for types: " << ggml_type_name(src->type) << " " << ggml_type_name(to) << std::endl; GGML_ABORT("fatal error"); } static void ggml_vk_cpy_to_contiguous(ggml_backend_vk_context * ctx, vk_context& subctx, vk_pipeline pipeline, const ggml_tensor * tensor, vk_subbuffer&& in, vk_subbuffer&& out) { VK_LOG_DEBUG("ggml_vk_cpy_to_contiguous((" << tensor << ", type=" << tensor->type << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << "), "; std::cerr << "buffer in size=" << in.buffer->size << ", buffer out size=" << out.buffer->size << ")"); const int tensor_type_size = ggml_type_size(tensor->type); const uint32_t ne = ggml_nelements(tensor); std::array elements; if (ne > 262144) { elements = { 512, 512, CEIL_DIV(ne, 262144) }; } else if (ne > 512) { elements = { 512, CEIL_DIV(ne, 512), 1 }; } else { elements = { ne, 1, 1 }; } vk_op_unary_push_constants pc = { (uint32_t)ne, (uint32_t)tensor->ne[0], (uint32_t)tensor->ne[1], (uint32_t)tensor->ne[2], (uint32_t)tensor->ne[3], (uint32_t)tensor->nb[0] / tensor_type_size, (uint32_t)tensor->nb[1] / tensor_type_size, (uint32_t)tensor->nb[2] / tensor_type_size, (uint32_t)tensor->nb[3] / tensor_type_size, (uint32_t)tensor->ne[0], (uint32_t)tensor->ne[1], (uint32_t)tensor->ne[2], (uint32_t)tensor->ne[3], 1 , (uint32_t)tensor->ne[0] , (uint32_t)(tensor->ne[0] * tensor->ne[1]) , (uint32_t)(tensor->ne[0] * tensor->ne[1] * tensor->ne[2]), 0, 0.0f, 0.0f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; init_pushconst_fastdiv(pc); ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, sizeof(vk_op_unary_push_constants), &pc, elements); } static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { VK_LOG_DEBUG("ggml_vk_mul_mat_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3]; std::cerr << "), " << (dryrun ? "dryrun" : "") << ")"); GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); // NOLINT GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT const uint64_t ne00 = src0->ne[0]; const uint64_t ne01 = src0->ne[1]; const uint64_t ne02 = src0->ne[2]; const uint64_t ne03 = src0->ne[3]; const uint64_t ne10 = src1->ne[0]; const uint64_t ne11 = src1->ne[1]; const uint64_t ne12 = src1->ne[2]; const uint64_t ne13 = src1->ne[3]; const uint64_t ne20 = dst->ne[0]; const uint64_t ne21 = dst->ne[1]; const uint64_t r2 = ne12 / ne02; const uint64_t r3 = ne13 / ne03; ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context; ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context; ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context; vk_buffer d_Qx = nullptr; size_t qx_buf_offset = 0; vk_buffer d_Qy = nullptr; size_t qy_buf_offset = 0; bool src0_uma = false; bool src1_uma = false; if (ctx->device->uma) { ggml_vk_host_get(ctx->device, src0->data, d_Qx, qx_buf_offset); ggml_vk_host_get(ctx->device, src1->data, d_Qy, qy_buf_offset); src0_uma = d_Qx != nullptr; src1_uma = d_Qy != nullptr; } const bool x_non_contig = !ggml_vk_dim01_contiguous(src0); // Reformat and convert to fp16 if src1 is non-contiguous, or for coopmat2 for better perf const bool y_non_contig = (ctx->device->coopmat2 && src1->type == GGML_TYPE_F32) || !ggml_vk_dim01_contiguous(src1); const bool y_f32_kernel = src1->type == GGML_TYPE_F32 && !y_non_contig; vk_matmul_pipeline mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, src0->type, y_non_contig ? GGML_TYPE_F16 : src1->type, (ggml_prec)dst->op_params[0]); const bool qx_needs_dequant = mmp == nullptr || x_non_contig; const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !y_f32_kernel) || y_non_contig; if (qx_needs_dequant) { // Fall back to dequant + f16 mulmat mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, GGML_TYPE_F16, y_f32_kernel ? GGML_TYPE_F32 : GGML_TYPE_F16, (ggml_prec)dst->op_params[0]); } // Not implemented GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT const int x_ne = ne01 * ne00; const int y_ne = ne11 * ne10; const int d_ne = ne11 * ne01; const uint32_t kpad = ggml_vk_align_size(ne10, ggml_vk_guess_matmul_pipeline_align(ctx, mmp, ne01, ne11)); const bool aligned = ne10 == kpad && ne01 > 8 && ne11 > 8; vk_pipeline pipeline = ggml_vk_guess_matmul_pipeline(ctx, mmp, ne01, ne11, aligned); const uint32_t split_k = ggml_vk_guess_split_k(ctx, ne01, ne11, ne10, pipeline); const uint64_t qx_sz = ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type); const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type); const uint64_t x_sz = !qx_needs_dequant ? qx_sz : sizeof(ggml_fp16_t) * x_ne; const uint64_t y_sz = y_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne; const uint64_t d_sz = sizeof(float) * d_ne; vk_pipeline to_fp16_vk_0 = nullptr; vk_pipeline to_fp16_vk_1 = nullptr; if (x_non_contig) { to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, GGML_TYPE_F16); } else { to_fp16_vk_0 = ggml_vk_get_to_fp16(ctx, src0->type); } if (y_non_contig) { to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, GGML_TYPE_F16); } else { to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type); } GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT if (dryrun) { const uint64_t x_sz_upd = x_sz * ne02 * ne03; const uint64_t y_sz_upd = y_sz * ne12 * ne13; const uint64_t split_k_size = split_k > 1 ? d_sz * ne12 * ne13 * split_k : 0; if ( (qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) || (qy_needs_dequant && y_sz_upd > ctx->device->max_memory_allocation_size) || (split_k > 1 && split_k_size > ctx->device->max_memory_allocation_size)) { GGML_ABORT("Requested preallocation size is too large"); } if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) { ctx->prealloc_size_x = x_sz_upd; } if (qy_needs_dequant && ctx->prealloc_size_y < y_sz_upd) { ctx->prealloc_size_y = y_sz_upd; } if (split_k > 1 && ctx->prealloc_size_split_k < split_k_size) { ctx->prealloc_size_split_k = split_k_size; } // Request descriptor sets ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1); if (qx_needs_dequant) { ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_0, 1); } if (qy_needs_dequant) { ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_1, 1); } if (split_k > 1) { ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_matmul_split_k_reduce, 1); } return; } vk_buffer d_D = dst_buf_ctx->dev_buffer; const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs; GGML_ASSERT(d_D != nullptr); GGML_ASSERT(d_D->size >= d_buf_offset + d_sz * ne02 * ne03); vk_buffer d_X; uint64_t x_buf_offset = 0; vk_buffer d_Y; uint64_t y_buf_offset = 0; if (!src0_uma) { d_Qx = src0_buf_ctx->dev_buffer; qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs; GGML_ASSERT(d_Qx != nullptr); } if (!src1_uma) { d_Qy = src1_buf_ctx->dev_buffer; qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs; GGML_ASSERT(d_Qy != nullptr); } if (qx_needs_dequant) { d_X = ctx->prealloc_x; GGML_ASSERT(d_X->size >= x_sz * ne02 * ne03); } else { d_X = d_Qx; x_buf_offset = qx_buf_offset; GGML_ASSERT(qx_sz == x_sz); } if (qy_needs_dequant) { d_Y = ctx->prealloc_y; GGML_ASSERT(d_Y->size >= y_sz * ne02 * ne03); } else { d_Y = d_Qy; y_buf_offset = qy_buf_offset; GGML_ASSERT(qy_sz == y_sz); } if (x_non_contig) { ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE }); } else if (qx_needs_dequant) { const std::vector pc = { (uint32_t)ne01, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)(ggml_nelements(src0)) }; ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0, { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, vk_subbuffer{ d_X, 0, x_sz * ne02 * ne03 } }, pc.size() * sizeof(uint32_t), pc.data(), { (uint32_t)(x_ne * ne02 * ne03), 1, 1}); } if (y_non_contig) { ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }); } uint32_t stride_batch_x = ne00*ne01; uint32_t stride_batch_y = ne10*ne11; if (!ggml_vk_dim01_contiguous(src0) && !qx_needs_dequant) { stride_batch_x = src0->nb[0] / ggml_type_size(src0->type); } if (!ggml_vk_dim01_contiguous(src1) && !qy_needs_dequant) { stride_batch_y = src1->nb[0] / ggml_type_size(src1->type); } // compute ggml_vk_matmul( ctx, subctx, pipeline, { d_X, x_buf_offset, x_sz * ne02 * ne03 }, { d_Y, y_buf_offset, y_sz * ne12 * ne13 }, { d_D, d_buf_offset, d_sz * ne12 * ne13 }, { ctx->prealloc_split_k, 0, d_sz * ne12 * ne13 * split_k }, ne01, ne11, ne10, ne10, ne10, ne01, stride_batch_x, stride_batch_y, ne20*ne21, split_k, ne12*ne13, ne02, ne12, r2, r3 ); // NOLINT } static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { VK_LOG_DEBUG("ggml_vk_mul_mat_vec_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3]; std::cerr << "), " << (dryrun ? "dryrun" : "") << "),)"); GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); // NOLINT GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT const uint64_t ne00 = src0->ne[0]; const uint64_t ne01 = src0->ne[1]; const uint64_t ne02 = src0->ne[2]; const uint64_t ne03 = src0->ne[3]; const uint64_t ne10 = src1->ne[0]; const uint64_t ne11 = src1->ne[1]; const uint64_t ne12 = src1->ne[2]; const uint64_t ne13 = src1->ne[3]; GGML_ASSERT(ne11 == 1); const uint64_t ne20 = dst->ne[0]; const uint64_t ne21 = dst->ne[1]; const uint64_t ne22 = dst->ne[2]; const uint64_t ne23 = dst->ne[3]; const uint64_t r2 = ne12 / ne02; const uint64_t r3 = ne13 / ne03; ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context; ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context; ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context; vk_buffer d_Qx = nullptr; size_t qx_buf_offset = 0; vk_buffer d_Qy = nullptr; size_t qy_buf_offset = 0; bool src0_uma = false; bool src1_uma = false; if (ctx->device->uma) { ggml_vk_host_get(ctx->device, src0->data, d_Qx, qx_buf_offset); ggml_vk_host_get(ctx->device, src1->data, d_Qy, qy_buf_offset); src0_uma = d_Qx != nullptr; src1_uma = d_Qy != nullptr; } const bool x_non_contig = !ggml_vk_dim01_contiguous(src0); const bool y_non_contig = !ggml_vk_dim01_contiguous(src1); const bool f16_f32_kernel = src1->type == GGML_TYPE_F32; const bool qx_needs_dequant = x_non_contig; const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !f16_f32_kernel) || y_non_contig; // Not implemented GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT const uint64_t x_ne = ne01 * ne00; const uint64_t y_ne = ne11 * ne10; const uint64_t d_ne = ne11 * ne01; const uint64_t qx_sz = ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), ctx->device->properties.limits.minStorageBufferOffsetAlignment); const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type); const uint64_t x_sz = x_non_contig ? ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : qx_sz; const uint64_t y_sz = f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne; const uint64_t d_sz = sizeof(float) * d_ne; vk_pipeline to_fp16_vk_0 = nullptr; vk_pipeline to_fp16_vk_1 = nullptr; if (x_non_contig) { to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, src0->type); } if (y_non_contig) { to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, src1->type); } else { to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type); } vk_pipeline dmmv = ggml_vk_get_dequantize_mul_mat_vec(ctx, src0->type, src1->type); GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT GGML_ASSERT(dmmv != nullptr); if (dryrun) { const uint64_t x_sz_upd = x_sz * ne02 * ne03; const uint64_t y_sz_upd = y_sz * ne12 * ne13; if ( (qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) || (qy_needs_dequant && y_sz_upd > ctx->device->max_memory_allocation_size)) { GGML_ABORT("Requested preallocation size is too large"); } if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) { ctx->prealloc_size_x = x_sz_upd; } if (qy_needs_dequant && ctx->prealloc_size_y < y_sz_upd) { ctx->prealloc_size_y = y_sz_upd; } // Request descriptor sets if (qx_needs_dequant) { ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_0, 1); } if (qy_needs_dequant) { ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_1, 1); } ggml_pipeline_request_descriptor_sets(ctx->device, dmmv, 1); return; } vk_buffer d_D = dst_buf_ctx->dev_buffer; const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs; GGML_ASSERT(d_D != nullptr); vk_buffer d_X; uint64_t x_buf_offset = 0; vk_buffer d_Y; uint64_t y_buf_offset = 0; if(!src0_uma) { d_Qx = src0_buf_ctx->dev_buffer; qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs; GGML_ASSERT(d_Qx != nullptr); } if(!src1_uma) { d_Qy = src1_buf_ctx->dev_buffer; qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs; GGML_ASSERT(d_Qy != nullptr); } if (qx_needs_dequant) { d_X = ctx->prealloc_x; } else { d_X = d_Qx; x_buf_offset = qx_buf_offset; GGML_ASSERT(qx_sz == x_sz); } if (qy_needs_dequant) { d_Y = ctx->prealloc_y; } else { d_Y = d_Qy; y_buf_offset = qy_buf_offset; GGML_ASSERT(qy_sz == y_sz); } if (x_non_contig) { GGML_ASSERT(x_sz == ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment)); ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE }); } if (y_non_contig) { GGML_ASSERT(y_sz == ggml_type_size(src1->type) * y_ne); ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }); } uint32_t stride_batch_x = ne00*ne01; uint32_t stride_batch_y = ne10*ne11; if (!ggml_vk_dim01_contiguous(src0) && !qx_needs_dequant) { stride_batch_x = src0->nb[0] / ggml_type_size(src0->type); } if (!ggml_vk_dim01_contiguous(src1) && !qy_needs_dequant) { stride_batch_y = src1->nb[0] / ggml_type_size(src1->type); } const uint32_t max_groups_x = ctx->device->properties.limits.maxComputeWorkGroupCount[0]; uint32_t groups_x = ne01; uint32_t groups_z = 1; if (ne01 > max_groups_x) { groups_z = 64; groups_x = CEIL_DIV(groups_x, groups_z); } // compute const vk_mat_vec_push_constants pc = { (uint32_t)ne00, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne01, stride_batch_x, stride_batch_y, (uint32_t)(ne20*ne21), (uint32_t)ne02, (uint32_t)ne12, (uint32_t)r2, (uint32_t)r3, }; ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, dmmv, { vk_subbuffer{ d_X, x_buf_offset, x_sz * ne02 * ne03 }, vk_subbuffer{ d_Y, y_buf_offset, y_sz * ne12 * ne13 }, vk_subbuffer{ d_D, d_buf_offset, d_sz * ne22 * ne23} }, sizeof(vk_mat_vec_push_constants), &pc, { groups_x, (uint32_t)(ne12 * ne13), groups_z }); } static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { VK_LOG_DEBUG("ggml_vk_mul_mat_p021_f16_f32(" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3]; std::cerr << "), " << (dryrun ? "dryrun" : "") << ")"); GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1)); GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // NOLINT GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // NOLINT GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); const uint64_t ne00 = src0->ne[0]; const uint64_t ne01 = src0->ne[1]; const uint64_t ne02 = src0->ne[2]; // const uint64_t ne03 = src0->ne[3]; const uint64_t ne10 = src1->ne[0]; const uint64_t ne11 = src1->ne[1]; const uint64_t ne12 = src1->ne[2]; // const uint64_t ne13 = src1->ne[3]; GGML_ASSERT(ne11 == 1); ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context; ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context; ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context; vk_buffer d_Qy = nullptr; size_t qy_buf_offset = 0; bool src1_uma = false; if (ctx->device->uma) { ggml_vk_host_get(ctx->device, src1->data, d_Qy, qy_buf_offset); src1_uma = d_Qy != nullptr; } const uint64_t x_ne = ne00 * ne01 * ne02; const uint64_t y_ne = ne10 * ne11 * ne12; const uint64_t d_ne = ne01 * ne11 * ne12; const uint64_t qx_sz = ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), ctx->device->properties.limits.minStorageBufferOffsetAlignment); const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type); const uint64_t d_sz = sizeof(float) * d_ne; if (dryrun) { // Request descriptor sets ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_mul_mat_vec_p021_f16_f32, 1); return; } vk_buffer d_D = dst_buf_ctx->dev_buffer; const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs; GGML_ASSERT(d_D != nullptr); vk_buffer d_Qx = src0_buf_ctx->dev_buffer; const uint64_t qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs; GGML_ASSERT(d_Qx != nullptr); if (!src1_uma) { d_Qy = src1_buf_ctx->dev_buffer; qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs; GGML_ASSERT(d_Qx != nullptr); } const uint64_t qy_buffer_offset = (qy_buf_offset / ctx->device->properties.limits.minStorageBufferOffsetAlignment) * ctx->device->properties.limits.minStorageBufferOffsetAlignment; const uint64_t qy_shader_offset = qy_buf_offset - qy_buffer_offset; const uint64_t d_buffer_offset = (d_buf_offset / ctx->device->properties.limits.minStorageBufferOffsetAlignment) * ctx->device->properties.limits.minStorageBufferOffsetAlignment; const uint64_t d_shader_offset = d_buf_offset - d_buffer_offset; // compute const std::array pc = { (uint32_t)ne00, (uint32_t)ne01, (uint32_t)ne02, (uint32_t)ne12, (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) }; ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_p021_f16_f32, { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, vk_subbuffer{ d_D, d_buffer_offset, d_sz + d_shader_offset } }, 6 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 }); } static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { VK_LOG_DEBUG("ggml_vk_mul_mat_nc_f16_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3]; std::cerr << "), " << (dryrun ? "dryrun" : "") << ")"); GGML_ASSERT(!ggml_is_transposed(src0)); GGML_ASSERT(!ggml_is_transposed(src1)); GGML_ASSERT(!ggml_is_permuted(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); const uint64_t ne00 = src0->ne[0]; const uint64_t ne01 = src0->ne[1]; const uint64_t ne02 = src0->ne[2]; // const uint64_t ne03 = src0->ne[3]; const uint64_t nb01 = src0->nb[1]; const uint64_t nb02 = src0->nb[2]; // const uint64_t ne10 = src1->ne[0]; const uint64_t ne11 = src1->ne[1]; const uint64_t ne12 = src1->ne[2]; // const uint64_t ne13 = src1->ne[3]; GGML_ASSERT(ne11 == 1); ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context; ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context; ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context; vk_buffer d_Qy = nullptr; size_t qy_buf_offset = 0; bool src1_uma = false; if (ctx->device->uma) { ggml_vk_host_get(ctx->device, src1->data, d_Qy, qy_buf_offset); src1_uma = d_Qy != nullptr; } const uint64_t d_ne = ne01 * ne11 * ne12; const uint32_t row_stride_x = nb01 / sizeof(ggml_fp16_t); const uint32_t channel_stride_x = nb02 / sizeof(ggml_fp16_t); const uint64_t qx_sz = ggml_nbytes(src0); const uint64_t qy_sz = ggml_nbytes(src1); const uint64_t d_sz = sizeof(float) * d_ne; if (dryrun) { // Request descriptor sets ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_mul_mat_vec_nc_f16_f32, 1); return; } vk_buffer d_D = dst_buf_ctx->dev_buffer; const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs; GGML_ASSERT(d_D != nullptr); vk_buffer d_Qx = src0_buf_ctx->dev_buffer; const uint64_t qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs; GGML_ASSERT(d_Qx != nullptr); if (!src1_uma) { d_Qy = src1_buf_ctx->dev_buffer; qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs; GGML_ASSERT(d_Qx != nullptr); } const uint64_t qy_buffer_offset = (qy_buf_offset / ctx->device->properties.limits.minStorageBufferOffsetAlignment) * ctx->device->properties.limits.minStorageBufferOffsetAlignment; const uint64_t qy_shader_offset = qy_buf_offset - qy_buffer_offset; const uint64_t d_buffer_offset = (d_buf_offset / ctx->device->properties.limits.minStorageBufferOffsetAlignment) * ctx->device->properties.limits.minStorageBufferOffsetAlignment; const uint64_t d_shader_offset = d_buf_offset - d_buffer_offset; // compute const std::array pc = { (uint32_t)ne00, (uint32_t)ne01, row_stride_x, channel_stride_x, (uint32_t)(ne12 / ne02), (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) }; ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_nc_f16_f32, { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, vk_subbuffer{ d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 }); } static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { VK_LOG_DEBUG("ggml_vk_mul_mat(" << src0 << ", " << src1 << ", " << dst << ")"); if (src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && dst->ne[1] == 1 && // detect 0213 permutation, and batch size of 1 src0->nb[0] <= src0->nb[2] && src0->nb[2] <= src0->nb[1] && src0->nb[1] <= src0->nb[3] && src1->nb[0] <= src1->nb[2] && src1->nb[2] <= src1->nb[1] && src1->nb[1] <= src1->nb[3] && src0->ne[3] == 1 && src1->ne[3] == 1) { ggml_vk_mul_mat_vec_p021_f16_f32(ctx, subctx, src0, src1, dst, dryrun); } else if (src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && dst->ne[1] == 1 && !ggml_is_permuted(src0) && !ggml_is_permuted(src1)) { ggml_vk_mul_mat_vec_nc_f16_f32(ctx, subctx, src0, src1, dst, dryrun); } else if (dst->ne[1] == 1 && (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type))) { ggml_vk_mul_mat_vec_q_f16(ctx, subctx, src0, src1, dst, dryrun); } else { ggml_vk_mul_mat_q_f16(ctx, subctx, src0, src1, dst, dryrun); } } static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst, bool dryrun = false) { VK_LOG_DEBUG("ggml_vk_mul_mat_id_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; std::cerr << "), (" << ids << ", name=" << ids->name << ", type=" << ids->type << ", ne0=" << ids->ne[0] << ", ne1=" << ids->ne[1] << ", ne2=" << ids->ne[2] << ", ne3=" << ids->ne[3] << ", nb0=" << ids->nb[0] << ", nb1=" << ids->nb[1] << ", nb2=" << ids->nb[2] << ", nb3=" << ids->nb[3]; std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)"); GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT GGML_ASSERT(ids->type == GGML_TYPE_I32); const uint64_t ne00 = src0->ne[0]; const uint64_t ne01 = src0->ne[1]; const uint64_t ne02 = src0->ne[2]; const uint64_t ne03 = src0->ne[3]; const uint64_t ne10 = src1->ne[0]; const uint64_t ne11 = src1->ne[1]; const uint64_t ne12 = src1->ne[2]; const uint64_t ne13 = src1->ne[3]; const uint64_t nei0 = ids->ne[0]; const uint64_t nei1 = ids->ne[1]; GGML_ASSERT(nei0 * nei1 <= 3072); const uint32_t nbi1 = ids->nb[1]; const uint32_t nbi2 = ids->nb[2]; const uint64_t ne20 = dst->ne[0]; const uint64_t ne21 = dst->ne[1]; const uint64_t ne22 = dst->ne[2]; const uint64_t ne23 = dst->ne[3]; const uint64_t n_as = ne02; ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context; ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context; ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context; ggml_backend_vk_buffer_context * ids_buf_ctx = (ggml_backend_vk_buffer_context *)ids->buffer->context; vk_buffer d_Qx = nullptr; size_t qx_buf_offset = 0; vk_buffer d_Qy = nullptr; size_t qy_buf_offset = 0; vk_buffer d_ids = nullptr; size_t ids_buf_offset = 0; bool src0_uma = false; bool src1_uma = false; bool ids_uma = false; if (ctx->device->uma) { ggml_vk_host_get(ctx->device, src0->data, d_Qx, qx_buf_offset); ggml_vk_host_get(ctx->device, src1->data, d_Qy, qy_buf_offset); ggml_vk_host_get(ctx->device, ids->data, d_ids, ids_buf_offset); src0_uma = d_Qx != nullptr; src1_uma = d_Qy != nullptr; ids_uma = d_ids != nullptr; } const bool x_non_contig = !ggml_vk_dim01_contiguous(src0); const bool y_non_contig = !ggml_vk_dim01_contiguous(src1); const bool y_f32_kernel = src1->type == GGML_TYPE_F32 && !y_non_contig; vk_matmul_pipeline mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, src0->type, y_non_contig ? GGML_TYPE_F16 : src1->type, (ggml_prec)dst->op_params[0]); const bool qx_needs_dequant = mmp == nullptr || x_non_contig; const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !y_f32_kernel) || y_non_contig; if (qx_needs_dequant) { GGML_ABORT("fatal error"); } // Not implemented GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT const uint64_t x_ne = ne01 * ne00; const uint64_t y_ne = ne11 * ne10; const uint64_t d_ne = ne21 * ne20; const uint32_t kpad = ggml_vk_align_size(ne10, ggml_vk_guess_matmul_id_pipeline_align(ctx, mmp, ne01, nei1)); const bool aligned = ne10 == kpad && ne01 > 8 && nei1 > 8; vk_pipeline pipeline = ggml_vk_guess_matmul_id_pipeline(ctx, mmp, ne01, nei1, aligned); const uint64_t qx_sz = ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type); const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type); const uint64_t x_sz = !qx_needs_dequant ? qx_sz : sizeof(ggml_fp16_t) * x_ne; const uint64_t y_sz = y_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne; const uint64_t ids_sz = nbi2; const uint64_t d_sz = sizeof(float) * d_ne; vk_pipeline to_fp16_vk_0 = nullptr; vk_pipeline to_fp16_vk_1 = nullptr; if (x_non_contig) { to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, GGML_TYPE_F16); } else { to_fp16_vk_0 = ggml_vk_get_to_fp16(ctx, src0->type); } if (y_non_contig) { to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, GGML_TYPE_F16); } else { to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type); } GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT if (dryrun) { const uint64_t x_sz_upd = x_sz * ne02 * ne03; const uint64_t y_sz_upd = y_sz * ne12 * ne13; if ( (qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) || (qy_needs_dequant && y_sz_upd > ctx->device->max_memory_allocation_size)) { GGML_ABORT("Requested preallocation size is too large"); } if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) { ctx->prealloc_size_x = x_sz_upd; } if (qy_needs_dequant && ctx->prealloc_size_y < y_sz_upd) { ctx->prealloc_size_y = y_sz_upd; } // Request descriptor sets ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1); if (qx_needs_dequant) { ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_0, 1); } if (qy_needs_dequant) { ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_1, 1); } return; } vk_buffer d_D = dst_buf_ctx->dev_buffer; const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs; GGML_ASSERT(d_D != nullptr); vk_buffer d_X; uint64_t x_buf_offset = 0; vk_buffer d_Y; uint64_t y_buf_offset = 0; if (!src0_uma) { d_Qx = src0_buf_ctx->dev_buffer; qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs; GGML_ASSERT(d_Qx != nullptr); } if (!src1_uma) { d_Qy = src1_buf_ctx->dev_buffer; qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs; GGML_ASSERT(d_Qy != nullptr); } if (!ids_uma) { d_ids = ids_buf_ctx->dev_buffer; ids_buf_offset = vk_tensor_offset(ids) + ids->view_offs; GGML_ASSERT(d_ids != nullptr); } if (qx_needs_dequant) { d_X = ctx->prealloc_x; GGML_ASSERT(d_X->size >= x_sz * ne02 * ne03); } else { d_X = d_Qx; x_buf_offset = qx_buf_offset; GGML_ASSERT(qx_sz == x_sz); } if (qy_needs_dequant) { d_Y = ctx->prealloc_y; GGML_ASSERT(d_Y->size >= y_sz * ne02 * ne03); } else { d_Y = d_Qy; y_buf_offset = qy_buf_offset; GGML_ASSERT(qy_sz == y_sz); } if (x_non_contig) { ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE }); } else if (qx_needs_dequant) { const std::vector pc = { (uint32_t)ne01, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)(ggml_nelements(src0)) }; ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0, { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, vk_subbuffer{ d_X, 0, x_sz * ne02 * ne03 } }, pc.size() * sizeof(uint32_t), pc.data(), { (uint32_t)(x_ne * ne02 * ne03), 1, 1}); } if (y_non_contig) { ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }); } uint32_t stride_batch_x = ne00*ne01; uint32_t stride_batch_y = ne10*ne11; if (!ggml_vk_dim01_contiguous(src0) && !qx_needs_dequant) { stride_batch_x = src0->nb[0] / ggml_type_size(src0->type); } if (!ggml_vk_dim01_contiguous(src1) && !qy_needs_dequant) { stride_batch_y = src1->nb[0] / ggml_type_size(src1->type); } // compute ggml_vk_matmul_id( ctx, subctx, pipeline, { d_X, x_buf_offset, x_sz * ne02 * ne03 }, { d_Y, y_buf_offset, y_sz * ne12 * ne13 }, { d_D, d_buf_offset, d_sz * ne22 * ne23 }, { d_ids, ids_buf_offset, ids_sz }, ne01, ne21, ne10, ne10, ne10, ne01, stride_batch_x, stride_batch_y, ne20*ne21, n_as, nei0, nei1, nbi1 / ggml_type_size(ids->type), ne11 ); // NOLINT } static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst, bool dryrun = false) { VK_LOG_DEBUG("ggml_vk_mul_mat_vec_id_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; std::cerr << "), (" << ids << ", name=" << ids->name << ", type=" << ids->type << ", ne0=" << ids->ne[0] << ", ne1=" << ids->ne[1] << ", ne2=" << ids->ne[2] << ", ne3=" << ids->ne[3] << ", nb0=" << ids->nb[0] << ", nb1=" << ids->nb[1] << ", nb2=" << ids->nb[2] << ", nb3=" << ids->nb[3]; std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3]; std::cerr << "), " << (dryrun ? "dryrun" : "") << ")"); GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); // NOLINT GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT GGML_ASSERT(ids->type == GGML_TYPE_I32); const uint64_t ne00 = src0->ne[0]; const uint64_t ne01 = src0->ne[1]; const uint64_t ne02 = src0->ne[2]; const uint64_t ne03 = src0->ne[3]; const uint64_t ne10 = src1->ne[0]; const uint64_t ne11 = src1->ne[1]; const uint64_t ne12 = src1->ne[2]; const uint64_t ne13 = src1->ne[3]; const uint64_t nei0 = ids->ne[0]; const uint64_t nei1 = ids->ne[1]; const uint64_t nbi2 = ids->nb[2]; GGML_ASSERT(nei1 == 1); const uint64_t ne20 = dst->ne[0]; const uint64_t ne21 = dst->ne[1]; const uint64_t ne22 = dst->ne[2]; const uint64_t ne23 = dst->ne[3]; ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context; ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context; ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context; ggml_backend_vk_buffer_context * ids_buf_ctx = (ggml_backend_vk_buffer_context *)ids->buffer->context; vk_buffer d_Qx = nullptr; size_t qx_buf_offset = 0; vk_buffer d_Qy = nullptr; size_t qy_buf_offset = 0; vk_buffer d_ids = nullptr; size_t ids_buf_offset = 0; bool src0_uma = false; bool src1_uma = false; bool ids_uma = false; if (ctx->device->uma) { ggml_vk_host_get(ctx->device, src0->data, d_Qx, qx_buf_offset); ggml_vk_host_get(ctx->device, src1->data, d_Qy, qy_buf_offset); ggml_vk_host_get(ctx->device, ids->data, d_ids, ids_buf_offset); src0_uma = d_Qx != nullptr; src1_uma = d_Qy != nullptr; ids_uma = d_ids != nullptr; } const bool x_non_contig = !ggml_vk_dim01_contiguous(src0); const bool y_non_contig = !ggml_vk_dim01_contiguous(src1); const bool f16_f32_kernel = src1->type == GGML_TYPE_F32; const bool qx_needs_dequant = x_non_contig; const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !f16_f32_kernel) || y_non_contig; // Not implemented GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT const uint64_t x_ne = ne01 * ne00; const uint64_t y_ne = ne11 * ne10; const uint64_t d_ne = ne21 * ne20; const uint64_t qx_sz = ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), ctx->device->properties.limits.minStorageBufferOffsetAlignment); const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type); const uint64_t x_sz = x_non_contig ? ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : qx_sz; const uint64_t y_sz = f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne; const uint64_t ids_sz = nbi2; const uint64_t d_sz = sizeof(float) * d_ne; vk_pipeline to_fp16_vk_0 = nullptr; vk_pipeline to_fp16_vk_1 = nullptr; if (x_non_contig) { to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, src0->type); } if (y_non_contig) { to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, src1->type); } else { to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type); } vk_pipeline dmmv = ggml_vk_get_dequantize_mul_mat_vec_id(ctx, src0->type, src1->type); GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT GGML_ASSERT(dmmv != nullptr); if (dryrun) { const uint64_t x_sz_upd = x_sz * ne02 * ne03; const uint64_t y_sz_upd = y_sz * ne12 * ne13; if ( (qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) || (qy_needs_dequant && y_sz_upd > ctx->device->max_memory_allocation_size)) { GGML_ABORT("Requested preallocation size is too large"); } if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) { ctx->prealloc_size_x = x_sz_upd; } if (qy_needs_dequant && ctx->prealloc_size_y < y_sz_upd) { ctx->prealloc_size_y = y_sz_upd; } // Request descriptor sets if (qx_needs_dequant) { ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_0, 1); } if (qy_needs_dequant) { ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_1, 1); } ggml_pipeline_request_descriptor_sets(ctx->device, dmmv, 1); return; } vk_buffer d_D = dst_buf_ctx->dev_buffer; const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs; GGML_ASSERT(d_D != nullptr); vk_buffer d_X; uint64_t x_buf_offset = 0; vk_buffer d_Y; uint64_t y_buf_offset = 0; if(!src0_uma) { d_Qx = src0_buf_ctx->dev_buffer; qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs; GGML_ASSERT(d_Qx != nullptr); } if(!src1_uma) { d_Qy = src1_buf_ctx->dev_buffer; qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs; GGML_ASSERT(d_Qy != nullptr); } if(!ids_uma) { d_ids = ids_buf_ctx->dev_buffer; ids_buf_offset = vk_tensor_offset(ids) + ids->view_offs; GGML_ASSERT(d_ids != nullptr); } if (qx_needs_dequant) { d_X = ctx->prealloc_x; } else { d_X = d_Qx; x_buf_offset = qx_buf_offset; GGML_ASSERT(qx_sz == x_sz); } if (qy_needs_dequant) { d_Y = ctx->prealloc_y; } else { d_Y = d_Qy; y_buf_offset = qy_buf_offset; GGML_ASSERT(qy_sz == y_sz); } if (x_non_contig) { GGML_ASSERT(x_sz == ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment)); ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE }); } if (y_non_contig) { GGML_ASSERT(y_sz == ggml_type_size(src1->type) * y_ne); ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }); } uint32_t stride_batch_y = ne10*ne11; if (!ggml_vk_dim01_contiguous(src1) && !qy_needs_dequant) { stride_batch_y = src1->nb[0] / ggml_type_size(src1->type); } const uint32_t max_groups_x = ctx->device->properties.limits.maxComputeWorkGroupCount[0]; uint32_t groups_x = ne01; uint32_t groups_z = 1; if (ne01 > max_groups_x) { groups_z = 64; groups_x = CEIL_DIV(groups_x, groups_z); } // compute const vk_mat_vec_id_push_constants pc = { (uint32_t)ne00, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne01, (uint32_t)x_ne, stride_batch_y, (uint32_t)(ne20*ne21), (uint32_t)nei0, (uint32_t)ne11, }; ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, dmmv, { vk_subbuffer{ d_X, x_buf_offset, x_sz * ne02 * ne03 }, vk_subbuffer{ d_Y, y_buf_offset, y_sz * ne12 * ne13 }, vk_subbuffer{ d_D, d_buf_offset, d_sz * ne22 * ne23}, vk_subbuffer{ d_ids, ids_buf_offset, ids_sz } }, sizeof(vk_mat_vec_id_push_constants), &pc, { groups_x, (uint32_t)nei0, groups_z }); } static void ggml_vk_mul_mat_id(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, bool dryrun = false) { VK_LOG_DEBUG("ggml_vk_mul_mat_id(" << src0 << ", " << src1 << ", " << src2 << ", " << dst << ")"); if (src2->ne[1] == 1 && (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type))) { ggml_vk_mul_mat_vec_id_q_f16(ctx, subctx, src0, src1, src2, dst, dryrun); } else { ggml_vk_mul_mat_id_q_f16(ctx, subctx, src0, src1, src2, dst, dryrun); } } static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * q, const ggml_tensor * k, const ggml_tensor * v, const ggml_tensor * mask, ggml_tensor * dst, bool dryrun = false) { VK_LOG_DEBUG("ggml_vk_flash_attn((" << q << ", name=" << q->name << ", type=" << q->type << ", ne0=" << q->ne[0] << ", ne1=" << q->ne[1] << ", ne2=" << q->ne[2] << ", ne3=" << q->ne[3] << ", nb0=" << q->nb[0] << ", nb1=" << q->nb[1] << ", nb2=" << q->nb[2] << ", nb3=" << q->nb[3]; std::cerr << "), (" << k << ", name=" << k->name << ", type=" << k->type << ", ne0=" << k->ne[0] << ", ne1=" << k->ne[1] << ", ne2=" << k->ne[2] << ", ne3=" << k->ne[3] << ", nb0=" << k->nb[0] << ", nb1=" << k->nb[1] << ", nb2=" << k->nb[2] << ", nb3=" << k->nb[3]; std::cerr << "), (" << v << ", name=" << v->name << ", type=" << v->type << ", ne0=" << v->ne[0] << ", ne1=" << v->ne[1] << ", ne2=" << v->ne[2] << ", ne3=" << v->ne[3] << ", nb0=" << v->nb[0] << ", nb1=" << v->nb[1] << ", nb2=" << v->nb[2] << ", nb3=" << v->nb[3]; std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3]; std::cerr << "), " << (dryrun ? "dryrun" : "") << ")"); GGML_TENSOR_LOCALS(int64_t, neq, q, ne) GGML_TENSOR_LOCALS(size_t, nbq, q, nb) GGML_TENSOR_LOCALS(int64_t, nek, k, ne) GGML_TENSOR_LOCALS(size_t, nbk, k, nb) GGML_TENSOR_LOCALS(int64_t, nev, v, ne) GGML_TENSOR_LOCALS(size_t, nbv, v, nb) GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) GGML_TENSOR_LOCALS(size_t, nb, dst, nb) const uint32_t nem1 = mask ? mask->ne[1] : 0; const uint32_t nbm1 = mask ? mask->nb[1] : 0; const uint32_t D = neq0; const uint32_t N = neq1; const uint32_t KV = nek1; GGML_ASSERT(ne0 == D); GGML_ASSERT(ne2 == N); // input tensor rows must be contiguous GGML_ASSERT(nbq0 == ggml_type_size(q->type)); GGML_ASSERT(nbk0 == ggml_type_size(k->type)); GGML_ASSERT(nbv0 == ggml_type_size(v->type)); GGML_ASSERT(neq0 == D); GGML_ASSERT(nek0 == D); GGML_ASSERT(nev0 == D); GGML_ASSERT(neq1 == N); GGML_ASSERT(nev0 == D); GGML_ASSERT(nev1 == nek1); // dst cannot be transposed or permuted GGML_ASSERT(nb0 == sizeof(float)); GGML_ASSERT(nb0 <= nb1); GGML_ASSERT(nb1 <= nb2); GGML_ASSERT(nb2 <= nb3); assert(dst->type == GGML_TYPE_F32); assert(q->type == GGML_TYPE_F32); assert(k->type == v->type); vk_pipeline *pipelines; // XXX TODO other backends may be changing accumulator precision to default to f32 soon bool f32acc = dst->op_params[3] == GGML_PREC_F32; bool small_rows = N <= flash_attention_num_small_rows; switch (D) { case 64: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D64[k->type][f32acc][small_rows][0]; break; case 80: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D80[k->type][f32acc][small_rows][0]; break; case 96: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D96[k->type][f32acc][small_rows][0]; break; case 112: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D112[k->type][f32acc][small_rows][0]; break; case 128: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D128[k->type][f32acc][small_rows][0]; break; case 256: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D256[k->type][f32acc][small_rows][0]; break; default: assert(!"unsupported D value"); return; } assert(pipelines); bool aligned = (KV % pipelines[1]->align) == 0; vk_pipeline pipeline = pipelines[aligned]; assert(pipeline); if (dryrun) { // Request descriptor sets ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1); return; } float scale = 1.0f; float max_bias = 0.0f; float logit_softcap = 0.0f; memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float)); memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float)); memcpy(&logit_softcap, (const float *) dst->op_params + 2, sizeof(float)); if (logit_softcap != 0) { scale /= logit_softcap; } const uint32_t n_head_kv = neq2; const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv)); const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); ggml_vk_sync_buffers(subctx); vk_buffer d_Q = nullptr, d_K = nullptr, d_V = nullptr, d_D = nullptr, d_M = nullptr; size_t q_buf_offset = 0, k_buf_offset = 0, v_buf_offset = 0, d_buf_offset = 0, m_buf_offset = 0; bool Q_uma = false, K_uma = false, V_uma = false, D_uma = false, M_uma = false; if (ctx->device->uma) { ggml_vk_host_get(ctx->device, q->data, d_Q, q_buf_offset); ggml_vk_host_get(ctx->device, k->data, d_K, q_buf_offset); ggml_vk_host_get(ctx->device, v->data, d_V, q_buf_offset); ggml_vk_host_get(ctx->device, dst->data, d_D, q_buf_offset); Q_uma = d_Q != nullptr; K_uma = d_K != nullptr; V_uma = d_V != nullptr; D_uma = d_D != nullptr; if (mask) { ggml_vk_host_get(ctx->device, mask->data, d_M, q_buf_offset); M_uma = d_M != nullptr; } } ggml_backend_vk_buffer_context * d_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context; ggml_backend_vk_buffer_context * q_buf_ctx = (ggml_backend_vk_buffer_context *)q->buffer->context; ggml_backend_vk_buffer_context * k_buf_ctx = (ggml_backend_vk_buffer_context *)k->buffer->context; ggml_backend_vk_buffer_context * v_buf_ctx = (ggml_backend_vk_buffer_context *)v->buffer->context; if (!Q_uma) { d_Q = q_buf_ctx->dev_buffer; q_buf_offset = vk_tensor_offset(q) + q->view_offs; } if (!K_uma) { d_K = k_buf_ctx->dev_buffer; k_buf_offset = vk_tensor_offset(k) + k->view_offs; } if (!V_uma) { d_V = v_buf_ctx->dev_buffer; v_buf_offset = vk_tensor_offset(v) + v->view_offs; } if (!D_uma) { d_D = d_buf_ctx->dev_buffer; d_buf_offset = vk_tensor_offset(dst) + dst->view_offs; } if (!M_uma) { d_M = d_Q; m_buf_offset = q_buf_offset; if (mask) { ggml_backend_vk_buffer_context * m_buf_ctx = (ggml_backend_vk_buffer_context*)mask->buffer->context; d_M = m_buf_ctx->dev_buffer; m_buf_offset = vk_tensor_offset(mask) + mask->view_offs; } } const vk_flash_attn_push_constants pc = { N, KV, (uint32_t)ne1, (uint32_t)ne2, (uint32_t)ne3, (uint32_t)neq2, (uint32_t)neq3, (uint32_t)nek2, (uint32_t)nek3, (uint32_t)nev2, (uint32_t)nev3, nem1, (uint32_t)nbq2, (uint32_t)nbq3, (uint32_t)nbk2, (uint32_t)nbk3, (uint32_t)nbv2, (uint32_t)nbv3, nbm1, scale, max_bias, logit_softcap, mask != nullptr, n_head_log2, m0, m1 }; ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{d_Q, q_buf_offset, VK_WHOLE_SIZE}, vk_subbuffer{d_K, k_buf_offset, VK_WHOLE_SIZE}, vk_subbuffer{d_V, v_buf_offset, VK_WHOLE_SIZE}, vk_subbuffer{d_M, m_buf_offset, VK_WHOLE_SIZE}, vk_subbuffer{d_D, d_buf_offset, VK_WHOLE_SIZE}, }, sizeof(vk_flash_attn_push_constants), &pc, { (uint32_t)neq1, (uint32_t)neq2, (uint32_t)neq3 }); } static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op) { switch (op) { case GGML_OP_GET_ROWS: GGML_ASSERT(src1->type == GGML_TYPE_I32); if (dst->type == GGML_TYPE_F16) { return ctx->device->pipeline_get_rows[src0->type]; } if (dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_get_rows_f32[src0->type]; } return nullptr; case GGML_OP_ACC: if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_acc_f32; } return nullptr; case GGML_OP_ADD: if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_add_f32_norepeat : ctx->device->pipeline_add_f32; } if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) { return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_add_f16_f32_f16_norepeat : ctx->device->pipeline_add_f16_f32_f16; } return nullptr; case GGML_OP_MUL: if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_mul_f32_norepeat : ctx->device->pipeline_mul_f32; } return nullptr; case GGML_OP_DIV: if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_div_f32_norepeat : ctx->device->pipeline_div_f32; } return nullptr; case GGML_OP_CONCAT: if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_concat_f32; } if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { return ctx->device->pipeline_concat_f16; } if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_I32) { return ctx->device->pipeline_concat_i32; } return nullptr; case GGML_OP_UPSCALE: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_upscale_f32; } return nullptr; case GGML_OP_SCALE: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_scale_f32; } return nullptr; case GGML_OP_SQR: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_sqr_f32; } return nullptr; case GGML_OP_SIN: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_sin_f32; } return nullptr; case GGML_OP_COS: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_cos_f32; } return nullptr; case GGML_OP_CLAMP: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_clamp_f32; } return nullptr; case GGML_OP_PAD: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_pad_f32; } return nullptr; case GGML_OP_REPEAT: if (ggml_type_size(src0->type) == sizeof(float) && ggml_type_size(dst->type) == sizeof(float)) { return ctx->device->pipeline_repeat_f32; } return nullptr; case GGML_OP_CPY: case GGML_OP_CONT: case GGML_OP_DUP: return ggml_vk_get_cpy_pipeline(ctx, src0, dst, dst->type); case GGML_OP_NORM: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_norm_f32; } return nullptr; case GGML_OP_GROUP_NORM: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_group_norm_f32; } return nullptr; case GGML_OP_RMS_NORM: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_rms_norm_f32; } return nullptr; case GGML_OP_UNARY: switch (ggml_get_unary_op(dst)) { case GGML_UNARY_OP_SILU: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_silu_f32; } break; case GGML_UNARY_OP_GELU: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_gelu_f32; } break; case GGML_UNARY_OP_GELU_QUICK: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_gelu_quick_f32; } break; case GGML_UNARY_OP_RELU: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_relu_f32; } break; case GGML_UNARY_OP_TANH: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_tanh_f32; } break; default: break; } return nullptr; case GGML_OP_DIAG_MASK_INF: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_diag_mask_inf_f32; } return nullptr; case GGML_OP_SOFT_MAX: GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); if (src0->type == GGML_TYPE_F32 && (src1 == nullptr || src1->type == GGML_TYPE_F32) && dst->type == GGML_TYPE_F32) { return src0->ne[0] > 1024 ? ctx->device->pipeline_soft_max_f32_wg512 : ctx->device->pipeline_soft_max_f32; } if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) { return src0->ne[0] > 1024 ? ctx->device->pipeline_soft_max_f32_f16_wg512 : ctx->device->pipeline_soft_max_f32_f16; } return nullptr; case GGML_OP_ROPE: { const int mode = ((const int32_t *) dst->op_params)[2]; const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; if (is_neox) { if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_rope_neox_f32; } if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { return ctx->device->pipeline_rope_neox_f16; } } else { if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_rope_norm_f32; } if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { return ctx->device->pipeline_rope_norm_f16; } } return nullptr; } case GGML_OP_ARGSORT: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_I32) { return ctx->device->pipeline_argsort_f32; } return nullptr; case GGML_OP_SUM_ROWS: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_sum_rows_f32; } return nullptr; case GGML_OP_IM2COL: if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_im2col_f32; } if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) { return ctx->device->pipeline_im2col_f32_f16; } return nullptr; case GGML_OP_TIMESTEP_EMBEDDING: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_timestep_embedding_f32; } return nullptr; case GGML_OP_POOL_2D: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_pool2d_f32; } return nullptr; case GGML_OP_RWKV_WKV6: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_rwkv_wkv6_f32; } return nullptr; case GGML_OP_LEAKY_RELU: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_leaky_relu_f32; } return nullptr; default: return nullptr; } GGML_UNUSED(src2); } static bool ggml_vk_op_supports_incontiguous(ggml_op op) { switch (op) { case GGML_OP_CPY: case GGML_OP_GET_ROWS: case GGML_OP_ADD: case GGML_OP_MUL: case GGML_OP_DIV: case GGML_OP_CONCAT: case GGML_OP_UPSCALE: case GGML_OP_SQR: case GGML_OP_SIN: case GGML_OP_COS: case GGML_OP_CLAMP: case GGML_OP_PAD: case GGML_OP_REPEAT: return true; default: return false; } } template static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op, PC&& pc, bool dryrun = false) { VK_LOG_DEBUG("ggml_vk_op_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; if (src1 != nullptr) { std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; } if (src2 != nullptr) { std::cerr << "), (" << src2 << ", name=" << src2->name << ", type=" << src2->type << ", ne0=" << src2->ne[0] << ", ne1=" << src2->ne[1] << ", ne2=" << src2->ne[2] << ", ne3=" << src2->ne[3] << ", nb0=" << src2->nb[0] << ", nb1=" << src2->nb[1] << ", nb2=" << src2->nb[2] << ", nb3=" << src2->nb[3]; } std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3]; std::cerr << "), " << ggml_op_name(op) << ", " << (dryrun ? "dryrun" : "") << ")"); GGML_ASSERT(op == GGML_OP_GET_ROWS || (!ggml_is_quantized(src0->type) && (src1 == nullptr || !ggml_is_quantized(src1->type)))); // NOLINT GGML_ASSERT(ggml_vk_op_supports_incontiguous(op) || ggml_vk_dim01_contiguous(src0)); // NOLINT GGML_ASSERT(dst->buffer != nullptr); const uint64_t ne00 = src0->ne[0]; const uint64_t ne01 = src0->ne[1]; const uint64_t ne02 = src0->ne[2]; const uint64_t ne03 = src0->ne[3]; const uint64_t ne0 = ne00 * ne01; const bool use_src1 = src1 != nullptr; const uint64_t ne10 = use_src1 ? src1->ne[0] : 0; const uint64_t ne11 = use_src1 ? src1->ne[1] : 0; const uint64_t ne12 = use_src1 ? src1->ne[2] : 0; const uint64_t ne13 = use_src1 ? src1->ne[3] : 0; const uint64_t ne1 = ne10 * ne11; // const uint64_t nb10 = use_src1 ? src1->nb[0] : 0; const bool use_src2 = src2 != nullptr; const uint64_t ne20 = use_src2 ? src2->ne[0] : 0; const uint64_t ne21 = use_src2 ? src2->ne[1] : 0; const uint64_t ne22 = use_src2 ? src2->ne[2] : 0; const uint64_t ne23 = use_src2 ? src2->ne[3] : 0; const uint64_t ne2 = ne20 * ne21; const uint64_t ned0 = dst->ne[0]; const uint64_t ned1 = dst->ne[1]; const uint64_t ned2 = dst->ne[2]; const uint64_t ned3 = dst->ne[3]; const uint64_t ned = ned0 * ned1; init_pushconst_fastdiv(pc); vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, src2, dst, op); if (pipeline == nullptr) { std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(op) << " for " << ggml_type_name(src0->type); if (src1 != nullptr) { std::cerr << " and " << ggml_type_name(src1->type); } std::cerr << " to " << ggml_type_name(dst->type) << std::endl; GGML_ABORT("fatal error"); } if (dryrun) { ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1); return; } const bool op_supports_incontiguous = ggml_vk_op_supports_incontiguous(op); ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context; ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context; ggml_backend_vk_buffer_context * src1_buf_ctx = use_src1 ? (ggml_backend_vk_buffer_context *)src1->buffer->context : nullptr; ggml_backend_vk_buffer_context * src2_buf_ctx = use_src2 ? (ggml_backend_vk_buffer_context *)src2->buffer->context : nullptr; vk_buffer d_X = nullptr; size_t x_buf_offset = 0; vk_buffer d_Y = nullptr; size_t y_buf_offset = 0; vk_buffer d_Z = nullptr; size_t z_buf_offset = 0; bool src0_uma = false; bool src1_uma = false; bool src2_uma = false; if (ctx->device->uma) { ggml_vk_host_get(ctx->device, src0->data, d_X, x_buf_offset); src0_uma = d_X != nullptr; if (use_src1) { ggml_vk_host_get(ctx->device, src1->data, d_Y, y_buf_offset); src1_uma = d_Y != nullptr; } if (use_src2) { ggml_vk_host_get(ctx->device, src2->data, d_Z, z_buf_offset); src2_uma = d_Z != nullptr; } } uint64_t x_sz = ggml_type_size(src0->type)/ggml_blck_size(src0->type) * ne0; uint64_t y_sz = use_src1 ? ggml_type_size(src1->type) * ne1 : 0; uint64_t z_sz = use_src2 ? ggml_type_size(src2->type) * ne2 : 0; uint64_t d_sz = ggml_type_size(dst->type) * ned; vk_buffer d_D = dst_buf_ctx->dev_buffer; // Workaround for tiny tensor inputs on ROPE if (op == GGML_OP_ROPE && use_src1 && y_sz > d_D->size) { y_sz = VK_WHOLE_SIZE; } GGML_ASSERT(d_D != nullptr); uint64_t d_buf_offset = ((vk_tensor_offset(dst) + dst->view_offs) / ctx->device->properties.limits.minStorageBufferOffsetAlignment) * ctx->device->properties.limits.minStorageBufferOffsetAlignment; GGML_ASSERT(d_buf_offset == vk_tensor_offset(dst) || op == GGML_OP_CPY); // NOLINT if(!src0_uma) { d_X = src0_buf_ctx->dev_buffer; x_buf_offset = vk_tensor_offset(src0) + src0->view_offs; GGML_ASSERT(d_X != nullptr); } if (use_src1 && !src1_uma) { d_Y = src1_buf_ctx->dev_buffer; y_buf_offset = vk_tensor_offset(src1) + src1->view_offs; GGML_ASSERT(d_Y != nullptr); } if (use_src2 && !src2_uma) { d_Z = src2_buf_ctx->dev_buffer; z_buf_offset = vk_tensor_offset(src2) + src2->view_offs; GGML_ASSERT(d_Z != nullptr); } if (op_supports_incontiguous) { x_sz = ggml_nbytes(src0); y_sz = use_src1 ? ggml_nbytes(src1) : 0; z_sz = use_src2 ? ggml_nbytes(src2) : 0; d_sz = ggml_nbytes(dst); if (x_buf_offset + x_sz >= d_X->size) { x_sz = VK_WHOLE_SIZE; } if (use_src1 && y_buf_offset + y_sz >= d_Y->size) { y_sz = VK_WHOLE_SIZE; } if (use_src2 && z_buf_offset + z_sz >= d_Z->size) { z_sz = VK_WHOLE_SIZE; } if (d_buf_offset + d_sz >= d_D->size) { d_sz = VK_WHOLE_SIZE; } } std::array elements; // Single call if dimension 2 is contiguous GGML_ASSERT(op_supports_incontiguous || (ggml_is_contiguous(src0) && (src1 == nullptr || ggml_is_contiguous(src1)))); switch (op) { case GGML_OP_NORM: case GGML_OP_RMS_NORM: case GGML_OP_SOFT_MAX: case GGML_OP_SUM_ROWS: { const uint32_t nr = ggml_nrows(src0); if (nr > 262144) { elements = { 512, 512, CEIL_DIV(nr, 262144) }; } else if (nr > 512) { elements = { 512, CEIL_DIV(nr, 512), 1 }; } else { elements = { nr, 1, 1 }; } } break; case GGML_OP_GROUP_NORM: { const uint32_t num_groups = dst->op_params[0]; elements = { num_groups * (uint32_t)src0->ne[3], 1, 1 }; } break; case GGML_OP_DIAG_MASK_INF: case GGML_OP_ROPE: elements = { (uint32_t)ggml_nrows(src0), (uint32_t)ne00, 1 }; break; case GGML_OP_GET_ROWS: elements = { (uint32_t)ne00, (uint32_t)ne10, (uint32_t)(ne11 * ne12) }; break; case GGML_OP_ARGSORT: elements = { (uint32_t)ne00, (uint32_t)ggml_nrows(src0), 1 }; break; case GGML_OP_IM2COL: { const bool is_2D = dst->op_params[6] == 1; const uint32_t IC = src1->ne[is_2D ? 2 : 1]; const uint32_t KH = is_2D ? src0->ne[1] : 1; const uint32_t KW = src0->ne[0]; const uint32_t OH = is_2D ? dst->ne[2] : 1; const uint32_t OW = dst->ne[1]; const uint32_t batch = src1->ne[is_2D ? 3 : 2]; elements = { OW * KW * KH, OH, batch * IC }; } break; case GGML_OP_TIMESTEP_EMBEDDING: { const uint32_t dim = dst->op_params[0]; uint32_t half_ceil = (dim + 1) / 2; elements = { half_ceil, (uint32_t)src0->ne[0], 1 }; } break; case GGML_OP_POOL_2D: { const uint32_t N = dst->ne[3]; const uint32_t OC = dst->ne[2]; const uint32_t OH = dst->ne[1]; const uint32_t OW = dst->ne[0]; elements = { N * OC * OH * OW, 1, 1}; } break; case GGML_OP_ADD: case GGML_OP_DIV: case GGML_OP_MUL: case GGML_OP_SCALE: case GGML_OP_SQR: case GGML_OP_SIN: case GGML_OP_COS: case GGML_OP_CLAMP: case GGML_OP_PAD: case GGML_OP_REPEAT: case GGML_OP_CPY: case GGML_OP_CONCAT: case GGML_OP_UPSCALE: case GGML_OP_UNARY: { const uint32_t ne = ggml_nelements(dst); if (ne > 262144) { elements = { 512, 512, CEIL_DIV(ne, 262144) }; } else if (ne > 512) { elements = { 512, CEIL_DIV(ne, 512), 1 }; } else { elements = { ne, 1, 1 }; } } break; default: elements = { (uint32_t)ggml_nelements(src0), 1, 1 }; break; } if (!op_supports_incontiguous) { if (x_sz != VK_WHOLE_SIZE) { x_sz *= ne02 * ne03; } if (use_src1 && y_sz != VK_WHOLE_SIZE) { y_sz *= ne12 * ne13; } if (use_src2 && z_sz != VK_WHOLE_SIZE) { z_sz *= ne22 * ne23; } if (d_sz != VK_WHOLE_SIZE) { d_sz *= ned2 * ned3; } } if (op == GGML_OP_SOFT_MAX) { // Empty src1 is possible in soft_max, but the shader needs a buffer vk_subbuffer subbuf_y; if (use_src1) { subbuf_y = { d_Y, y_buf_offset, y_sz }; } else { subbuf_y = { d_X, 0, x_sz }; } ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, subbuf_y, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); } else if (op == GGML_OP_ROPE) { // Empty src2 is possible in rope, but the shader needs a buffer vk_subbuffer subbuf_z; if (use_src2) { subbuf_z = { d_Z, z_buf_offset, z_sz }; } else { subbuf_z = { d_X, 0, x_sz }; } ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, subbuf_z, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); } else if (op == GGML_OP_IM2COL) { // im2col uses only src1 and dst buffers ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); } else if (use_src2) { ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_Z, z_buf_offset, z_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); } else if (use_src1) { ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); } else { ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); } } static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t src1_type_size = ggml_type_size(src1->type); const uint32_t dst_type_size = ggml_type_size(dst->type); ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_GET_ROWS, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, 0.0f, 0.0f, 0, }, dryrun); } static void ggml_vk_acc(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t src1_type_size = ggml_type_size(src1->type); const uint32_t dst_type_size = ggml_type_size(dst->type); const uint32_t d_offset = ((vk_tensor_offset(dst) + dst->view_offs) % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size; int nb1 = dst->op_params[0] / 4; // 4 bytes of float32 int nb2 = dst->op_params[1] / 4; // 4 bytes of float32 // int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused int offset = dst->op_params[3] / 4; // offset in bytes ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_ACC, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)nb1, (uint32_t)nb2, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t)nb1, (uint32_t)nb2, (uint32_t) dst->nb[3] / dst_type_size, d_offset, 0.0f, 0.0f, offset, }, dryrun); } static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t src1_type_size = ggml_type_size(src1->type); const uint32_t dst_type_size = ggml_type_size(dst->type); ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_ADD, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, 0.0f, 0.0f, 0, }, dryrun); } static void ggml_vk_mul(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t src1_type_size = ggml_type_size(src1->type); const uint32_t dst_type_size = ggml_type_size(dst->type); ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_MUL, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, 0.0f, 0.0f, 0, }, dryrun); } static void ggml_vk_div(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t src1_type_size = ggml_type_size(src1->type); const uint32_t dst_type_size = ggml_type_size(dst->type); ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_DIV, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, 0.0f, 0.0f, 0, }, dryrun); } static void ggml_vk_op_f32_rwkv6(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst, const vk_op_rwkv_wkv6_push_constants&& pc, bool dryrun = false) { const ggml_tensor * k = dst->src[0]; const ggml_tensor * v = dst->src[1]; const ggml_tensor * r = dst->src[2]; const ggml_tensor * tf = dst->src[3]; const ggml_tensor * td = dst->src[4]; const ggml_tensor * state = dst->src[5]; GGML_ASSERT(!ggml_is_quantized(k->type)); GGML_ASSERT(!ggml_is_quantized(v->type)); GGML_ASSERT(!ggml_is_quantized(r->type)); GGML_ASSERT(!ggml_is_quantized(tf->type)); GGML_ASSERT(!ggml_is_quantized(td->type)); GGML_ASSERT(!ggml_is_quantized(state->type)); GGML_ASSERT(dst->buffer != nullptr); vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, k, v, r, dst, GGML_OP_RWKV_WKV6); GGML_ASSERT(pipeline != nullptr); if (dryrun) { ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1); return; } ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context; ggml_backend_vk_buffer_context * k_buf_ctx = (ggml_backend_vk_buffer_context *)k->buffer->context; ggml_backend_vk_buffer_context * v_buf_ctx = (ggml_backend_vk_buffer_context *)v->buffer->context; ggml_backend_vk_buffer_context * r_buf_ctx = (ggml_backend_vk_buffer_context *)r->buffer->context; ggml_backend_vk_buffer_context * tf_buf_ctx = (ggml_backend_vk_buffer_context *)tf->buffer->context; ggml_backend_vk_buffer_context * td_buf_ctx = (ggml_backend_vk_buffer_context *)td->buffer->context; ggml_backend_vk_buffer_context * state_buf_ctx = (ggml_backend_vk_buffer_context *)state->buffer->context; ggml_vk_sync_buffers(subctx); vk_buffer d_D = nullptr, d_K = nullptr, d_V = nullptr, d_R = nullptr, d_TF = nullptr, d_TD = nullptr, d_State = nullptr; size_t k_offset = 0, v_offset = 0, r_offset = 0, tf_offset = 0, td_offset = 0, state_offset = 0, dst_offset = 0; bool K_uma = false, V_uma = false, R_uma = false, TF_uma = false, TD_uma = false, STATE_uma = false, DST_uma = false; if (ctx->device->uma) { ggml_vk_host_get(ctx->device, k->data, d_K, k_offset); ggml_vk_host_get(ctx->device, v->data, d_V, v_offset); ggml_vk_host_get(ctx->device, r->data, d_R, r_offset); ggml_vk_host_get(ctx->device, tf->data, d_TF, tf_offset); ggml_vk_host_get(ctx->device, td->data, d_TD, td_offset); ggml_vk_host_get(ctx->device, state->data, d_State, state_offset); ggml_vk_host_get(ctx->device, dst->data, d_D, dst_offset); K_uma = d_K != nullptr; V_uma = d_V != nullptr; R_uma = d_R != nullptr; TF_uma = d_TF != nullptr; TD_uma = d_TD != nullptr; STATE_uma = d_State != nullptr; DST_uma = d_D != nullptr; } if (!K_uma) { d_K = k_buf_ctx->dev_buffer; k_offset = vk_tensor_offset(k) + k->view_offs; } if (!V_uma) { d_V = v_buf_ctx->dev_buffer; v_offset = vk_tensor_offset(v) + v->view_offs; } if (!R_uma) { d_R = r_buf_ctx->dev_buffer; r_offset = vk_tensor_offset(r) + r->view_offs; } if (!TF_uma) { d_TF = tf_buf_ctx->dev_buffer; tf_offset = vk_tensor_offset(tf) + tf->view_offs; } if (!TD_uma) { d_TD = td_buf_ctx->dev_buffer; td_offset = vk_tensor_offset(td) + td->view_offs; } if (!STATE_uma) { d_State = state_buf_ctx->dev_buffer; state_offset = vk_tensor_offset(state) + state->view_offs; } if (!DST_uma) { d_D = dst_buf_ctx->dev_buffer; dst_offset = vk_tensor_offset(dst) + dst->view_offs; } const uint64_t k_size = ggml_nbytes(k); const uint64_t v_size = ggml_nbytes(v); const uint64_t r_size = ggml_nbytes(r); const uint64_t tf_size = ggml_nbytes(tf); const uint64_t td_size = ggml_nbytes(td); const uint64_t state_size = ggml_nbytes(state); const uint64_t dst_size = ggml_nbytes(dst); std::array elements = { (uint32_t)(pc.B * pc.H), 1, 1 }; ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_K, k_offset, k_size }, vk_subbuffer{ d_V, v_offset, v_size }, vk_subbuffer{ d_R, r_offset, r_size }, vk_subbuffer{ d_TF, tf_offset, tf_size }, vk_subbuffer{ d_TD, td_offset, td_size }, vk_subbuffer{ d_State, state_offset, state_size }, vk_subbuffer{ d_D, dst_offset, dst_size } }, sizeof(vk_op_rwkv_wkv6_push_constants), &pc, elements); } static void ggml_vk_rwkv_wkv6(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst, bool dryrun = false) { const size_t seq_length = dst->src[0]->ne[3]; const size_t n_embed = dst->ne[0]; const size_t n_heads = dst->src[0]->ne[2]; const size_t n_seqs = dst->src[5]->ne[1]; ggml_vk_op_f32_rwkv6( ctx, subctx, dst, { (uint32_t)n_seqs, (uint32_t)seq_length, (uint32_t)n_embed, (uint32_t)n_heads, }, dryrun ); } static void ggml_vk_concat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { int * op_params = (int *)dst->op_params; const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t src1_type_size = ggml_type_size(src1->type); const uint32_t dst_type_size = ggml_type_size(dst->type); ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_CONCAT, { (uint32_t)ggml_nelements(dst), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, 0.0f, 0.0f, op_params[0], }, dryrun); } static void ggml_vk_upscale(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { const uint32_t src0_type_size = ggml_type_size(src0->type); const float sf0 = (float)dst->ne[0] / src0->ne[0]; const float sf1 = (float)dst->ne[1] / src0->ne[1]; const float sf2 = (float)dst->ne[2] / src0->ne[2]; const float sf3 = (float)dst->ne[3] / src0->ne[3]; ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UPSCALE, { (uint32_t)ggml_nelements(dst), 0, (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t)dst->ne[0], (uint32_t)dst->ne[1], (uint32_t)dst->ne[2],(uint32_t)dst->ne[3], sf0, sf1, sf2, sf3, }, dryrun); } static void ggml_vk_scale(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { float * op_params = (float *)dst->op_params; const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SCALE, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, op_params[0], 0.0f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, dryrun); } static void ggml_vk_sqr(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SQR, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, 0.0f, 0.0f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, dryrun); } static void ggml_vk_sin(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SIN, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, 0.0f, 0.0f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, dryrun); } static void ggml_vk_cos(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_COS, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, 0.0f, 0.0f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, dryrun); } static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { float * op_params = (float *)dst->op_params; const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CLAMP, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, op_params[0], op_params[1], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, dryrun); } static void ggml_vk_pad(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_PAD, { (uint32_t)ggml_nelements(dst), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, 0.0f, 0.0f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, dryrun); } static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_REPEAT, { (uint32_t)ggml_nelements(dst), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, 0.0f, 0.0f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, dryrun); } static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); const uint32_t d_offset = ((vk_tensor_offset(dst) + dst->view_offs) % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size; ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CPY, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, d_offset, 0.0f, 0.0f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, dryrun); } static void ggml_vk_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { float * op_params = (float *)dst->op_params; ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }, dryrun); } static void ggml_vk_group_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { const int * int_op_params = (const int *)dst->op_params; const float * float_op_params = (const float *)dst->op_params; const uint32_t num_groups = int_op_params[0]; const float eps = float_op_params[1]; const uint32_t group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups); ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_GROUP_NORM, { group_size, 0, eps, 0.0f }, dryrun); } static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { float * op_params = (float *)dst->op_params; ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }, dryrun); } static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }, dryrun); } static void ggml_vk_diag_mask_inf(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { int32_t * op_params = (int32_t *)dst->op_params; ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] }, dryrun); } static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { float * op_params = (float *)dst->op_params; float scale = op_params[0]; float max_bias = op_params[1]; const uint32_t ncols = (uint32_t)src0->ne[0]; const uint32_t nrows_x = (uint32_t)ggml_nrows(src0); const uint32_t nrows_y = (uint32_t)src0->ne[1]; const uint32_t n_head_kv = nrows_x/nrows_y; const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv)); const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_SOFT_MAX, { ncols, src1 != nullptr ? nrows_y : (uint32_t)0, scale, max_bias, m0, m1, n_head_log2, nrows_x, }, dryrun); } static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, bool dryrun = false) { const int n_dims = ((int32_t *) dst->op_params)[1]; // const int mode = ((int32_t *) dst->op_params)[2]; // const int n_ctx = ((int32_t *) dst->op_params)[3]; const int n_ctx_orig = ((int32_t *) dst->op_params)[4]; const float freq_base = ((float *) dst->op_params)[5]; const float freq_scale = ((float *) dst->op_params)[6]; const float ext_factor = ((float *) dst->op_params)[7]; const float attn_factor = ((float *) dst->op_params)[8]; const float beta_fast = ((float *) dst->op_params)[9]; const float beta_slow = ((float *) dst->op_params)[10]; float corr_dims[2]; ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims); const float theta_scale = powf(freq_base, -2.0f/n_dims); ggml_vk_op_f32(ctx, subctx, src0, src1, src2, dst, GGML_OP_ROPE, { (uint32_t)src0->ne[0], (uint32_t)n_dims, freq_scale, (uint32_t)src0->ne[1], freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1]}, theta_scale, src2 != nullptr, }, dryrun); } static void ggml_vk_argsort(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { int32_t * op_params = (int32_t *)dst->op_params; uint32_t ncols = src0->ne[0]; uint32_t ncols_pad = 1; while (ncols_pad < ncols) { ncols_pad *= 2; } GGML_ASSERT(ncols_pad <= 1024); ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_ARGSORT, { ncols, ncols_pad, op_params[0], }, dryrun); } static void ggml_vk_sum_rows(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SUM_ROWS, { (uint32_t)src0->ne[0], 0, 0.0f, 0.0f }, dryrun); } static void ggml_vk_im2col(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { const int32_t s0 = dst->op_params[0]; const int32_t s1 = dst->op_params[1]; const int32_t p0 = dst->op_params[2]; const int32_t p1 = dst->op_params[3]; const int32_t d0 = dst->op_params[4]; const int32_t d1 = dst->op_params[5]; const bool is_2D = dst->op_params[6] == 1; const uint32_t IC = src1->ne[is_2D ? 2 : 1]; const uint32_t IH = is_2D ? src1->ne[1] : 1; const uint32_t IW = src1->ne[0]; const uint32_t KH = is_2D ? src0->ne[1] : 1; const uint32_t KW = src0->ne[0]; const uint32_t OH = is_2D ? dst->ne[2] : 1; const uint32_t OW = dst->ne[1]; const uint32_t offset_delta = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32 const uint32_t batch_offset = src1->nb[is_2D ? 3 : 2] / 4; // nb is byte offset, src is type float32 const uint32_t pelements = OW * KW * KH; ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_IM2COL, { batch_offset, offset_delta, IC, IW, IH, OW, OH, KW, KH, pelements, IC * KH * KW, s0, s1, p0, p1, d0, d1, }, dryrun); } static void ggml_vk_timestep_embedding(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { const uint32_t dim = dst->op_params[0]; const uint32_t max_period = dst->op_params[1]; const uint32_t nb1 = dst->nb[1] / ggml_type_size(dst->type); ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_TIMESTEP_EMBEDDING, { nb1, dim, max_period, }, dryrun); } static void ggml_vk_pool_2d(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { uint32_t op = static_cast(dst->op_params[0]); const int32_t k1 = dst->op_params[1]; const int32_t k0 = dst->op_params[2]; const int32_t s1 = dst->op_params[3]; const int32_t s0 = dst->op_params[4]; const int32_t p1 = dst->op_params[5]; const int32_t p0 = dst->op_params[6]; const uint32_t IH = src0->ne[1]; const uint32_t IW = src0->ne[0]; const uint32_t N = dst->ne[3]; const uint32_t OC = dst->ne[2]; const uint32_t OH = dst->ne[1]; const uint32_t OW = dst->ne[0]; const uint32_t parallel_elements = N * OC * OH * OW; ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_POOL_2D, { IW, IH, OW, OH, OC, parallel_elements, op, k0, k1, s0, s1, p0, p1, }, dryrun); } static void ggml_vk_leaky_relu(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { const float * op_params = (const float *)dst->op_params; ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_LEAKY_RELU, { (uint32_t)ggml_nelements(src0), 0, op_params[0], 0.0f }, dryrun); } #ifdef GGML_VULKAN_RUN_TESTS static void ggml_vk_print_matrix_area(const void * data, ggml_type type, int ne0, int ne1, int i0, int i1, int i2) { if (type != GGML_TYPE_F32 && type != GGML_TYPE_F16) { return; } i0 = std::max(i0, 5); i1 = std::max(i1, 5); i2 = std::max(i2, 0); fprintf(stderr, " "); for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) { fprintf(stderr, "%7d ", idx1); } fprintf(stderr, "\n"); for (int idx0 = i0 - 5; idx0 < i0 + 5; idx0++) { fprintf(stderr, "%7d: ", idx0); for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) { if (idx0 >= 0 && idx0 < ne0 && idx1 >= 0 && idx1 < ne1) { float val; if (type == GGML_TYPE_F32) { val = *((const float *) data + i2*ne1*ne0 + idx1*ne0 + idx0); } else if (type == GGML_TYPE_F16) { val = ggml_fp16_to_fp32(*((const ggml_fp16_t *) data + i2*ne1*ne0 + idx1*ne0 + idx0)); } else { GGML_ABORT("fatal error"); } fprintf(stderr, "% 7.2f ", val); } else { fprintf(stderr, " "); } } fprintf(stderr, "\n"); } } template static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t n, size_t k, size_t batch, size_t num_it, int split_k, int shader_size) { VK_LOG_DEBUG("ggml_vk_test_matmul(" << m << ", " << n << ", " << k << ", " << batch << ", " << num_it << ", " << split_k << ", " << shader_size << ")"); const size_t x_ne = m * k * batch; const size_t y_ne = k * n * batch; const size_t d_ne = m * n * batch; vk_pipeline p; std::string shname; if (shader_size == 0) { if (std::is_same() && std::is_same()) { p = ctx->device->pipeline_matmul_f32->a_s; shname = "F32_ALIGNED_S"; } else if (std::is_same() && std::is_same()) { p = ctx->device->pipeline_matmul_f32_f16->a_s; shname = "F32_F16_ALIGNED_S"; } else if (std::is_same() && std::is_same()) { p = ctx->device->pipeline_matmul_f16_f32.f32acc->a_s; shname = "F16_F32_ALIGNED_S"; } else if (std::is_same() && std::is_same()) { p = ctx->device->pipeline_matmul_f16.f32acc->a_s; shname = "F16_ALIGNED_S"; } else { GGML_ABORT("fatal error"); } } else if (shader_size == 1) { if (std::is_same() && std::is_same()) { p = ctx->device->pipeline_matmul_f32->a_m; shname = "F32_ALIGNED_M"; } else if (std::is_same() && std::is_same()) { p = ctx->device->pipeline_matmul_f32_f16->a_m; shname = "F32_F16_ALIGNED_M"; } else if (std::is_same() && std::is_same()) { p = ctx->device->pipeline_matmul_f16_f32.f32acc->a_m; shname = "F16_F32_ALIGNED_M"; } else if (std::is_same() && std::is_same()) { p = ctx->device->pipeline_matmul_f16.f32acc->a_m; shname = "F16_ALIGNED_M"; } else { GGML_ABORT("fatal error"); } } else if (shader_size == 2) { if (std::is_same() && std::is_same()) { p = ctx->device->pipeline_matmul_f32->a_l; shname = "F32_ALIGNED_L"; } else if (std::is_same() && std::is_same()) { p = ctx->device->pipeline_matmul_f32_f16->a_l; shname = "F32_F16_ALIGNED_L"; } else if (std::is_same() && std::is_same()) { p = ctx->device->pipeline_matmul_f16_f32.f32acc->a_l; shname = "F16_F32_ALIGNED_L"; } else if (std::is_same() && std::is_same()) { p = ctx->device->pipeline_matmul_f16.f32acc->a_l; shname = "F16_ALIGNED_L"; } else { GGML_ABORT("fatal error"); } } else { GGML_ASSERT(0); } const size_t kpad = ggml_vk_align_size(k, p->align); if (k != kpad) { if (shader_size == 0) { if (std::is_same() && std::is_same()) { p = ctx->device->pipeline_matmul_f32->s; shname = "F32_S"; } else if (std::is_same() && std::is_same()) { p = ctx->device->pipeline_matmul_f32_f16->s; shname = "F32_F16_S"; } else if (std::is_same() && std::is_same()) { p = ctx->device->pipeline_matmul_f16_f32.f32acc->s; shname = "F16_F32_S"; } else if (std::is_same() && std::is_same()) { p = ctx->device->pipeline_matmul_f16.f32acc->s; shname = "F16_S"; } } else if (shader_size == 1) { if (std::is_same() && std::is_same()) { p = ctx->device->pipeline_matmul_f32->m; shname = "F32_M"; } else if (std::is_same() && std::is_same()) { p = ctx->device->pipeline_matmul_f32_f16->m; shname = "F32_F16_M"; } else if (std::is_same() && std::is_same()) { p = ctx->device->pipeline_matmul_f16_f32.f32acc->m; shname = "F16_F32_M"; } else if (std::is_same() && std::is_same()) { p = ctx->device->pipeline_matmul_f16.f32acc->m; shname = "F16_M"; } } else if (shader_size == 2) { if (std::is_same() && std::is_same()) { p = ctx->device->pipeline_matmul_f32->l; shname = "F32_L"; } else if (std::is_same() && std::is_same()) { p = ctx->device->pipeline_matmul_f32_f16->l; shname = "F32_F16_L"; } else if (std::is_same() && std::is_same()) { p = ctx->device->pipeline_matmul_f16_f32.f32acc->l; shname = "F16_F32_L"; } else if (std::is_same() && std::is_same()) { p = ctx->device->pipeline_matmul_f16.f32acc->l; shname = "F16_L"; } } } ggml_pipeline_request_descriptor_sets(ctx->device, p, num_it); if (split_k > 1) { ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_matmul_split_k_reduce, num_it); if (ctx->prealloc_split_k == nullptr || ctx->prealloc_split_k->size < sizeof(float) * d_ne * split_k) { // Resize buffer if (ctx->prealloc_split_k != nullptr) { ggml_vk_destroy_buffer(ctx->prealloc_split_k); } ctx->prealloc_split_k = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne * split_k, vk::MemoryPropertyFlagBits::eDeviceLocal); } } ggml_pipeline_allocate_descriptor_sets(ctx->device); vk_buffer d_X = ggml_vk_create_buffer_check(ctx->device, sizeof(X_TYPE) * x_ne, vk::MemoryPropertyFlagBits::eDeviceLocal); vk_buffer d_Y = ggml_vk_create_buffer_check(ctx->device, sizeof(Y_TYPE) * y_ne, vk::MemoryPropertyFlagBits::eDeviceLocal); vk_buffer d_D = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne, vk::MemoryPropertyFlagBits::eDeviceLocal); X_TYPE* x = (X_TYPE *) malloc(sizeof(X_TYPE) * x_ne); Y_TYPE* y = (Y_TYPE *) malloc(sizeof(Y_TYPE) * y_ne); float* d = (float *) malloc(sizeof(float) * d_ne); for (size_t i = 0; i < x_ne; i++) { if (std::is_same()) { x[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f; // x[i] = 1.0f; // x[i] = i + 1; // x[i] = (i % k == i / k) ? 1.0f : 0.0f; } else if (std::is_same()) { x[i] = ggml_fp32_to_fp16((rand() / (float)RAND_MAX) * 2.0f - 1.0f); // x[i] = ggml_fp32_to_fp16(1.0f); // x[i] = ggml_fp32_to_fp16(i + 1); // x[i] = ggml_fp32_to_fp16((i % k == i / k) ? 1.0f : 0.0f); } else { GGML_ABORT("fatal error"); } } for (size_t i = 0; i < y_ne; i++) { if (std::is_same()) { y[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f; // y[i] = (i % k == i / k) ? 1.0f : 0.0f; // y[i] = i + 1; } else if (std::is_same()) { y[i] = ggml_fp32_to_fp16((rand() / (float)RAND_MAX) * 2.0f - 1.0f); // y[i] = ggml_fp32_to_fp16((i % k == i / k) ? 