# Quick and dirty HF gptneox--> gguf conversion import gguf import gguf_tensor_map as tmap import os import sys import struct import json import numpy as np from typing import Any, List from pathlib import Path from transformers import AutoTokenizer, AutoModelForCausalLM # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) if len(sys.argv) < 3: print("Usage: convert-h5-to-ggml.py dir-model ftype\n") print(" ftype == 0 -> float32") print(" ftype == 1 -> float16") sys.exit(1) # output in the same directory as the model dir_model = sys.argv[1] last_dir = os.path.basename(os.path.normpath(dir_model)) # possible tensor data types # ftype == 0 -> float32 # ftype == 1 -> float16 # # map from ftype to string ftype_str = ["f32", "f16"] ftype = 1 if len(sys.argv) > 2: ftype = int(sys.argv[2]) if ftype < 0 or ftype > 1: print("Invalid ftype: " + str(ftype)) sys.exit(1) fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf" print("gguf: loading model "+last_dir) with open(dir_model + "/config.json", "r", encoding="utf-8") as f: hparams = json.load(f) if hparams["architectures"][0] != "GPTNeoXForCausalLM": print("Model architecture not supported: " + hparams["architectures"][0] ) sys.exit() model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True) list_vars = model.state_dict() gguf_writer = gguf.GGUFWriter.open(fname_out) print("gguf: get model metadata") llm_arch = "gptneox" block_count = hparams["num_hidden_layers"] gguf_writer.add_name(last_dir) gguf_writer.add_architecture(llm_arch) gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"]) gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"]) gguf_writer.add_layer_count(llm_arch, block_count) gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"]) gguf_writer.add_rope_dimension_count(llm_arch, int( hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])) ) gguf_writer.add_head_count(llm_arch, hparams["num_attention_heads"]) gguf_writer.add_parallel_residual(llm_arch, hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True) gguf_writer.add_layer_norm_eps(llm_arch, hparams["layer_norm_eps"]) # TOKENIZATION print("gguf: get tokenizer metadata") tokens: List[str] = [] merges: List[str] = [] if Path(dir_model + "/tokenizer.json").is_file(): # gpt2 tokenizer gguf_writer.add_tokenizer_model("gpt2") print("gguf: get gpt2 tokenizer merges") with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f: tokenizer_json = json.load(f) merges = tokenizer_json["model"]["merges"] gguf_writer.add_token_merges(merges) print("gguf: get gpt2 tokenizer vocab") vocab_size = len( tokenizer_json["model"]["vocab"] ) # from ggllm.cpp falcon_convert.py tokenizer = AutoTokenizer.from_pretrained(dir_model) reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} byte_encoder = bytes_to_unicode() byte_decoder = {v:k for k, v in byte_encoder.items()} for i in range(vocab_size): if i in reverse_vocab: try: text = bytearray([byte_decoder[c] for c in reverse_vocab[i]]) except KeyError: text = bytearray() for c in reverse_vocab[i]: if ord(c) < 256: # single byte character text.append(byte_decoder[ord(c)]) else: # multibyte special token character text.extend(c.encode('utf-8')) else: print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.") padding_token = f"[PAD{i}]".encode("utf8") text = bytearray(padding_token) tokens.append(text) gguf_writer.add_token_list(tokens) if "added_tokens" in tokenizer_json and Path(dir_model + "/tokenizer_config.json").is_file(): print("gguf: get special token ids") with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f: tokenizer_config = json.load(f) # find special token ids if "bos_token" in tokenizer_config: for key in tokenizer_json["added_tokens"]: if key["content"] == tokenizer_config["bos_token"]: gguf_writer.add_bos_token_id(key["id"]) if "eos_token" in tokenizer_config: for key in tokenizer_json["added_tokens"]: if key["content"] == tokenizer_config["eos_token"]: gguf_writer.add_eos_token_id(key["id"]) if "unk_token" in tokenizer_config: for key in tokenizer_json["added_tokens"]: if key["content"] == tokenizer_config["unk_token"]: gguf_writer.add_unk_token_id(key["id"]) if "sep_token" in tokenizer_config: for key in tokenizer_json["added_tokens"]: if key["content"] == tokenizer_config["sep_token"]: gguf_writer.add_sep_token_id(key["id"]) if "pad_token" in tokenizer_config: for key in tokenizer_json["added_tokens"]: if key["content"] == tokenizer_config["pad_token"]: gguf_writer.add_pad_token_id(key["id"]) # TENSORS tensor_map = tmap.get_tensor_map(block_count) # tensor info print("gguf: get tensor metadata") for name in list_vars.keys(): data = list_vars[name].squeeze().numpy() # we don't need these if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"): continue # map tensor names if name.endswith(".weight") and name[:-7] in tensor_map: name = tensor_map[name[:-7]] + ".weight" elif name.endswith(".bias") and name[:-5] in tensor_map: name = tensor_map[name[:-5]] + ".bias" else: print( "Can not map tensor '" + name + "'" ) sys.exit() n_dims = len(data.shape) data_dtype = data.dtype # print( name + " dims " + str(n_dims) + " dtype " + str(data.dtype) ) if data.dtype != np.float16 and data.dtype != np.float32: # convert any unsupported data types to float32 data_dtype = np.float32 elif ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2: # if f16 desired, convert any float32 2-dim weight tensors to float16 data_dtype = np.float16 data_nbytes = data.size * 2 if data_dtype == np.float16 else data.size * 4 gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes) print("gguf: write header") gguf_writer.write_header_to_file() print("gguf: write metadata") gguf_writer.write_kv_data_to_file() print("gguf: write tensor metadata") gguf_writer.write_ti_data_to_file() # tensor data print("gguf: convert and write tensor data") for name in list_vars.keys(): data = list_vars[name].squeeze().numpy() # we don't need these if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"): continue n_dims = len(data.shape) data_dtype = data.dtype if data_dtype != np.float16 and data_dtype != np.float32: # convert any unsupported data types to float32 data = data.astype(np.float32) elif ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: # if f16 desired, convert any float32 2-dim weight tensors to float16 data = data.astype(np.float16) gguf_writer.write_tensor_to_file(data) gguf_writer.close() print("gguf: model successfully exported to '" + fname_out + "'" ) print("")