1.0f : 0.0f); // y[i] = ggml_fp32_to_fp16(i + 1); } else { GGML_ABORT("fatal error"); } } ggml_vk_buffer_write(d_X, 0, x, sizeof(X_TYPE) * k * m * batch); ggml_vk_buffer_write(d_Y, 0, y, sizeof(Y_TYPE) * k * n * batch); vk_context subctx = ggml_vk_create_context(ctx, ctx->device->compute_queue); ggml_vk_ctx_begin(ctx->device, subctx); for (size_t i = 0; i < num_it; i++) { ggml_vk_matmul( ctx, subctx, p, ggml_vk_subbuffer(d_X), ggml_vk_subbuffer(d_Y), ggml_vk_subbuffer(d_D), ggml_vk_subbuffer(ctx->prealloc_split_k), m, n, k, k, k, m, k*m, k*n, m*n, split_k, batch, batch, batch, 1, 1 ); } ggml_vk_ctx_end(subctx); auto begin = std::chrono::high_resolution_clock::now(); ggml_vk_submit(subctx, ctx->fence); VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_test_matmul waitForFences"); ctx->device->device.resetFences({ ctx->fence }); auto end = std::chrono::high_resolution_clock::now(); double time = std::chrono::duration_cast(end-begin).count() / 1000.0; // copy dst to host ggml_vk_buffer_read(d_D, 0, d, sizeof(float) * d_ne); float * d_chk = (float *) malloc(sizeof(float) * d_ne); ggml_init_params iparams = { /*.mem_size =*/ 1024*1024*1024, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; ggml_context * ggml_ctx = ggml_init(iparams); ggml_type src0_type; ggml_type src1_type; if (std::is_same()) { src0_type = GGML_TYPE_F32; } else if (std::is_same()) { src0_type = GGML_TYPE_F16; } else { GGML_ABORT("fatal error"); } if (std::is_same()) { src1_type = GGML_TYPE_F32; } else if (std::is_same()) { src1_type = GGML_TYPE_F16; } else { GGML_ABORT("fatal error"); } ggml_tensor * src0_ggml = ggml_new_tensor_3d(ggml_ctx, src0_type, k, m, batch); ggml_tensor * src1_ggml = ggml_new_tensor_3d(ggml_ctx, src1_type, k, n, batch); ggml_tensor * tensor_ggml = ggml_mul_mat(ggml_ctx, src0_ggml, src1_ggml); src0_ggml->data = x; src1_ggml->data = y; tensor_ggml->data = d_chk; ggml_cgraph * cgraph = ggml_new_graph(ggml_ctx); ggml_build_forward_expand(cgraph, tensor_ggml); ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 1); ggml_free(ggml_ctx); double avg_err = 0.0; int first_err_n = -1; int first_err_m = -1; int first_err_b = -1; for (size_t i = 0; i < m*n*batch; i++) { double err = std::fabs(d[i] - d_chk[i]); avg_err += err; if ((err > 0.05f || std::isnan(err)) && first_err_n == -1) { first_err_b = i / (m * n); first_err_n = (i % (m * n)) / m; first_err_m = (i % (m * n)) % m; } } avg_err /= m * n; double tflops = 2.0*m*n*k*batch*num_it / (time / 1000.0) / (1000.0*1000.0*1000.0*1000.0); std::cerr << "TEST " << shname << " m=" << m << " n=" << n << " k=" << k << " batch=" << batch << " split_k=" << split_k << " matmul " << time / num_it << "ms " << tflops << " TFLOPS avg_err=" << avg_err << std::endl; if (avg_err > 0.1 || std::isnan(avg_err)) { std::cerr << "m = " << first_err_m << " n = " << first_err_n << " b = " << first_err_b << std::endl; std::cerr << "Actual result: " << std::endl << std::endl; ggml_vk_print_matrix_area(d, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b); std::cerr << "Expected result: " << std::endl << std::endl; ggml_vk_print_matrix_area(d_chk, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b); if (split_k > 1) { float * split_k_buf = (float *) malloc(sizeof(float) * d_ne * split_k); ggml_vk_buffer_read(ctx->prealloc_split_k, 0, split_k_buf, sizeof(float) * d_ne * split_k); std::cerr << "d_buf0: " << std::endl << std::endl; ggml_vk_print_matrix_area(split_k_buf, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b); std::cerr << "d_buf1: " << std::endl << std::endl; ggml_vk_print_matrix_area(split_k_buf + d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b); std::cerr << "d_buf2: " << std::endl << std::endl; ggml_vk_print_matrix_area(split_k_buf + 2 * d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b); std::cerr << "d_buf3: " << std::endl << std::endl; ggml_vk_print_matrix_area(split_k_buf + 3 * d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b); free(split_k_buf); } } free(d_chk); ggml_vk_queue_cleanup(ctx->device, ctx->device->transfer_queue); ggml_vk_queue_cleanup(ctx->device, ctx->device->compute_queue); ggml_vk_destroy_buffer(d_X); ggml_vk_destroy_buffer(d_Y); ggml_vk_destroy_buffer(d_D); ggml_pipeline_cleanup(p); ggml_pipeline_cleanup(ctx->device->pipeline_matmul_split_k_reduce); free(x); free(y); free(d); } static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, int i0, int i1, int i2, int i3) { if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) { return; } i0 = std::max(i0, 5); i1 = std::max(i1, 5); i2 = std::max(i2, 0); i3 = std::max(i3, 0); fprintf(stderr, " "); for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) { fprintf(stderr, "%7d ", idx1); } fprintf(stderr, "\n"); for (int idx0 = i0 - 5; idx0 < i0 + 5; idx0++) { fprintf(stderr, "%7d: ", idx0); for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) { if (idx0 >= 0 && idx0 < tensor->ne[0] && idx1 >= 0 && idx1 < tensor->ne[1] && i2 >= 0 && i2 < tensor->ne[2] && i3 >= 0 && i3 < tensor->ne[3]) { float val; if (tensor->type == GGML_TYPE_F32) { val = *(float *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]); } else if (tensor->type == GGML_TYPE_F16) { val = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0])); } else { GGML_ABORT("fatal error"); } fprintf(stderr, "% 7.2f ", val); } else { fprintf(stderr, " "); } } fprintf(stderr, "\n"); } } static void ggml_vk_quantize_data(const float * from, void * to, size_t ne, ggml_type quant) { ggml_quantize_chunk(quant, from, to, 0, 1, ne, nullptr); } static void ggml_vk_dequantize_data(const void * from, float * to, size_t ne, ggml_type quant) { if (quant == GGML_TYPE_F32) { memcpy(to, from, sizeof(float) * ne); return; } const auto * tt = ggml_get_type_traits(quant); ggml_to_float_t dequant_fn = tt->to_float; dequant_fn(from, to, ne); } static void ggml_vk_test_dequant(ggml_backend_vk_context * ctx, size_t ne, ggml_type quant) { VK_LOG_DEBUG("ggml_vk_test_dequant(" << ne << ")"); const size_t x_sz = sizeof(float) * ne; const size_t x_sz_f16 = sizeof(ggml_fp16_t) * ne; const size_t qx_sz = ne * ggml_type_size(quant)/ggml_blck_size(quant); float * x = (float *) malloc(x_sz); void * qx = malloc(qx_sz); vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, vk::MemoryPropertyFlagBits::eDeviceLocal); vk_buffer x_buf = ggml_vk_create_buffer_check(ctx->device, x_sz_f16, vk::MemoryPropertyFlagBits::eDeviceLocal); float * x_ref = (float *) malloc(x_sz); ggml_fp16_t * x_chk = (ggml_fp16_t *) malloc(x_sz_f16); for (size_t i = 0; i < ne; i++) { x[i] = rand() / (float)RAND_MAX; } vk_pipeline p = ggml_vk_get_to_fp16(ctx, quant); ggml_vk_quantize_data(x, qx, ne, quant); ggml_vk_dequantize_data(qx, x_ref, ne, quant); ggml_pipeline_request_descriptor_sets(ctx->device, p, 1); ggml_pipeline_allocate_descriptor_sets(ctx->device); ggml_vk_buffer_write(qx_buf, 0, qx, qx_sz); vk_context subctx = ggml_vk_create_context(ctx, ctx->device->compute_queue); ggml_vk_ctx_begin(ctx->device, subctx); const std::vector pc = { 1, (uint32_t)ne, (uint32_t)ne, (uint32_t)ne, (uint32_t)ne }; ggml_vk_dispatch_pipeline(ctx, subctx, p, { vk_subbuffer{ qx_buf, 0, qx_sz }, vk_subbuffer{ x_buf, 0, x_sz_f16 } }, pc.size() * sizeof(int), pc.data(), { (uint32_t)ne, 1, 1}); ggml_vk_ctx_end(subctx); auto begin = std::chrono::high_resolution_clock::now(); ggml_vk_submit(subctx, ctx->fence); VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_test_dequant waitForFences"); ctx->device->device.resetFences({ ctx->fence }); auto end = std::chrono::high_resolution_clock::now(); double ms_dequant = std::chrono::duration_cast(end-begin).count() / 1000.0; ggml_vk_buffer_read(x_buf, 0, x_chk, x_sz_f16); int first_err = -1; double avg_err = 0.0; for (size_t i = 0; i < ne; i++) { double error = std::fabs(x_ref[i] - ggml_fp16_to_fp32(x_chk[i])); avg_err += error; if (first_err < 0 && error > 0.05) { first_err = i; } } avg_err /= ne; std::cerr << "TEST DEQUANT " << ggml_type_name(quant) << " time=" << ms_dequant << "ms avg_err=" << avg_err << std::endl; if (avg_err > 0.1) { std::cerr << "first_error = " << first_err << std::endl; std::cerr << "Actual result: " << std::endl << std::endl; for (int i = std::max(0, first_err - 5); i < std::min((int)ne, first_err + 5); i++) { std::cerr << ggml_fp16_to_fp32(x_chk[i]) << ", "; } std::cerr << std::endl << "Expected result: " << std::endl << std::endl; for (int i = std::max(0, first_err - 5); i < std::min((int)ne, first_err + 5); i++) { std::cerr << x_ref[i] << ", "; } std::cerr << std::endl; } ggml_vk_destroy_buffer(x_buf); ggml_vk_destroy_buffer(qx_buf); free(x); free(qx); free(x_ref); free(x_chk); } static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m, size_t n, size_t k, size_t batch, size_t num_it, size_t split_k, size_t shader_size, ggml_type quant) { VK_LOG_DEBUG("ggml_vk_test_dequant_matmul(" << m << ", " << n << ", " << k << ", " << batch << ", " << num_it << ", " << split_k << ", " << ggml_type_name(quant) << ")"); const size_t x_ne = m * k * batch; const size_t y_ne = k * n * batch; const size_t d_ne = m * n * batch; vk_pipeline p; std::string shname; if (shader_size == 0) { p = ctx->device->fp16 ? ctx->device->pipeline_dequant_mul_mat_mat[quant].f16acc->a_s : ctx->device->pipeline_dequant_mul_mat_mat[quant].f32acc->a_s; shname = std::string(ggml_type_name(quant)) + "_ALIGNED_S"; } else if (shader_size == 1) { p = ctx->device->fp16 ? ctx->device->pipeline_dequant_mul_mat_mat[quant].f16acc->a_m : ctx->device->pipeline_dequant_mul_mat_mat[quant].f32acc->a_m; shname = std::string(ggml_type_name(quant)) + "_ALIGNED_M"; } else if (shader_size == 2) { p = ctx->device->fp16 ? ctx->device->pipeline_dequant_mul_mat_mat[quant].f16acc->a_l : ctx->device->pipeline_dequant_mul_mat_mat[quant].f32acc->a_l; shname = std::string(ggml_type_name(quant)) + "_ALIGNED_L"; } else { GGML_ASSERT(0); } const size_t kpad = ggml_vk_align_size(k, p->align); if (k != kpad) { if (shader_size == 0) { p = ctx->device->fp16 ? ctx->device->pipeline_dequant_mul_mat_mat[quant].f16acc->s : ctx->device->pipeline_dequant_mul_mat_mat[quant].f32acc->s; shname = std::string(ggml_type_name(quant)) + "_S"; } else if (shader_size == 1) { p = ctx->device->fp16 ? ctx->device->pipeline_dequant_mul_mat_mat[quant].f16acc->m : ctx->device->pipeline_dequant_mul_mat_mat[quant].f32acc->m; shname = std::string(ggml_type_name(quant)) + "_M"; } else if (shader_size == 2) { p = ctx->device->fp16 ? ctx->device->pipeline_dequant_mul_mat_mat[quant].f16acc->l : ctx->device->pipeline_dequant_mul_mat_mat[quant].f32acc->l; shname = std::string(ggml_type_name(quant)) + "_L"; } else { GGML_ASSERT(0); } } const size_t x_sz = sizeof(float) * x_ne; const size_t y_sz = sizeof(float) * y_ne; const size_t qx_sz = x_ne * ggml_type_size(quant)/ggml_blck_size(quant); const size_t d_sz = sizeof(float) * d_ne; float * x = (float *) malloc(x_sz); float * y = (float *) malloc(y_sz); void * qx = malloc(qx_sz); vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, vk::MemoryPropertyFlagBits::eDeviceLocal); vk_buffer y_buf = ggml_vk_create_buffer_check(ctx->device, y_sz, vk::MemoryPropertyFlagBits::eDeviceLocal); vk_buffer d_buf = ggml_vk_create_buffer_check(ctx->device, d_sz, vk::MemoryPropertyFlagBits::eDeviceLocal); float * d = (float *) malloc(d_sz); float * d_chk = (float *) malloc(d_sz); for (size_t i = 0; i < x_ne; i++) { x[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f; } ggml_vk_quantize_data(x, qx, x_ne, quant); for (size_t i = 0; i < y_ne; i++) { // y[i] = rand() / (float)RAND_MAX; y[i] = (i % k == i / k) ? 1.0f : 0.0f; } ggml_pipeline_request_descriptor_sets(ctx->device, p, num_it); if (split_k > 1) { ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_matmul_split_k_reduce, num_it); if (ctx->prealloc_split_k == nullptr || ctx->prealloc_split_k->size < sizeof(float) * d_ne * split_k) { // Resize buffer if (ctx->prealloc_split_k != nullptr) { ggml_vk_destroy_buffer(ctx->prealloc_split_k); } ctx->prealloc_split_k = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne * split_k, vk::MemoryPropertyFlagBits::eDeviceLocal); } } ggml_pipeline_allocate_descriptor_sets(ctx->device); ggml_vk_buffer_write(qx_buf, 0, qx, qx_sz); ggml_vk_buffer_write(y_buf, 0, y, y_sz); vk_context subctx = ggml_vk_create_context(ctx, ctx->device->compute_queue); ggml_vk_ctx_begin(ctx->device, subctx); for (size_t i = 0; i < num_it; i++) { ggml_vk_matmul( ctx, subctx, p, ggml_vk_subbuffer(qx_buf), ggml_vk_subbuffer(y_buf), ggml_vk_subbuffer(d_buf), ggml_vk_subbuffer(ctx->prealloc_split_k), m, n, k, k, k, m, k*m, k*n, m*n, split_k, batch, batch, batch, 1, 1 ); } ggml_vk_ctx_end(subctx); auto begin = std::chrono::high_resolution_clock::now(); ggml_vk_submit(subctx, ctx->fence); VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_test_dequant waitForFences"); ctx->device->device.resetFences({ ctx->fence }); auto end = std::chrono::high_resolution_clock::now(); double time_ms = std::chrono::duration_cast(end-begin).count() / 1000.0; ggml_vk_buffer_read(d_buf, 0, d, d_sz); ggml_init_params iparams = { /*.mem_size =*/ 1024*1024*1024, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; ggml_context * ggml_ctx = ggml_init(iparams); ggml_tensor * src0_ggml = ggml_new_tensor_3d(ggml_ctx, quant, k, m, batch); ggml_tensor * src1_ggml = ggml_new_tensor_3d(ggml_ctx, GGML_TYPE_F32, k, n, batch); ggml_tensor * tensor_ggml = ggml_mul_mat(ggml_ctx, src0_ggml, src1_ggml); src0_ggml->data = qx; src1_ggml->data = y; tensor_ggml->data = d_chk; ggml_cgraph * cgraph = ggml_new_graph(ggml_ctx); ggml_build_forward_expand(cgraph, tensor_ggml); ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 1); ggml_free(ggml_ctx); double avg_err = 0.0; int first_err_n = -1; int first_err_m = -1; int first_err_b = -1; for (size_t i = 0; i < m*n*batch; i++) { double err = std::fabs(d[i] - d_chk[i]); avg_err += err; if ((err > 0.05f || std::isnan(err)) && first_err_n == -1) { first_err_b = i / (m * n); first_err_n = (i % (m * n)) / m; first_err_m = (i % (m * n)) % m; } } avg_err /= m * n; double tflops = 2.0*m*n*k*batch*num_it / (time_ms / 1000.0) / (1000.0*1000.0*1000.0*1000.0); std::cerr << "TEST MMQ " << shname << " m=" << m << " n=" << n << " k=" << k << " batch=" << batch << " split_k=" << split_k << " matmul " << time_ms / num_it << "ms " << tflops << " TFLOPS avg_err=" << avg_err << std::endl; if (avg_err > 0.01 || std::isnan(avg_err)) { std::cerr << "m = " << first_err_m << " n = " << first_err_n << " b = " << first_err_b << std::endl; std::cerr << "Actual result: " << std::endl << std::endl; ggml_vk_print_matrix_area(d, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b); std::cerr << std::endl; std::cerr << "Expected result: " << std::endl << std::endl; ggml_vk_print_matrix_area(d_chk, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b); if (split_k > 1) { float * split_k_buf = (float *) malloc(sizeof(float) * d_ne * split_k); ggml_vk_buffer_read(ctx->prealloc_split_k, 0, split_k_buf, sizeof(float) * d_ne * split_k); std::cerr << "d_buf0: " << std::endl << std::endl; ggml_vk_print_matrix_area(split_k_buf, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b); std::cerr << "d_buf1: " << std::endl << std::endl; ggml_vk_print_matrix_area(split_k_buf + d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b); std::cerr << "d_buf2: " << std::endl << std::endl; ggml_vk_print_matrix_area(split_k_buf + 2 * d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b); std::cerr << "d_buf3: " << std::endl << std::endl; ggml_vk_print_matrix_area(split_k_buf + 3 * d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b); free(split_k_buf); } } ggml_vk_destroy_buffer(qx_buf); ggml_vk_destroy_buffer(y_buf); ggml_vk_destroy_buffer(d_buf); free(x); free(qx); free(y); free(d); free(d_chk); } #endif static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx) { #if defined(GGML_VULKAN_RUN_TESTS) const std::vector vals { 512, 512, 128, 128, 512, 512, 4096, 512, 4096, 11008, 512, 4096, 4096, 512, 11008, 32000, 512, 4096, 8, 8, 8, 100, 46, 576, 623, 111, 128, 100, 46, 558, 512, 1, 256, 128, 110, 622, 511, 511, 127, 511, 511, 7, 511, 511, 17, 49, 49, 128, 128, 49, 49, 4096, 49, 4096, }; const size_t num_it = 100; for (size_t i = 0; i < vals.size(); i += 3) { ggml_vk_test_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 0); ggml_vk_test_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 1); ggml_vk_test_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 2); std::cerr << '\n'; ggml_vk_test_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 0); ggml_vk_test_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 1); ggml_vk_test_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 2); std::cerr << '\n'; ggml_vk_test_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 0); ggml_vk_test_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 1); ggml_vk_test_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 2); std::cerr << '\n' << std::endl; if (vals[i + 2] % 32 == 0) { ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 0, GGML_TYPE_Q4_0); ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 1, GGML_TYPE_Q4_0); ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 2, GGML_TYPE_Q4_0); std::cerr << '\n'; ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 0, GGML_TYPE_Q4_0); ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 1, GGML_TYPE_Q4_0); ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 2, GGML_TYPE_Q4_0); std::cerr << '\n'; ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 0, GGML_TYPE_Q4_0); ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 1, GGML_TYPE_Q4_0); ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 2, GGML_TYPE_Q4_0); std::cerr << '\n' << std::endl; } if (vals[i + 2] % 256 == 0) { ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 0, GGML_TYPE_Q4_K); ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 1, GGML_TYPE_Q4_K); ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 2, GGML_TYPE_Q4_K); std::cerr << '\n'; ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 0, GGML_TYPE_Q4_K); ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 1, GGML_TYPE_Q4_K); ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 2, GGML_TYPE_Q4_K); std::cerr << '\n'; ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 0, GGML_TYPE_Q4_K); ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 1, GGML_TYPE_Q4_K); ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 2, GGML_TYPE_Q4_K); std::cerr << '\n' << std::endl; } } GGML_ABORT("fatal error"); #endif if (ctx->prealloc_x == nullptr || (ctx->prealloc_size_x > 0 && ctx->prealloc_x->size < ctx->prealloc_size_x)) { VK_LOG_MEMORY("ggml_vk_preallocate_buffers(x_size: " << ctx->prealloc_size_x << ")"); // Resize buffer if (ctx->prealloc_x != nullptr) { ggml_vk_destroy_buffer(ctx->prealloc_x); } ctx->prealloc_x = ggml_vk_create_buffer_device(ctx->device, ctx->prealloc_size_x); } if (ctx->prealloc_y == nullptr || (ctx->prealloc_size_y > 0 && ctx->prealloc_y->size < ctx->prealloc_size_y)) { VK_LOG_MEMORY("ggml_vk_preallocate_buffers(y_size: " << ctx->prealloc_size_y << ")"); // Resize buffer if (ctx->prealloc_y != nullptr) { ggml_vk_destroy_buffer(ctx->prealloc_y); } ctx->prealloc_y = ggml_vk_create_buffer_device(ctx->device, ctx->prealloc_size_y); } if (ctx->prealloc_split_k == nullptr || (ctx->prealloc_size_split_k > 0 && ctx->prealloc_split_k->size < ctx->prealloc_size_split_k)) { VK_LOG_MEMORY("ggml_vk_preallocate_buffers(split_k_size: " << ctx->prealloc_size_split_k << ")"); // Resize buffer if (ctx->prealloc_split_k != nullptr) { ggml_vk_destroy_buffer(ctx->prealloc_split_k); } ctx->prealloc_split_k = ggml_vk_create_buffer_device(ctx->device, ctx->prealloc_size_split_k); } } static bool ggml_vk_compute_forward(ggml_backend_vk_context* ctx, ggml_tensor* tensor, int tensor_idx, bool use_fence); // Returns true if node has enqueued work into the queue, false otherwise // If submit is true the current all operations queued so far are being submitted to Vulkan to overlap cmdlist creation and GPU execution. static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, int node_idx, ggml_tensor *node_begin, int node_idx_begin, bool dryrun, bool last_node, bool submit){ if (ggml_is_empty(node) || !node->buffer) { return false; } VK_LOG_DEBUG("ggml_vk_build_graph(" << node << ", " << ggml_op_name(node->op) << ")"); ctx->semaphore_idx = 0; const ggml_tensor * src0 = node->src[0]; const ggml_tensor * src1 = node->src[1]; const ggml_tensor * src2 = node->src[2]; const ggml_tensor * src3 = node->src[3]; switch (node->op) { // Return on empty ops to avoid generating a compute_ctx and setting exit_tensor case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: case GGML_OP_NONE: return false; case GGML_OP_UNARY: switch (ggml_get_unary_op(node)) { case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_GELU: case GGML_UNARY_OP_GELU_QUICK: case GGML_UNARY_OP_RELU: case GGML_UNARY_OP_TANH: break; default: return false; } break; case GGML_OP_REPEAT: case GGML_OP_GET_ROWS: case GGML_OP_ADD: case GGML_OP_ACC: case GGML_OP_MUL: case GGML_OP_DIV: case GGML_OP_CONCAT: case GGML_OP_UPSCALE: case GGML_OP_SCALE: case GGML_OP_SQR: case GGML_OP_SIN: case GGML_OP_COS: case GGML_OP_CLAMP: case GGML_OP_PAD: case GGML_OP_CPY: case GGML_OP_CONT: case GGML_OP_DUP: case GGML_OP_NORM: case GGML_OP_GROUP_NORM: case GGML_OP_RMS_NORM: case GGML_OP_DIAG_MASK_INF: case GGML_OP_SOFT_MAX: case GGML_OP_ROPE: case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT_ID: case GGML_OP_ARGSORT: case GGML_OP_SUM_ROWS: case GGML_OP_IM2COL: case GGML_OP_TIMESTEP_EMBEDDING: case GGML_OP_POOL_2D: case GGML_OP_RWKV_WKV6: case GGML_OP_LEAKY_RELU: case GGML_OP_FLASH_ATTN_EXT: break; default: std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(node->op) << std::endl; GGML_ABORT("fatal error"); return false; } vk_context compute_ctx; if (!dryrun) { if (ctx->compute_ctx.expired()) { compute_ctx = ggml_vk_create_context(ctx, ctx->device->compute_queue); ctx->compute_ctx = compute_ctx; ggml_vk_ctx_begin(ctx->device, compute_ctx); } else { compute_ctx = ctx->compute_ctx.lock(); } } else { switch (node->op) { case GGML_OP_REPEAT: case GGML_OP_ACC: case GGML_OP_GET_ROWS: case GGML_OP_ADD: case GGML_OP_MUL: case GGML_OP_DIV: case GGML_OP_CONCAT: case GGML_OP_UPSCALE: case GGML_OP_SCALE: case GGML_OP_SQR: case GGML_OP_SIN: case GGML_OP_COS: case GGML_OP_CLAMP: case GGML_OP_PAD: case GGML_OP_CPY: case GGML_OP_CONT: case GGML_OP_DUP: case GGML_OP_NORM: case GGML_OP_GROUP_NORM: case GGML_OP_RMS_NORM: case GGML_OP_UNARY: case GGML_OP_DIAG_MASK_INF: case GGML_OP_SOFT_MAX: case GGML_OP_ROPE: case GGML_OP_ARGSORT: case GGML_OP_SUM_ROWS: case GGML_OP_IM2COL: case GGML_OP_TIMESTEP_EMBEDDING: case GGML_OP_POOL_2D: case GGML_OP_LEAKY_RELU: { // These operations all go through ggml_vk_op_f32, so short-circuit and // do the only thing needed for the dryrun. vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, src2, node, node->op); ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1); return false; } default: break; } } switch (node->op) { case GGML_OP_REPEAT: ggml_vk_repeat(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_ACC: ggml_vk_acc(ctx, compute_ctx, src0, src1, node, dryrun); break; case GGML_OP_GET_ROWS: ggml_vk_get_rows(ctx, compute_ctx, src0, src1, node, dryrun); break; case GGML_OP_ADD: ggml_vk_add(ctx, compute_ctx, src0, src1, node, dryrun); break; case GGML_OP_MUL: ggml_vk_mul(ctx, compute_ctx, src0, src1, node, dryrun); break; case GGML_OP_DIV: ggml_vk_div(ctx, compute_ctx, src0, src1, node, dryrun); break; case GGML_OP_CONCAT: ggml_vk_concat(ctx, compute_ctx, src0, src1, node, dryrun); break; case GGML_OP_UPSCALE: ggml_vk_upscale(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_SCALE: ggml_vk_scale(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_SQR: ggml_vk_sqr(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_SIN: ggml_vk_sin(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_COS: ggml_vk_cos(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_CLAMP: ggml_vk_clamp(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_PAD: ggml_vk_pad(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_CPY: case GGML_OP_CONT: case GGML_OP_DUP: ggml_vk_cpy(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_NORM: ggml_vk_norm(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_GROUP_NORM: ggml_vk_group_norm(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_RMS_NORM: ggml_vk_rms_norm(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_UNARY: switch (ggml_get_unary_op(node)) { case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_GELU: case GGML_UNARY_OP_GELU_QUICK: case GGML_UNARY_OP_RELU: case GGML_UNARY_OP_TANH: ggml_vk_unary(ctx, compute_ctx, src0, node, dryrun); break; default: return false; } break; case GGML_OP_DIAG_MASK_INF: ggml_vk_diag_mask_inf(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_SOFT_MAX: ggml_vk_soft_max(ctx, compute_ctx, src0, src1, node, dryrun); break; case GGML_OP_ROPE: ggml_vk_rope(ctx, compute_ctx, src0, src1, src2, node, dryrun); break; case GGML_OP_ARGSORT: ggml_vk_argsort(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_SUM_ROWS: ggml_vk_sum_rows(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_IM2COL: ggml_vk_im2col(ctx, compute_ctx, src0, src1, node, dryrun); break; case GGML_OP_TIMESTEP_EMBEDDING: ggml_vk_timestep_embedding(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_POOL_2D: ggml_vk_pool_2d(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_LEAKY_RELU: ggml_vk_leaky_relu(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_MUL_MAT: ggml_vk_mul_mat(ctx, compute_ctx, src0, src1, node, dryrun); break; case GGML_OP_MUL_MAT_ID: ggml_vk_mul_mat_id(ctx, compute_ctx, src0, src1, src2, node, dryrun); break; case GGML_OP_FLASH_ATTN_EXT: ggml_vk_flash_attn(ctx, compute_ctx, src0, src1, src2, src3, node, dryrun); break; case GGML_OP_RWKV_WKV6: ggml_vk_rwkv_wkv6(ctx, compute_ctx, node, dryrun); break; default: return false; } if (dryrun) { return false; } ctx->tensor_ctxs[node_idx] = compute_ctx; #if defined(GGML_VULKAN_CHECK_RESULTS) || defined(GGML_VULKAN_PERF) // Force context reset on each node so that each tensor ends up in its own context // and can be run and compared to its CPU equivalent separately last_node = true; #endif if (submit || last_node) { ggml_vk_ctx_end(compute_ctx); // TODO probably it'd be better to pass a exit_node flag to ggml_vk_compute_forward if (last_node) { compute_ctx->exit_tensor_idx = node_idx_begin; } else { compute_ctx->exit_tensor_idx = -1; } ctx->compute_ctx.reset(); bool ok = ggml_vk_compute_forward(ctx, node_begin, node_idx_begin, false); if (!ok) { if (node->op == GGML_OP_UNARY) { std::cerr << __func__ << ": error: op not supported UNARY " << node->name << " (" << ggml_unary_op_name(static_cast(node->op_params[0])) << ")" << std::endl; } else { std::cerr << __func__ << ": error: op not supported " << node->name << " (" << ggml_op_name(node->op) << ")" << std::endl; } } } return true; } static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * tensor, int tensor_idx, bool use_fence = true){ ggml_backend_buffer * buf = nullptr; switch (tensor->op) { case GGML_OP_ADD: case GGML_OP_ACC: case GGML_OP_GET_ROWS: case GGML_OP_MUL: case GGML_OP_DIV: case GGML_OP_CONCAT: case GGML_OP_UPSCALE: case GGML_OP_SCALE: case GGML_OP_SQR: case GGML_OP_SIN: case GGML_OP_COS: case GGML_OP_CLAMP: case GGML_OP_PAD: case GGML_OP_CPY: case GGML_OP_CONT: case GGML_OP_DUP: case GGML_OP_NORM: case GGML_OP_GROUP_NORM: case GGML_OP_RMS_NORM: case GGML_OP_DIAG_MASK_INF: case GGML_OP_SOFT_MAX: case GGML_OP_ROPE: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: case GGML_OP_NONE: case GGML_OP_ARGSORT: case GGML_OP_SUM_ROWS: case GGML_OP_IM2COL: case GGML_OP_TIMESTEP_EMBEDDING: case GGML_OP_POOL_2D: case GGML_OP_RWKV_WKV6: case GGML_OP_LEAKY_RELU: case GGML_OP_REPEAT: buf = tensor->buffer; break; case GGML_OP_UNARY: switch (ggml_get_unary_op(tensor)) { case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_GELU: case GGML_UNARY_OP_GELU_QUICK: case GGML_UNARY_OP_RELU: case GGML_UNARY_OP_TANH: buf = tensor->buffer; break; default: return false; } break; case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT_ID: case GGML_OP_FLASH_ATTN_EXT: buf = tensor->buffer; break; default: return false; } if (buf == nullptr) { return false; } VK_LOG_DEBUG("ggml_vk_compute_forward(" << tensor << ", name=" << tensor->name << ", op=" << ggml_op_name(tensor->op) << ", type=" << tensor->type << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << ", view_src=" << tensor->view_src << ", view_offs=" << tensor->view_offs << ")"); vk_context subctx = ctx->tensor_ctxs[tensor_idx].lock(); // always wait for the GPU work to be done for the last submit if (tensor_idx == subctx->exit_tensor_idx) { use_fence = true; } // Only run if ctx hasn't been submitted yet if (!subctx->seqs.empty()) { #ifdef GGML_VULKAN_CHECK_RESULTS ggml_vk_check_results_0(tensor); use_fence = true; #endif // Do staging buffer copies for (auto& cpy : subctx->in_memcpys) { memcpy(cpy.dst, cpy.src, cpy.n); } ggml_vk_submit(subctx, use_fence ? ctx->fence : vk::Fence{}); if (use_fence) { VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_compute_forward waitForFences"); ctx->device->device.resetFences({ ctx->fence }); } #ifdef GGML_VULKAN_CHECK_RESULTS ggml_vk_check_results_1(tensor); #endif } if (tensor_idx == subctx->exit_tensor_idx) { // Do staging buffer copies for (auto& cpy : subctx->out_memcpys) { memcpy(cpy.dst, cpy.src, cpy.n); } subctx->in_memcpys.clear(); subctx->out_memcpys.clear(); } return true; } // Clean up after graph processing is done static void ggml_vk_graph_cleanup(ggml_backend_vk_context * ctx) { VK_LOG_DEBUG("ggml_vk_graph_cleanup()"); for (auto& buffer : ctx->gc.temp_buffers) { ggml_vk_pool_free(ctx, buffer); } ctx->gc.temp_buffers.clear(); for (auto& dsr : ctx->device->pipeline_descriptor_set_requirements) { vk_pipeline_ref plr = ctx->device->pipelines[dsr.first]; if (plr.expired()) { continue; } vk_pipeline pl = plr.lock(); ggml_pipeline_cleanup(pl); } ggml_vk_queue_cleanup(ctx->device, ctx->device->compute_queue); ggml_vk_queue_cleanup(ctx->device, ctx->device->transfer_queue); for (size_t i = 0; i < ctx->gc.semaphores.size(); i++) { ctx->device->device.destroySemaphore({ ctx->gc.semaphores[i].s }); } ctx->gc.semaphores.clear(); for (size_t i = 0; i < ctx->gc.tl_semaphores.size(); i++) { ctx->device->device.destroySemaphore({ ctx->gc.tl_semaphores[i].s }); } ctx->gc.tl_semaphores.clear(); ctx->semaphore_idx = 0; ctx->event_idx = 0; for (auto& event : ctx->gc.events) { ctx->device->device.resetEvent(event); } ctx->tensor_ctxs.clear(); ctx->gc.contexts.clear(); ctx->device->pipeline_descriptor_set_requirements.clear(); } // Clean up on backend free static void ggml_vk_cleanup(ggml_backend_vk_context * ctx) { VK_LOG_DEBUG("ggml_vk_cleanup(" << ctx->name << ")"); ggml_vk_graph_cleanup(ctx); ggml_vk_destroy_buffer(ctx->prealloc_x); ggml_vk_destroy_buffer(ctx->prealloc_y); ggml_vk_destroy_buffer(ctx->prealloc_split_k); for (auto& buffer : ctx->buffer_pool) { ggml_vk_destroy_buffer(buffer); } ctx->prealloc_size_x = 0; ctx->prealloc_size_y = 0; ctx->prealloc_size_split_k = 0; for (auto& event : ctx->gc.events) { ctx->device->device.destroyEvent(event); } ctx->gc.events.clear(); ctx->device->device.destroyFence(ctx->fence); } static int ggml_vk_get_device_count() { ggml_vk_instance_init(); return vk_instance.device_indices.size(); } static void ggml_vk_get_device_description(int device, char * description, size_t description_size) { ggml_vk_instance_init(); std::vector devices = vk_instance.instance.enumeratePhysicalDevices(); vk::PhysicalDeviceProperties props; devices[device].getProperties(&props); snprintf(description, description_size, "%s", props.deviceName.data()); } // backend interface #define UNUSED GGML_UNUSED // device backend static bool ggml_backend_buffer_is_vk(ggml_backend_buffer_t buffer) { return buffer->buft->iface.get_name == ggml_backend_vk_buffer_type_name; } static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) { VK_LOG_MEMORY("ggml_backend_vk_buffer_free_buffer()"); ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context; ggml_vk_destroy_buffer(ctx->dev_buffer); delete ctx; } static void * ggml_backend_vk_buffer_get_base(ggml_backend_buffer_t buffer) { return vk_ptr_base; UNUSED(buffer); } static void ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { VK_LOG_DEBUG("ggml_backend_vk_buffer_init_tensor(" << buffer << " (" << buffer->context << "), " << tensor << ")"); if (tensor->view_src != nullptr) { GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft); } } static void ggml_backend_vk_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { VK_LOG_DEBUG("ggml_backend_vk_buffer_set_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")"); ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)buffer->context; vk_buffer buf = buf_ctx->dev_buffer; ggml_vk_buffer_write(buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size); } static void ggml_backend_vk_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { VK_LOG_DEBUG("ggml_backend_vk_buffer_get_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")"); ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)buffer->context; vk_buffer buf = buf_ctx->dev_buffer; ggml_vk_buffer_read(buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size); } static bool ggml_backend_vk_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) { if (ggml_backend_buffer_is_vk(src->buffer)) { ggml_backend_vk_buffer_context * src_buf_ctx = (ggml_backend_vk_buffer_context *)src->buffer->context; ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context; vk_buffer src_buf = src_buf_ctx->dev_buffer; vk_buffer dst_buf = dst_buf_ctx->dev_buffer; ggml_vk_buffer_copy(dst_buf, vk_tensor_offset(dst) + dst->view_offs, src_buf, vk_tensor_offset(src) + src->view_offs, ggml_nbytes(src)); return true; } return false; UNUSED(buffer); } static void ggml_backend_vk_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context; ggml_vk_buffer_memset(ctx->dev_buffer, 0, value, buffer->size); } static ggml_backend_buffer_i ggml_backend_vk_buffer_interface = { /* .free_buffer = */ ggml_backend_vk_buffer_free_buffer, /* .get_base = */ ggml_backend_vk_buffer_get_base, /* .init_tensor = */ ggml_backend_vk_buffer_init_tensor, /* .memset_tensor = */ NULL, /* .set_tensor = */ ggml_backend_vk_buffer_set_tensor, /* .get_tensor = */ ggml_backend_vk_buffer_get_tensor, /* .cpy_tensor = */ ggml_backend_vk_buffer_cpy_tensor, /* .clear = */ ggml_backend_vk_buffer_clear, /* .reset = */ NULL, }; // vk buffer type static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft) { ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *)buft->context; return ctx->name.c_str(); } static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { VK_LOG_MEMORY("ggml_backend_vk_buffer_type_alloc_buffer(" << size << ")"); ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context; vk_buffer dev_buffer = nullptr; try { dev_buffer = ggml_vk_create_buffer_device(ctx->device, size); } catch (const vk::SystemError& e) { return nullptr; } ggml_backend_vk_buffer_context * bufctx = new ggml_backend_vk_buffer_context(ctx->device, std::move(dev_buffer), ctx->name); return ggml_backend_buffer_init(buft, ggml_backend_vk_buffer_interface, bufctx, size); } static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context; return ctx->device->properties.limits.minStorageBufferOffsetAlignment; } static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) { ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context; return ctx->device->max_memory_allocation_size; } static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { return ggml_nbytes(tensor); UNUSED(buft); } ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num) { ggml_vk_instance_init(); VK_LOG_DEBUG("ggml_backend_vk_buffer_type(" << dev_num << ")"); vk_device dev = ggml_vk_get_device(dev_num); return &dev->buffer_type; } // host buffer type static const char * ggml_backend_vk_host_buffer_type_name(ggml_backend_buffer_type_t buft) { return GGML_VK_NAME "_Host"; UNUSED(buft); } static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffer) { return GGML_VK_NAME "_Host"; UNUSED(buffer); } static void ggml_backend_vk_host_buffer_free_buffer(ggml_backend_buffer_t buffer) { VK_LOG_MEMORY("ggml_backend_vk_host_buffer_free_buffer()"); ggml_vk_host_free(vk_instance.devices[0], buffer->context); } static ggml_backend_buffer_t ggml_backend_vk_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { VK_LOG_MEMORY("ggml_backend_vk_host_buffer_type_alloc_buffer(" << size << ")"); size += 32; // Behave like the CPU buffer type void * ptr = nullptr; try { ptr = ggml_vk_host_malloc(vk_instance.devices[0], size); } catch (vk::SystemError& e) { std::cerr << "ggml_vulkan: Failed to allocate pinned memory." << std::endl; std::cerr << "ggml_vulkan: " << e.what() << std::endl; // fallback to cpu buffer return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size); } ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size); buffer->buft = buft; buffer->iface.free_buffer = ggml_backend_vk_host_buffer_free_buffer; return buffer; UNUSED(buft); } static size_t ggml_backend_vk_host_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { return vk_instance.devices[0]->properties.limits.minMemoryMapAlignment; UNUSED(buft); } // Should be changed to return device-specific host buffer type // but that probably requires changes in llama.cpp ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type() { static struct ggml_backend_buffer_type ggml_backend_vk_buffer_type_host = { /* .iface = */ { /* .get_name = */ ggml_backend_vk_host_buffer_type_name, /* .alloc_buffer = */ ggml_backend_vk_host_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_vk_host_buffer_type_get_alignment, /* .get_max_size = */ NULL, // defaults to SIZE_MAX /* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size, /* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host, }, /* .device = */ ggml_backend_reg_dev_get(ggml_backend_vk_reg(), 0), /* .context = */ nullptr, }; // Make sure device 0 is initialized ggml_vk_instance_init(); ggml_vk_get_device(0); return &ggml_backend_vk_buffer_type_host; } // backend static const char * ggml_backend_vk_name(ggml_backend_t backend) { ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; return ctx->name.c_str(); } static void ggml_backend_vk_free(ggml_backend_t backend) { ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; VK_LOG_DEBUG("ggml_backend_vk_free(" << ctx->name << ")"); ggml_vk_cleanup(ctx); delete ctx; delete backend; } static ggml_backend_buffer_type_t ggml_backend_vk_get_default_buffer_type(ggml_backend_t backend) { ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; return &ctx->device->buffer_type; } static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { VK_LOG_DEBUG("ggml_backend_vk_set_tensor_async(" << size << ")"); ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_get_default_buffer_type(backend) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type"); ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)tensor->buffer->context; vk_context transfer_ctx; if (ctx->transfer_ctx.expired()) { // Initialize new transfer context transfer_ctx = ggml_vk_create_context(ctx, ctx->device->transfer_queue); ctx->transfer_ctx = transfer_ctx; ggml_vk_ctx_begin(ctx->device, transfer_ctx); } else { transfer_ctx = ctx->transfer_ctx.lock(); } vk_buffer buf = buf_ctx->dev_buffer; ggml_vk_buffer_write_async(transfer_ctx, buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size); } static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { VK_LOG_DEBUG("ggml_backend_vk_get_tensor_async(" << size << ")"); ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_get_default_buffer_type(backend) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type"); ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)tensor->buffer->context; vk_context transfer_ctx; if (ctx->transfer_ctx.expired()) { // Initialize new transfer context transfer_ctx = ggml_vk_create_context(ctx, ctx->device->transfer_queue); ctx->transfer_ctx = transfer_ctx; ggml_vk_ctx_begin(ctx->device, transfer_ctx); } else { transfer_ctx = ctx->transfer_ctx.lock(); } vk_buffer buf = buf_ctx->dev_buffer; ggml_vk_buffer_read_async(transfer_ctx, buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size); } static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) { VK_LOG_DEBUG("ggml_backend_vk_cpy_tensor_async()"); ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; if ((dst->buffer->buft == ggml_backend_vk_get_default_buffer_type(backend) || dst->buffer->buft == ggml_backend_vk_host_buffer_type()) && ggml_backend_buffer_is_vk(src->buffer)) { ggml_backend_vk_buffer_context * src_buf_ctx = (ggml_backend_vk_buffer_context *)src->buffer->context; ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context; vk_context transfer_ctx; if (ctx->transfer_ctx.expired()) { // Initialize new transfer context transfer_ctx = ggml_vk_create_context(ctx, ctx->device->transfer_queue); ctx->transfer_ctx = transfer_ctx; ggml_vk_ctx_begin(ctx->device, transfer_ctx); } else { transfer_ctx = ctx->transfer_ctx.lock(); } vk_buffer src_buf = src_buf_ctx->dev_buffer; vk_buffer dst_buf = dst_buf_ctx->dev_buffer; ggml_vk_buffer_copy_async(transfer_ctx, dst_buf, vk_tensor_offset(dst) + dst->view_offs, src_buf, vk_tensor_offset(src) + src->view_offs, ggml_nbytes(src)); return true; } return false; } static void ggml_backend_vk_synchronize(ggml_backend_t backend) { VK_LOG_DEBUG("ggml_backend_vk_synchronize()"); ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; if(ctx->transfer_ctx.expired()) { return; } vk_context transfer_ctx = ctx->transfer_ctx.lock(); ggml_vk_ctx_end(transfer_ctx); for (auto& cpy : transfer_ctx->in_memcpys) { memcpy(cpy.dst, cpy.src, cpy.n); } ggml_vk_submit(transfer_ctx, ctx->fence); VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_backend_vk_synchronize waitForFences"); ctx->device->device.resetFences({ ctx->fence }); for (auto& cpy : transfer_ctx->out_memcpys) { memcpy(cpy.dst, cpy.src, cpy.n); } ctx->transfer_ctx.reset(); } static bool ggml_vk_is_empty(ggml_tensor * node) { return ggml_is_empty(node) || node->op == GGML_OP_NONE || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE; } static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { VK_LOG_DEBUG("ggml_backend_vk_graph_compute(" << cgraph->n_nodes << " nodes)"); ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; for (int i = 0; i < cgraph->n_nodes; i++) { ggml_vk_build_graph(ctx, cgraph->nodes[i], i, nullptr, 0, true, false, false); } ggml_vk_preallocate_buffers(ctx); ggml_pipeline_allocate_descriptor_sets(ctx->device); int last_node = cgraph->n_nodes - 1; // If the last op in the cgraph isn't backend GPU, the command buffer doesn't get closed properly while (last_node > 0 && ggml_vk_is_empty(cgraph->nodes[last_node])) { last_node -= 1; } // Reserve tensor context space for all nodes ctx->tensor_ctxs.resize(cgraph->n_nodes); bool first_node_in_batch = true; // true if next node will be first node in a batch int submit_node_idx = 0; // index to first node in a batch // Submit work every nodes_per_submit nodes to overlap CPU cmdbuffer generation with GPU execution. // Start with a smaller count to get work submitted right away, and increase it after each submit. int nodes_per_submit = 20; int submitted_nodes = 0; int submit_count = 0; for (int i = 0; i < cgraph->n_nodes; i++) { if (first_node_in_batch) { submit_node_idx = i; } bool submit = (submitted_nodes >= nodes_per_submit) || (i == last_node); bool enqueued = ggml_vk_build_graph(ctx, cgraph->nodes[i], i, cgraph->nodes[submit_node_idx], submit_node_idx, false, i == last_node, submit); if (enqueued) { ++submitted_nodes; #ifndef GGML_VULKAN_CHECK_RESULTS if (first_node_in_batch) { first_node_in_batch = false; } #endif } if (submit) { first_node_in_batch = true; submitted_nodes = 0; switch (submit_count) { case 0: nodes_per_submit = 50; break; default: nodes_per_submit = 100; break; } submit_count++; } } #ifdef GGML_VULKAN_PERF ctx->device->perf_logger->print_timings(); #endif ggml_vk_graph_cleanup(ctx); return GGML_STATUS_SUCCESS; UNUSED(backend); } // TODO: enable async and synchronize static ggml_backend_i ggml_backend_vk_interface = { /* .get_name = */ ggml_backend_vk_name, /* .free = */ ggml_backend_vk_free, /* .set_tensor_async = */ NULL, // ggml_backend_vk_set_tensor_async, /* .get_tensor_async = */ NULL, // ggml_backend_vk_get_tensor_async, /* .cpy_tensor_async = */ NULL, // ggml_backend_vk_cpy_tensor_async, /* .synchronize = */ NULL, // ggml_backend_vk_synchronize, /* .graph_plan_create = */ NULL, /* .graph_plan_free = */ NULL, /* .graph_plan_update = */ NULL, /* .graph_plan_compute = */ NULL, /* .graph_compute = */ ggml_backend_vk_graph_compute, /* .event_record = */ NULL, /* .event_wait = */ NULL, }; static ggml_guid_t ggml_backend_vk_guid() { static ggml_guid guid = { 0xb8, 0xf7, 0x4f, 0x86, 0x40, 0x3c, 0xe1, 0x02, 0x91, 0xc8, 0xdd, 0xe9, 0x02, 0x3f, 0xc0, 0x2b }; return &guid; } ggml_backend_t ggml_backend_vk_init(size_t dev_num) { VK_LOG_DEBUG("ggml_backend_vk_init(" << dev_num << ")"); ggml_backend_vk_context * ctx = new ggml_backend_vk_context; ggml_vk_init(ctx, dev_num); ggml_backend_t vk_backend = new ggml_backend { /* .guid = */ ggml_backend_vk_guid(), /* .interface = */ ggml_backend_vk_interface, /* .device = */ ggml_backend_reg_dev_get(ggml_backend_vk_reg(), dev_num), /* .context = */ ctx, }; return vk_backend; } bool ggml_backend_is_vk(ggml_backend_t backend) { return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_vk_guid()); } int ggml_backend_vk_get_device_count() { return ggml_vk_get_device_count(); } void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size) { GGML_ASSERT(device < (int) vk_instance.device_indices.size()); int dev_idx = vk_instance.device_indices[device]; ggml_vk_get_device_description(dev_idx, description, description_size); } void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total) { GGML_ASSERT(device < (int) vk_instance.device_indices.size()); vk::PhysicalDevice vkdev = vk_instance.instance.enumeratePhysicalDevices()[vk_instance.device_indices[device]]; vk::PhysicalDeviceMemoryProperties memprops = vkdev.getMemoryProperties(); for (const vk::MemoryHeap& heap : memprops.memoryHeaps) { if (heap.flags & vk::MemoryHeapFlagBits::eDeviceLocal) { *total = heap.size; *free = heap.size; break; } } } ////////////////////////// struct ggml_backend_vk_device_context { size_t device; std::string name; std::string description; }; static const char * ggml_backend_vk_device_get_name(ggml_backend_dev_t dev) { ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context; return ctx->name.c_str(); } static const char * ggml_backend_vk_device_get_description(ggml_backend_dev_t dev) { ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context; return ctx->description.c_str(); } static void ggml_backend_vk_device_get_memory(ggml_backend_dev_t device, size_t * free, size_t * total) { ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)device->context; ggml_backend_vk_get_device_memory(ctx->device, free, total); } static ggml_backend_buffer_type_t ggml_backend_vk_device_get_buffer_type(ggml_backend_dev_t dev) { ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context; return ggml_backend_vk_buffer_type(ctx->device); } static ggml_backend_buffer_type_t ggml_backend_vk_device_get_host_buffer_type(ggml_backend_dev_t dev) { UNUSED(dev); return ggml_backend_vk_host_buffer_type(); } static enum ggml_backend_dev_type ggml_backend_vk_device_get_type(ggml_backend_dev_t dev) { UNUSED(dev); return GGML_BACKEND_DEVICE_TYPE_GPU; } static void ggml_backend_vk_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) { props->name = ggml_backend_vk_device_get_name(dev); props->description = ggml_backend_vk_device_get_description(dev); props->type = ggml_backend_vk_device_get_type(dev); ggml_backend_vk_device_get_memory(dev, &props->memory_free, &props->memory_total); props->caps = { /* .async = */ false, /* .host_buffer = */ true, /* .buffer_from_host_ptr = */ false, /* .events = */ false, }; } static ggml_backend_t ggml_backend_vk_device_init(ggml_backend_dev_t dev, const char * params) { UNUSED(params); ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context; return ggml_backend_vk_init(ctx->device); } static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) { switch (op->op) { case GGML_OP_UNARY: switch (ggml_get_unary_op(op)) { case GGML_UNARY_OP_GELU: case GGML_UNARY_OP_GELU_QUICK: case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_RELU: case GGML_UNARY_OP_TANH: return ggml_is_contiguous(op->src[0]); default: return false; } break; case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT_ID: { ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context; const vk_device& device = ggml_vk_get_device(ctx->device); if (op->op == GGML_OP_MUL_MAT_ID && !device->mul_mat_id_s && !device->mul_mat_id_m && !device->mul_mat_id_l) { // If there's not enough shared memory for row_ids and the result tile, fallback to CPU return false; } switch (op->src[0]->type) { case GGML_TYPE_F32: case GGML_TYPE_F16: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: case GGML_TYPE_IQ4_NL: break; default: return false; } struct ggml_tensor * a; struct ggml_tensor * b; if (op->op == GGML_OP_MUL_MAT) { a = op->src[0]; b = op->src[1]; } else { a = op->src[2]; b = op->src[1]; } if (a->ne[3] != b->ne[3]) { return false; } if (!(ggml_vk_dim01_contiguous(op->src[0]) || op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) || !(ggml_vk_dim01_contiguous(op->src[1]) || op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_F16)) { return false; } return true; } break; case GGML_OP_FLASH_ATTN_EXT: { ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context; if (!ggml_vk_get_device(ctx->device)->coopmat2) { return false; } switch (op->src[0]->ne[0]) { case 64: case 80: case 96: case 112: case 128: case 256: break; default: return false; } if (op->src[0]->type != GGML_TYPE_F32) { return false; } if (op->type != GGML_TYPE_F32) { return false; } if (op->src[3] && op->src[3]->type != GGML_TYPE_F16) { return false; } // It's straightforward to support different K/V dequant, but would // significantly increase the number of pipelines if (op->src[1]->type != op->src[2]->type) { return false; } switch (op->src[1]->type) { case GGML_TYPE_F16: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: // K dequants currently disabled because D dimension is rounded up to 256 and runs inefficiently //case GGML_TYPE_Q2_K: //case GGML_TYPE_Q3_K: //case GGML_TYPE_Q4_K: //case GGML_TYPE_Q5_K: //case GGML_TYPE_Q6_K: case GGML_TYPE_IQ4_NL: break; default: return false; } return true; } case GGML_OP_GET_ROWS: { switch (op->src[0]->type) { case GGML_TYPE_F32: case GGML_TYPE_F16: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_IQ4_NL: return true; default: return false; } } break; case GGML_OP_CONT: case GGML_OP_CPY: case GGML_OP_DUP: { ggml_type src0_type = op->src[0]->type; ggml_type src1_type = op->src[1] != nullptr ? op->src[1]->type : src0_type; if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) { return true; } if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) { return true; } if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) { return true; } return false; } break; case GGML_OP_REPEAT: return ggml_type_size(op->type) == sizeof(float) && ggml_type_size(op->src[0]->type) == sizeof(float); case GGML_OP_ROPE: { const int mode = ((const int32_t *) op->op_params)[2]; if (mode & GGML_ROPE_TYPE_MROPE) { return false; } if (mode & GGML_ROPE_TYPE_VISION) { return false; } return ggml_is_contiguous(op->src[0]); } case GGML_OP_NONE: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: case GGML_OP_NORM: case GGML_OP_GROUP_NORM: case GGML_OP_RMS_NORM: case GGML_OP_ADD: case GGML_OP_ACC: case GGML_OP_MUL: case GGML_OP_DIV: case GGML_OP_CONCAT: case GGML_OP_UPSCALE: case GGML_OP_SCALE: case GGML_OP_SQR: case GGML_OP_SIN: case GGML_OP_COS: case GGML_OP_CLAMP: case GGML_OP_PAD: case GGML_OP_DIAG_MASK_INF: case GGML_OP_SOFT_MAX: case GGML_OP_ARGSORT: case GGML_OP_SUM_ROWS: case GGML_OP_IM2COL: case GGML_OP_TIMESTEP_EMBEDDING: case GGML_OP_POOL_2D: case GGML_OP_RWKV_WKV6: case GGML_OP_LEAKY_RELU: return true; default: return false; } UNUSED(dev); } static bool ggml_backend_vk_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) { if (buft->iface.get_name != ggml_backend_vk_buffer_type_name) { return false; } ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context; ggml_backend_vk_buffer_type_context * buft_ctx = (ggml_backend_vk_buffer_type_context *)buft->context; return buft_ctx->device->idx == ctx->device; } static bool ggml_backend_vk_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) { const int min_batch_size = 32; return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) || (op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID); UNUSED(dev); } static const struct ggml_backend_device_i ggml_backend_vk_device_i = { /* .get_name = */ ggml_backend_vk_device_get_name, /* .get_description = */ ggml_backend_vk_device_get_description, /* .get_memory = */ ggml_backend_vk_device_get_memory, /* .get_type = */ ggml_backend_vk_device_get_type, /* .get_props = */ ggml_backend_vk_device_get_props, /* .init_backend = */ ggml_backend_vk_device_init, /* .get_buffer_type = */ ggml_backend_vk_device_get_buffer_type, /* .get_host_buffer_type = */ ggml_backend_vk_device_get_host_buffer_type, /* .buffer_from_host_ptr = */ NULL, /* .supports_op = */ ggml_backend_vk_device_supports_op, /* .supports_buft = */ ggml_backend_vk_device_supports_buft, /* .offload_op = */ ggml_backend_vk_device_offload_op, /* .event_new = */ NULL, /* .event_free = */ NULL, /* .event_synchronize = */ NULL, }; static const char * ggml_backend_vk_reg_get_name(ggml_backend_reg_t reg) { UNUSED(reg); return GGML_VK_NAME; } static size_t ggml_backend_vk_reg_get_device_count(ggml_backend_reg_t reg) { UNUSED(reg); return ggml_backend_vk_get_device_count(); } static ggml_backend_dev_t ggml_backend_vk_reg_get_device(ggml_backend_reg_t reg, size_t device) { static std::vector devices; static bool initialized = false; { static std::mutex mutex; std::lock_guard lock(mutex); if (!initialized) { for (int i = 0; i < ggml_backend_vk_get_device_count(); i++) { ggml_backend_vk_device_context * ctx = new ggml_backend_vk_device_context; char desc[256]; ggml_backend_vk_get_device_description(i, desc, sizeof(desc)); ctx->device = i; ctx->name = GGML_VK_NAME + std::to_string(i); ctx->description = desc; devices.push_back(new ggml_backend_device { /* .iface = */ ggml_backend_vk_device_i, /* .reg = */ reg, /* .context = */ ctx, }); } initialized = true; } } GGML_ASSERT(device < devices.size()); return devices[device]; } static const struct ggml_backend_reg_i ggml_backend_vk_reg_i = { /* .get_name = */ ggml_backend_vk_reg_get_name, /* .get_device_count = */ ggml_backend_vk_reg_get_device_count, /* .get_device = */ ggml_backend_vk_reg_get_device, /* .get_proc_address = */ NULL, }; ggml_backend_reg_t ggml_backend_vk_reg() { static ggml_backend_reg reg = { /* .api_version = */ GGML_BACKEND_API_VERSION, /* .iface = */ ggml_backend_vk_reg_i, /* .context = */ nullptr, }; return ® } // Extension availability static bool ggml_vk_instance_validation_ext_available(const std::vector& instance_extensions) { #ifdef GGML_VULKAN_VALIDATE bool portability_enumeration_ext = false; // Check for portability enumeration extension for MoltenVK support for (const auto& properties : instance_extensions) { if (strcmp("VK_KHR_portability_enumeration", properties.extensionName) == 0) { return true; } } if (!portability_enumeration_ext) { std::cerr << "ggml_vulkan: WARNING: Instance extension VK_KHR_portability_enumeration not found." << std::endl; } #endif return false; UNUSED(instance_extensions); } static bool ggml_vk_instance_portability_enumeration_ext_available(const std::vector& instance_extensions) { #ifdef __APPLE__ bool portability_enumeration_ext = false; // Check for portability enumeration extension for MoltenVK support for (const auto& properties : instance_extensions) { if (strcmp("VK_KHR_portability_enumeration", properties.extensionName) == 0) { return true; } } if (!portability_enumeration_ext) { std::cerr << "ggml_vulkan: WARNING: Instance extension VK_KHR_portability_enumeration not found." << std::endl; } #endif return false; UNUSED(instance_extensions); } // checks #ifdef GGML_VULKAN_CHECK_RESULTS static void ggml_vk_print_graph_origin(const ggml_tensor * tensor, std::vector& done, int level = 0) { if (std::find(done.begin(), done.end(), tensor) != done.end() || level > 10) { return; } for (int j = 0; j < level; j++) { std::cerr << " "; } std::cerr << ggml_op_name(tensor->op) << " gpu=" << (tensor->extra != nullptr) << std::endl; done.push_back(tensor); for (int i = 0; i < GGML_MAX_SRC; i++) { if (tensor->src[i] != nullptr) { ggml_vk_print_graph_origin(tensor->src[i], done, level + 1); } } } static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * data, int i0, int i1, int i2, int i3) { if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16 && tensor->type != GGML_TYPE_I32) { return; } i0 = std::max(i0, 5); i1 = std::max(i1, 5); i2 = std::max(i2, 0); i3 = std::max(i3, 0); fprintf(stderr, " "); for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) { fprintf(stderr, "%7d ", idx1); } fprintf(stderr, "\n"); for (int idx0 = i0 - 5; idx0 < i0 + 5; idx0++) { fprintf(stderr, "%7d: ", idx0); for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) { if (idx0 >= 0 && idx0 < tensor->ne[0] && idx1 >= 0 && idx1 < tensor->ne[1] && i2 >= 0 && i2 < tensor->ne[2] && i3 >= 0 && i3 < tensor->ne[3]) { float val; if (tensor->type == GGML_TYPE_F32) { val = *(const float *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]); } else if (tensor->type == GGML_TYPE_F16) { val = ggml_fp16_to_fp32(*(const ggml_fp16_t *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0])); } else if (tensor->type == GGML_TYPE_I32) { val = *(const int32_t *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]); } else { GGML_ABORT("fatal error"); } fprintf(stderr, "% 7.2f ", val); } else { fprintf(stderr, " "); } } fprintf(stderr, "\n"); } } static void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name) { void * tensor_data = tensor->data; const bool is_gpu = tensor->buffer != nullptr && ggml_backend_buffer_is_vk(tensor->buffer); if (is_gpu) { const size_t tensor_size = ggml_nbytes(tensor); tensor_data = malloc(tensor_size); ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)tensor->buffer->context; vk_buffer buffer_gpu = buf_ctx->dev_buffer; ggml_vk_buffer_read(buffer_gpu, vk_tensor_offset(tensor) + tensor->view_offs, tensor_data, tensor_size); } std::cerr << "TENSOR CHECK " << name << " (" << tensor->name << "): " << ggml_op_name(tensor->op) << std::endl; std::cerr << "tensor=" << tensor << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << std::endl; if (tensor->src[0] != nullptr) { std::cerr << "tensor->src[0]=" << tensor->src[0] << " name=" << tensor->src[0]->name << " op=" << ggml_op_name(tensor->src[0]->op) << " type=" << ggml_type_name(tensor->src[0]->type) << " ne0=" << tensor->src[0]->ne[0] << " nb0=" << tensor->src[0]->nb[0] << " ne1=" << tensor->src[0]->ne[1] << " nb1=" << tensor->src[0]->nb[1] << " ne2=" << tensor->src[0]->ne[2] << " nb2=" << tensor->src[0]->nb[2] << " ne3=" << tensor->src[0]->ne[3] << " nb3=" << tensor->src[0]->nb[3] << std::endl; } if (tensor->src[1] != nullptr) { std::cerr << "tensor->src[1]=" << tensor->src[1] << " name=" << tensor->src[1]->name << " op=" << ggml_op_name(tensor->src[1]->op) << " type=" << ggml_type_name(tensor->src[1]->type) << " ne0=" << tensor->src[1]->ne[0] << " nb0=" << tensor->src[1]->nb[0] << " ne1=" << tensor->src[1]->ne[1] << " nb1=" << tensor->src[1]->nb[1] << " ne2=" << tensor->src[1]->ne[2] << " nb2=" << tensor->src[1]->nb[2] << " ne3=" << tensor->src[1]->ne[3] << " nb3=" << tensor->src[1]->nb[3] << std::endl; } std::cerr << std::endl << "Result:" << std::endl; ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 0, 0); std::cerr << std::endl; std::vector done; ggml_vk_print_graph_origin(tensor, done); if (is_gpu) { free(tensor_data); } } void * comp_result; size_t comp_size; size_t comp_nb[GGML_MAX_DIMS]; size_t check_counter = 0; static void ggml_vk_check_results_0(ggml_tensor * tensor) { if (tensor->op == GGML_OP_TRANSPOSE) { return; } check_counter++; if (!(vk_output_tensor > 0 && vk_output_tensor == check_counter) && check_counter <= vk_skip_checks) { return; } VK_LOG_DEBUG("ggml_vk_check_results_0(" << tensor->name << ")"); ggml_tensor * src0 = tensor->src[0]; ggml_tensor * src1 = tensor->src[1]; ggml_tensor * src2 = tensor->src[2]; ggml_tensor * src3 = tensor->src[3]; struct ggml_init_params iparams = { /*.mem_size =*/ 2ul*1024ul*1024ul*1024ul, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ false, }; struct ggml_context * ggml_ctx = ggml_init(iparams); struct ggml_tensor * src0_clone = nullptr; struct ggml_tensor * src1_clone = nullptr; struct ggml_tensor * src2_clone = nullptr; struct ggml_tensor * src3_clone = nullptr; struct ggml_tensor * tensor_clone = nullptr; size_t src0_size; size_t src1_size; size_t src2_size; size_t src3_size; void * src0_buffer = nullptr; void * src1_buffer = nullptr; void * src2_buffer = nullptr; void * src3_buffer = nullptr; if (src0 != nullptr) { src0_clone = ggml_dup_tensor(ggml_ctx, src0); src0_size = ggml_nbytes(src0); src0_buffer = malloc(src0_size); src0_clone->data = src0_buffer; if (ggml_backend_buffer_is_host(src0->buffer)) { memcpy(src0_clone->data, src0->data, src0_size); memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS); } else if (ggml_backend_buffer_is_vk(src0->buffer)) { ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context; vk_buffer& buffer_gpu = buf_ctx->dev_buffer; uint64_t offset = vk_tensor_offset(src0) + src0->view_offs; if (!ggml_is_contiguous(src0) && ggml_vk_dim01_contiguous(src0)) { for (int i3 = 0; i3 < src0->ne[3]; i3++) { for (int i2 = 0; i2 < src0->ne[2]; i2++) { const int idx = i3*src0->ne[2] + i2; ggml_vk_buffer_read(buffer_gpu, offset + idx * src0->nb[2], ((char *)src0_clone->data + idx * src0_clone->nb[2]), src0->ne[1] * src0->nb[1]); } } src0_clone->nb[0] = src0->nb[0]; src0_clone->nb[1] = src0->nb[1]; for (int i = 2; i < GGML_MAX_DIMS; i++) { src0_clone->nb[i] = src0_clone->nb[i - 1]*src0_clone->ne[i - 1]; } } else { if (offset + src0_size >= buffer_gpu->size) { src0_size = buffer_gpu->size - offset; } ggml_vk_buffer_read(buffer_gpu, offset, src0_clone->data, src0_size); memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS); } } else { GGML_ABORT("fatal error"); } if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { ggml_vk_print_tensor(src0, "src0"); } } if (src1 != nullptr) { src1_clone = ggml_dup_tensor(ggml_ctx, src1); src1_size = ggml_nbytes(src1); src1_buffer = malloc(src1_size); src1_clone->data = src1_buffer; if (ggml_backend_buffer_is_host(src1->buffer)) { memcpy(src1_clone->data, src1->data, src1_size); memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS); } else if (ggml_backend_buffer_is_vk(src1->buffer)) { ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context; vk_buffer& buffer_gpu = buf_ctx->dev_buffer; uint64_t offset = vk_tensor_offset(src1) + src1->view_offs; if (!ggml_is_contiguous(src1) && ggml_vk_dim01_contiguous(src1)) { for (int i3 = 0; i3 < src1->ne[3]; i3++) { for (int i2 = 0; i2 < src1->ne[2]; i2++) { const int idx = i3*src1->ne[2] + i2; ggml_vk_buffer_read(buffer_gpu, offset + idx * src1->nb[2], ((char *)src1_clone->data + idx * src1_clone->nb[2]), src1->ne[1] * src1->nb[1]); } } src1_clone->nb[0] = src1->nb[0]; src1_clone->nb[1] = src1->nb[1]; for (int i = 2; i < GGML_MAX_DIMS; i++) { src1_clone->nb[i] = src1_clone->nb[i - 1]*src1_clone->ne[i - 1]; } } else { if (offset + src1_size >= buffer_gpu->size) { src1_size = buffer_gpu->size - offset; } ggml_vk_buffer_read(buffer_gpu, offset, src1_clone->data, src1_size); memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS); } } else { GGML_ABORT("fatal error"); } if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { ggml_vk_print_tensor(src1, "src1"); } } if (src2 != nullptr) { src2_clone = ggml_dup_tensor(ggml_ctx, src2); src2_size = ggml_nbytes(src2); src2_buffer = malloc(src2_size); src2_clone->data = src2_buffer; if (ggml_backend_buffer_is_host(src2->buffer)) { memcpy(src2_clone->data, src2->data, src2_size); memcpy(src2_clone->nb, src2->nb, sizeof(size_t) * GGML_MAX_DIMS); } else if (ggml_backend_buffer_is_vk(src2->buffer)) { ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)src2->buffer->context; vk_buffer& buffer_gpu = buf_ctx->dev_buffer; uint64_t offset = vk_tensor_offset(src2) + src2->view_offs; if (!ggml_is_contiguous(src2) && ggml_vk_dim01_contiguous(src2)) { for (int i3 = 0; i3 < src2->ne[3]; i3++) { for (int i2 = 0; i2 < src2->ne[2]; i2++) { const int idx = i3*src2->ne[2] + i2; ggml_vk_buffer_read(buffer_gpu, offset + idx * src2->nb[2], ((char *)src2_clone->data + idx * src2_clone->nb[2]), src2->ne[1] * src2->nb[1]); } } src2_clone->nb[0] = src2->nb[0]; src2_clone->nb[1] = src2->nb[1]; for (int i = 2; i < GGML_MAX_DIMS; i++) { src2_clone->nb[i] = src2_clone->nb[i - 1]*src2_clone->ne[i - 1]; } } else { if (offset + src2_size >= buffer_gpu->size) { src2_size = buffer_gpu->size - offset; } ggml_vk_buffer_read(buffer_gpu, offset, src2_clone->data, src2_size); memcpy(src2_clone->nb, src2->nb, sizeof(size_t) * GGML_MAX_DIMS); } } else { GGML_ABORT("fatal error"); } if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { ggml_vk_print_tensor(src2, "src2"); } } if (src3 != nullptr) { src3_clone = ggml_dup_tensor(ggml_ctx, src3); src3_size = ggml_nbytes(src3); src3_buffer = malloc(src3_size); src3_clone->data = src3_buffer; if (ggml_backend_buffer_is_host(src3->buffer)) { memcpy(src3_clone->data, src3->data, src3_size); memcpy(src3_clone->nb, src3->nb, sizeof(size_t) * GGML_MAX_DIMS); } else if (ggml_backend_buffer_is_vk(src3->buffer)) { ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)src3->buffer->context; vk_buffer& buffer_gpu = buf_ctx->dev_buffer; uint64_t offset = vk_tensor_offset(src3) + src3->view_offs; if (!ggml_is_contiguous(src3) && ggml_vk_dim01_contiguous(src3)) { for (int i3 = 0; i3 < src3->ne[3]; i3++) { for (int i2 = 0; i2 < src3->ne[2]; i2++) { const int idx = i3*src3->ne[2] + i2; ggml_vk_buffer_read(buffer_gpu, offset + idx * src3->nb[2], ((char *)src3_clone->data + idx * src3_clone->nb[2]), src3->ne[1] * src3->nb[1]); } } src3_clone->nb[0] = src3->nb[0]; src3_clone->nb[1] = src3->nb[1]; for (int i = 2; i < GGML_MAX_DIMS; i++) { src3_clone->nb[i] = src3_clone->nb[i - 1]*src3_clone->ne[i - 1]; } } else { if (offset + src3_size >= buffer_gpu->size) { src3_size = buffer_gpu->size - offset; } ggml_vk_buffer_read(buffer_gpu, offset, src3_clone->data, src3_size); memcpy(src3_clone->nb, src3->nb, sizeof(size_t) * GGML_MAX_DIMS); } } else { GGML_ABORT("fatal error"); } if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { ggml_vk_print_tensor(src3, "src3"); } } if (tensor->op == GGML_OP_FLASH_ATTN_EXT) { const float *params = (const float *)tensor->op_params; tensor_clone = ggml_flash_attn_ext(ggml_ctx, src0_clone, src1_clone, src2_clone, src3_clone, params[0], params[1], params[2]); } else if (tensor->op == GGML_OP_MUL_MAT) { tensor_clone = ggml_mul_mat(ggml_ctx, src0_clone, src1_clone); } else if (tensor->op == GGML_OP_MUL_MAT_ID) { tensor_clone = ggml_mul_mat_id(ggml_ctx, src0_clone, src1_clone, src2_clone); } else if (tensor->op == GGML_OP_MUL) { tensor_clone = ggml_mul(ggml_ctx, src0_clone, src1_clone); } else if (tensor->op == GGML_OP_DIV) { tensor_clone = ggml_div(ggml_ctx, src0_clone, src1_clone); } else if (tensor->op == GGML_OP_CONCAT) { tensor_clone = ggml_concat(ggml_ctx, src0_clone, src1_clone, *(int *)tensor->op_params); } else if (tensor->op == GGML_OP_UPSCALE) { tensor_clone = ggml_upscale_ext(ggml_ctx, src0_clone, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]); } else if (tensor->op == GGML_OP_SCALE) { tensor_clone = ggml_scale(ggml_ctx, src0_clone, ((float *)tensor->op_params)[0]); } else if (tensor->op == GGML_OP_SQR) { tensor_clone = ggml_sqr(ggml_ctx, src0_clone); } else if (tensor->op == GGML_OP_SIN) { tensor_clone = ggml_sin(ggml_ctx, src0_clone); } else if (tensor->op == GGML_OP_COS) { tensor_clone = ggml_cos(ggml_ctx, src0_clone); } else if (tensor->op == GGML_OP_CLAMP) { tensor_clone = ggml_clamp(ggml_ctx, src0_clone, ((float *)tensor->op_params)[0], ((float *)tensor->op_params)[1]); } else if (tensor->op == GGML_OP_PAD) { tensor_clone = ggml_pad(ggml_ctx, src0_clone, tensor->ne[0] - src0_clone->ne[0], tensor->ne[1] - src0_clone->ne[1], tensor->ne[2] - src0_clone->ne[2], tensor->ne[3] - src0_clone->ne[3]); } else if (tensor->op == GGML_OP_REPEAT) { tensor_clone = ggml_repeat(ggml_ctx, src0_clone, tensor); } else if (tensor->op == GGML_OP_ADD) { tensor_clone = ggml_add(ggml_ctx, src0_clone, src1_clone); } else if (tensor->op == GGML_OP_ACC) { tensor_clone = ggml_acc(ggml_ctx, src0_clone, src1_clone, tensor->op_params[0], tensor->op_params[1], tensor->op_params[2], tensor->op_params[3]); } else if (tensor->op == GGML_OP_NORM) { tensor_clone = ggml_norm(ggml_ctx, src0_clone, *(float *)tensor->op_params); } else if (tensor->op == GGML_OP_GROUP_NORM) { tensor_clone = ggml_group_norm(ggml_ctx, src0_clone, *(int *)tensor->op_params, ((float *)tensor->op_params)[1]); } else if (tensor->op == GGML_OP_RMS_NORM) { tensor_clone = ggml_rms_norm(ggml_ctx, src0_clone, *(float *)tensor->op_params); } else if (tensor->op == GGML_OP_SOFT_MAX) { if (src1 != nullptr) { tensor_clone = ggml_soft_max_ext(ggml_ctx, src0_clone, src1_clone, ((float *)tensor->op_params)[0], ((float *)tensor->op_params)[1]); } else { tensor_clone = ggml_soft_max(ggml_ctx, src0_clone); } } else if (tensor->op == GGML_OP_DIAG_MASK_INF) { tensor_clone = ggml_diag_mask_inf(ggml_ctx, src0_clone, *(int *)tensor->op_params); } else if (tensor->op == GGML_OP_ROPE) { const int n_dims = ((int32_t *) tensor->op_params)[1]; const int mode = ((int32_t *) tensor->op_params)[2]; //const int n_ctx_ggml = ((int32_t *) tensor->op_params)[3]; const int n_ctx_orig_ggml = ((int32_t *) tensor->op_params)[4]; const float freq_base = ((float *) tensor->op_params)[5]; const float freq_scale = ((float *) tensor->op_params)[6]; const float ext_factor = ((float *) tensor->op_params)[7]; const float attn_factor = ((float *) tensor->op_params)[8]; const float beta_fast = ((float *) tensor->op_params)[9]; const float beta_slow = ((float *) tensor->op_params)[10]; tensor_clone = ggml_rope_ext(ggml_ctx, src0_clone, src1_clone, src2_clone, n_dims, mode, n_ctx_orig_ggml, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); } else if (tensor->op == GGML_OP_UNARY) { switch (ggml_get_unary_op(tensor)) { case GGML_UNARY_OP_SILU: tensor_clone = ggml_silu(ggml_ctx, src0_clone); break; case GGML_UNARY_OP_GELU: tensor_clone = ggml_gelu(ggml_ctx, src0_clone); break; case GGML_UNARY_OP_GELU_QUICK: tensor_clone = ggml_gelu_quick(ggml_ctx, src0_clone); break; case GGML_UNARY_OP_RELU: tensor_clone = ggml_relu(ggml_ctx, src0_clone); break; case GGML_UNARY_OP_TANH: tensor_clone = ggml_tanh(ggml_ctx, src0_clone); break; default: std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl; GGML_ABORT("fatal error"); } } else if (tensor->op == GGML_OP_CPY || tensor->op == GGML_OP_DUP) { if (src1 == nullptr) { tensor_clone = ggml_dup(ggml_ctx, src0_clone); tensor_clone->type = tensor->type; } else { tensor_clone = ggml_cpy(ggml_ctx, src0_clone, src1_clone); } } else if (tensor->op == GGML_OP_CONT) { tensor_clone = ggml_cont_4d(ggml_ctx, src0_clone, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]); } else if (tensor->op == GGML_OP_RESHAPE) { tensor_clone = ggml_reshape_4d(ggml_ctx, src0_clone, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]); } else if (tensor->op == GGML_OP_VIEW) { tensor_clone = ggml_view_4d(ggml_ctx, src0_clone, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], tensor->nb[1], tensor->nb[2], tensor->nb[3], ((int32_t *) tensor->op_params)[0]); } else if (tensor->op == GGML_OP_PERMUTE) { int32_t * params = (int32_t *)tensor->op_params; tensor_clone = ggml_permute(ggml_ctx, src0_clone, params[0], params[1], params[2], params[3]); } else if (tensor->op == GGML_OP_TRANSPOSE) { tensor_clone = ggml_transpose(ggml_ctx, src0_clone); } else if (tensor->op == GGML_OP_GET_ROWS) { tensor_clone = ggml_get_rows(ggml_ctx, src0_clone, src1_clone); } else if (tensor->op == GGML_OP_ARGSORT) { tensor_clone = ggml_argsort(ggml_ctx, src0_clone, (ggml_sort_order) *(int *)tensor->op_params); } else if (tensor->op == GGML_OP_SUM_ROWS) { tensor_clone = ggml_sum_rows(ggml_ctx, src0_clone); } else if (tensor->op == GGML_OP_IM2COL) { const int32_t s0 = tensor->op_params[0]; const int32_t s1 = tensor->op_params[1]; const int32_t p0 = tensor->op_params[2]; const int32_t p1 = tensor->op_params[3]; const int32_t d0 = tensor->op_params[4]; const int32_t d1 = tensor->op_params[5]; const bool is_2D = tensor->op_params[6] == 1; tensor_clone = ggml_im2col(ggml_ctx, src0_clone, src1_clone, s0, s1, p0, p1, d0, d1, is_2D, tensor->type); } else if (tensor->op == GGML_OP_TIMESTEP_EMBEDDING) { const int32_t dim = tensor->op_params[0]; const int32_t max_period = tensor->op_params[1]; tensor_clone = ggml_timestep_embedding(ggml_ctx, src0_clone, dim, max_period); } else if (tensor->op == GGML_OP_POOL_2D) { enum ggml_op_pool op = static_cast(tensor->op_params[0]); const int32_t k0 = tensor->op_params[1]; const int32_t k1 = tensor->op_params[2]; const int32_t s0 = tensor->op_params[3]; const int32_t s1 = tensor->op_params[4]; const int32_t p0 = tensor->op_params[5]; const int32_t p1 = tensor->op_params[6]; tensor_clone = ggml_pool_2d(ggml_ctx, src0_clone, op, k0, k1, s0, s1, p0, p1); } else if (tensor->op == GGML_OP_LEAKY_RELU) { const float * op_params = (const float *)tensor->op_params; tensor_clone = ggml_leaky_relu(ggml_ctx, src0_clone, op_params[0], false); } else if (tensor->op == GGML_OP_RWKV_WKV6) { tensor_clone = ggml_rwkv_wkv6(ggml_ctx, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor->src[5]); } else { std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl; GGML_ABORT("fatal error"); } ggml_cgraph * cgraph = ggml_new_graph(ggml_ctx); ggml_build_forward_expand(cgraph, tensor_clone); ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 8); if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { ggml_vk_print_tensor(tensor_clone, "tensor_clone"); } comp_size = ggml_nbytes(tensor_clone); comp_result = malloc(comp_size); memcpy(comp_result, tensor_clone->data, comp_size); memcpy(comp_nb, tensor_clone->nb, sizeof(size_t) * GGML_MAX_DIMS); if (src0 != nullptr) { free(src0_buffer); } if (src1 != nullptr) { free(src1_buffer); } ggml_free(ggml_ctx); VK_LOG_DEBUG("END ggml_vk_check_results_0(" << tensor->name << ")"); } static void ggml_vk_check_results_1(ggml_tensor * tensor) { if (tensor->op == GGML_OP_TRANSPOSE) { return; } if (!(vk_output_tensor > 0 && vk_output_tensor == check_counter) && check_counter <= vk_skip_checks) { return; } VK_LOG_DEBUG("ggml_vk_check_results_1(" << tensor->name << ")"); ggml_tensor * src0 = tensor->src[0]; ggml_tensor * src1 = tensor->src[1]; ggml_tensor * src2 = tensor->src[2]; void * tensor_data = tensor->data; if (ggml_backend_buffer_is_vk(tensor->buffer)) { size_t tensor_size = ggml_nbytes(tensor); tensor_data = malloc(tensor_size); ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)tensor->buffer->context; vk_buffer& buffer_gpu = buf_ctx->dev_buffer; uint64_t offset = vk_tensor_offset(tensor) + tensor->view_offs; if (offset + tensor_size >= buffer_gpu->size) { tensor_size = buffer_gpu->size - offset; } ggml_vk_buffer_read(buffer_gpu, offset, tensor_data, tensor_size); } float first_error_result = -1.0f; float first_error_correct = -1.0f; std::array first_error = { -1, -1, -1, -1 }; double avg_err = 0.0; size_t counter = 0; for (int i3 = 0; i3 < tensor->ne[3]; i3++) { for (int i2 = 0; i2 < tensor->ne[2]; i2++) { for (int i1 = 0; i1 < tensor->ne[1]; i1++) { for (int i0 = 0; i0 < tensor->ne[0]; i0++) { const bool buffer_size_fit = i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0] < comp_size; float correct = 0.0f; float result = 0.0f; if (buffer_size_fit) { if (tensor->type == GGML_TYPE_F32) { correct = *(float *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]); result = *(float *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]); } else if (tensor->type == GGML_TYPE_F16) { correct = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0])); result = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0])); } else if (tensor->type == GGML_TYPE_I32) { correct = *(int32_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]); result = *(int32_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]); } else { std::cerr << "Results check not implemented for type " << ggml_type_name(tensor->type) << std::endl; } } else { std::cerr << "Missing debug code for type " << ggml_type_name(tensor->type) << std::endl; GGML_ABORT("fatal error"); } if ((std::isnan(correct) != std::isnan(result)) || (std::isinf(correct) != std::isinf(result)) || !buffer_size_fit) { std::cerr << "ERROR: Invalid value in " << ggml_op_name(tensor->op) << " i3=" << i3 << " i2=" << i2 << " i1=" << i1 << " i0=" << i0 << " result=" << result << " correct=" << correct << " avg_err=" << (avg_err / counter) << std::endl; std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl; if (src0 != nullptr) { std::cerr << "src0=" << src0 << " src0->name=" << src0->name << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl; } if (src1 != nullptr) { std::cerr << "src1=" << src1 << " src1->name=" << src1->name << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl; } if (src2 != nullptr) { std::cerr << "src2=" << src2 << " src2->name=" << src2->name << " op=" << ggml_op_name(src2->op) << " type=" << ggml_type_name(src2->type) << " ne0=" << src2->ne[0] << " nb0=" << src2->nb[0] << " ne1=" << src2->ne[1] << " nb1=" << src2->nb[1] << " ne2=" << src2->ne[2] << " nb2=" << src2->nb[2] << " ne3=" << src2->ne[3] << " nb3=" << src2->nb[3] << " offset=" << src2->view_offs << std::endl; } std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl; std::cerr << std::endl << "Result:" << std::endl; ggml_vk_print_tensor_area(tensor, tensor_data, i0, i1, i2, i3); std::cerr << std::endl << "Correct:" << std::endl; ggml_vk_print_tensor_area(tensor, comp_result, i0, i1, i2, i3); std::cerr << std::endl; std::vector done; ggml_vk_print_graph_origin(tensor, done); GGML_ABORT("fatal error"); } if (first_error[0] == -1 && std::fabs(correct - result) > 0.1f) { first_error[0] = i0; first_error[1] = i1; first_error[2] = i2; first_error[3] = i3; first_error_result = result; first_error_correct = correct; } // Special case, value is infinite, avoid NaN result in avg_err // NaN also appears in results, if both are nan error is 0 if (!std::isinf(correct) && !std::isinf(result) && !std::isnan(correct) && !std::isnan(result)) { avg_err += std::fabs(correct - result); } counter++; } } } } avg_err /= counter; if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { std::cerr << "TENSOR CHECK: avg_err=" << avg_err << " in " << ggml_op_name(tensor->op) << " (check " << check_counter << ")" << std::endl; std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl; if (src0 != nullptr) { std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl; } if (src1 != nullptr) { std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl; } if (src2 != nullptr) { std::cerr << "src2=" << src2 << " op=" << ggml_op_name(src2->op) << " type=" << ggml_type_name(src2->type) << " ne0=" << src2->ne[0] << " nb0=" << src2->nb[0] << " ne1=" << src2->ne[1] << " nb1=" << src2->nb[1] << " ne2=" << src2->ne[2] << " nb2=" << src2->nb[2] << " ne3=" << src2->ne[3] << " nb3=" << src2->nb[3] << " offset=" << src2->view_offs << std::endl; } std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl; std::cerr << std::endl << "Result:" << std::endl; ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 0, 0); std::cerr << std::endl << "Correct:" << std::endl; ggml_vk_print_tensor_area(tensor, comp_result, 5, 5, 0, 0); std::cerr << std::endl; std::vector done; ggml_vk_print_graph_origin(tensor, done); } if (avg_err > 0.05 || std::isnan(avg_err)) { std::cerr << "ERROR: avg_err=" << avg_err << " in " << ggml_op_name(tensor->op) << " (check " << check_counter << ")" << std::endl; std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl; if (src0 != nullptr) { std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl; } if (src1 != nullptr) { std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl; } if (src2 != nullptr) { std::cerr << "src2=" << src2 << " op=" << ggml_op_name(src2->op) << " type=" << ggml_type_name(src2->type) << " ne0=" << src2->ne[0] << " nb0=" << src2->nb[0] << " ne1=" << src2->ne[1] << " nb1=" << src2->nb[1] << " ne2=" << src2->ne[2] << " nb2=" << src2->nb[2] << " ne3=" << src2->ne[3] << " nb3=" << src2->nb[3] << " offset=" << src2->view_offs << std::endl; } std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl; std::cerr << std::endl << "Result:" << std::endl; ggml_vk_print_tensor_area(tensor, tensor_data, first_error[0], first_error[1], first_error[2], first_error[3]); std::cerr << std::endl << "Correct:" << std::endl; ggml_vk_print_tensor_area(tensor, comp_result, first_error[0], first_error[1], first_error[2], first_error[3]); std::cerr << std::endl; std::vector done; ggml_vk_print_graph_origin(tensor, done); GGML_ABORT("fatal error"); } else { std::cerr << check_counter << " " << tensor->name << " op=" << ggml_op_name(tensor->op) << " avg_err=" << avg_err << std::endl; } free(comp_result); comp_result = nullptr; comp_size = 0; if (ggml_backend_buffer_is_vk(tensor->buffer)) { free(tensor_data); } VK_LOG_DEBUG("END ggml_vk_check_results_1(" << tensor->name << ")"); } #endif GGML_BACKEND_DL_IMPL(ggml_backend_vk_reg)