#include "ggml.h" #include "cmpnct_gpt2bpe.hpp" #include <cassert> #include <cmath> #include <cstdio> #include <cstring> #include <cinttypes> #include <fstream> #include <map> #include <string> #include <vector> #include <thread> #include <random> #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif // default hparams struct falcon_hparams { size_t n_merges = 0; size_t n_vocab = 0; uint32_t n_ctx = 0; uint32_t n_embd = 0; uint32_t n_head = 0; uint32_t n_head_kv = 1; // Needs to be 1 for 7B model uint32_t n_ff = 0; uint32_t n_block = 0; float norm_eps = 1e-5; }; struct falcon_block { // normalization struct ggml_tensor* input_layernorm; struct ggml_tensor* input_layernorm_b; struct ggml_tensor* attention_norm; // Falcon-40B only struct ggml_tensor* attention_norm_b; // Falcon-40B only // attention struct ggml_tensor* query_key_value; struct ggml_tensor* wo; // ff struct ggml_tensor* ffn_up; struct ggml_tensor* ffn_down; }; struct falcon_model { falcon_hparams hparams; struct ggml_tensor* tok_embeddings; struct ggml_tensor* output_norm; struct ggml_tensor* output_norm_b; struct ggml_tensor* lm_head; std::vector<falcon_block> blocks; // key + value memory struct ggml_tensor* memory_k; struct ggml_tensor* memory_v; struct gguf_context * ggufctx; struct ggml_context * ctx; struct ggml_context * kvctx; std::map<std::string, struct ggml_tensor*> tensors; }; struct gpt_params { int32_t seed = -1; // RNG seed int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); uint32_t n_predict = 200; // new tokens to predict uint32_t n_batch = 512; // batch size for prompt processing // sampling parameters int32_t top_k = 40; float top_p = 1.0f; float temp = 0.8f; int32_t repeat_last_n = 64; float repeat_penalty = 1.02f; std::string model = ""; // model path std::string prompt = ""; std::string token_test = ""; bool interactive = false; int32_t interactive_port = -1; int32_t n_gpu_layers = 0; }; void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help show this help message and exit\n"); fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n"); fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); fprintf(stderr, " -ngl N, --gpu-layers N number of layers to offload to GPU on supported models (default: %d)\n", params.n_gpu_layers); fprintf(stderr, " -p PROMPT, --prompt PROMPT\n"); fprintf(stderr, " prompt to start generation with (default: random)\n"); fprintf(stderr, " -f FNAME, --file FNAME\n"); fprintf(stderr, " load prompt from a file\n"); fprintf(stderr, " -tt TOKEN_TEST, --token_test TOKEN_TEST\n"); fprintf(stderr, " test tokenization\n"); fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict); fprintf(stderr, " --top_k N top-k sampling, 0 = n_vocab (default: %d)\n", params.top_k); fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p); fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp); fprintf(stderr, " --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled)\n", params.repeat_last_n); fprintf(stderr, " --repeat-penalty N penalize repeat sequence of tokens (default: %.2f, 1.0 = disabled)\n", (double)params.repeat_penalty); fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch); fprintf(stderr, " -m FNAME, --model FNAME\n"); fprintf(stderr, " model path (default: %s)\n", params.model.c_str()); fprintf(stderr, "\n"); } // Function to check if the next argument exists std::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_params& params) { if (i + 1 < argc && argv[i + 1][0] != '-') { return argv[++i]; } else { fprintf(stderr, "error: %s requires one argument.\n", flag.c_str()); gpt_print_usage(argc, argv, params); exit(0); } } bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { for (int i = 1; i < argc; i++) { std::string arg = argv[i]; if (arg == "-s" || arg == "--seed") { params.seed = std::stoi(get_next_arg(i, argc, argv, arg, params)); } else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(get_next_arg(i, argc, argv, arg, params)); } else if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") { params.n_gpu_layers = std::stoi(get_next_arg(i, argc, argv, arg, params)); } else if (arg == "-p" || arg == "--prompt") { params.prompt = get_next_arg(i, argc, argv, arg, params); } else if (arg == "-n" || arg == "--n_predict") { params.n_predict = std::stoi(get_next_arg(i, argc, argv, arg, params)); } else if (arg == "--top_k") { params.top_k = std::stoi(get_next_arg(i, argc, argv, arg, params)); } else if (arg == "--top_p") { params.top_p = std::stof(get_next_arg(i, argc, argv, arg, params)); } else if (arg == "--temp") { params.temp = std::stof(get_next_arg(i, argc, argv, arg, params)); } else if (arg == "--repeat-last-n") { params.repeat_last_n = std::stoi(get_next_arg(i, argc, argv, arg, params)); } else if (arg == "--repeat-penalty") { params.repeat_penalty = std::stof(get_next_arg(i, argc, argv, arg, params)); } else if (arg == "-b" || arg == "--batch_size") { params.n_batch= std::stoi(get_next_arg(i, argc, argv, arg, params)); } else if (arg == "-m" || arg == "--model") { params.model = get_next_arg(i, argc, argv, arg, params); } else if (arg == "-i" || arg == "--interactive") { params.interactive = true; } else if (arg == "-ip" || arg == "--interactive-port") { params.interactive = true; params.interactive_port = std::stoi(get_next_arg(i, argc, argv, arg, params)); } else if (arg == "-h" || arg == "--help") { gpt_print_usage(argc, argv, params); exit(0); } else if (arg == "-f" || arg == "--file") { get_next_arg(i, argc, argv, arg, params); std::ifstream file(argv[i]); if (!file) { fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); break; } std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt)); if (params.prompt.back() == '\n') { params.prompt.pop_back(); } } else if (arg == "-tt" || arg == "--token_test") { params.token_test = get_next_arg(i, argc, argv, arg, params); } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); gpt_print_usage(argc, argv, params); exit(0); } } return true; } gpt2bpe_vocab::id sample_top_k_top_p_repeat( const gpt2bpe_vocab & vocab, const float * logits, const int32_t * last_n_tokens_data, size_t last_n_tokens_data_size, int top_k, double top_p, double temp, int repeat_last_n, float repeat_penalty, std::mt19937 & rng) { int n_logits = vocab.id_to_token.size(); const auto * plogits = logits; const auto last_n_tokens = std::vector<int32_t>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_data_size); if (temp <= 0) { // select the token with the highest logit directly float max_logit = plogits[0]; gpt2bpe_vocab::id max_id = 0; for (int i = 1; i < n_logits; ++i) { if (plogits[i] > max_logit) { max_logit = plogits[i]; max_id = i; } } return max_id; } std::vector<std::pair<double, gpt2bpe_vocab::id>> logits_id; logits_id.reserve(n_logits); { const float scale = 1.0f/temp; for (int i = 0; i < n_logits; ++i) { // repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858) // credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main if (repeat_last_n > 0 && std::find(last_n_tokens.end()-repeat_last_n, last_n_tokens.end(), i) != last_n_tokens.end()) { // if score < 0 then repetition penalty has to multiplied to reduce the previous token probability if (plogits[i] < 0.0f) { logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i)); } else { logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i)); } } else { logits_id.push_back(std::make_pair(plogits[i]*scale, i)); } } } // find the top K tokens std::partial_sort( logits_id.begin(), logits_id.begin() + top_k, logits_id.end(), [](const std::pair<double, gpt2bpe_vocab::id> & a, const std::pair<double, gpt2bpe_vocab::id> & b) { return a.first > b.first; }); logits_id.resize(top_k); double maxl = -INFINITY; for (const auto & kv : logits_id) { maxl = std::max(maxl, kv.first); } // compute probs for the top K tokens std::vector<double> probs; probs.reserve(logits_id.size()); double sum = 0.0; for (const auto & kv : logits_id) { double p = exp(kv.first - maxl); probs.push_back(p); sum += p; } // normalize the probs for (auto & p : probs) { p /= sum; } if (top_p < 1.0f) { double cumsum = 0.0f; for (int i = 0; i < top_k; i++) { cumsum += probs[i]; if (cumsum >= top_p) { top_k = i + 1; probs.resize(top_k); logits_id.resize(top_k); break; } } cumsum = 1.0/cumsum; for (int i = 0; i < (int) probs.size(); i++) { probs[i] *= cumsum; } } // printf("\n"); // for (int i = 0; i < (int) probs.size(); i++) { // for (int i = 0; i < 10; i++) { // printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]); // } std::discrete_distribution<> dist(probs.begin(), probs.end()); int idx = dist(rng); return logits_id[idx].second; } struct ggml_tensor * get_tensor_ex( struct ggml_context * ctx, std::string name){ struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str()); if( cur == NULL ) { printf("%s: tensor '%s' not found!\n", __func__, name.c_str()); } else { // printf("%s: n_dims = %d, name = '%s'\n", __func__, cur->n_dims, cur->name); } return cur; } // load the model's weights from a file bool falcon_model_load(const std::string & fname, falcon_model & model, gpt2bpe_vocab & vocab) { printf("%s: loading model from '%s'..\n", __func__, fname.c_str()); model.ctx = NULL; struct gguf_init_params ggufparams = { /*.no_alloc = */ false, /*.ctx = */ &model.ctx, }; auto & ggufctx = model.ggufctx; ggufctx = gguf_init_from_file(fname.c_str(), ggufparams); if (!ggufctx) { fprintf(stderr, "%s: gguf_init_from_file() failed\n", __func__); return false; } printf("%s: gguf version = %d\n", __func__, gguf_get_version(ggufctx)); printf("%s: gguf alignment = %zu\n", __func__, gguf_get_alignment(ggufctx)); printf("%s: gguf data offset = %zu\n", __func__, gguf_get_data_offset(ggufctx)); // print all kv #if 0 { const int n_kv = gguf_get_n_kv(ggufctx); printf("%s: n_kv: %d\n", __func__, n_kv); for (int i = 0; i < n_kv; ++i) { const char * key = gguf_get_key(ggufctx, i); printf("%s: kv[%d]: key = %s\n", __func__, i, key); } } #endif // print some standard metadata { int keyidx; keyidx = gguf_find_key(ggufctx, "general.name"); if (keyidx != -1) { printf("%s: model name = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "general.description"); if (keyidx != -1) { printf("%s: model description = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "general.author"); if (keyidx != -1) { printf("%s: model author = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "general.license"); if (keyidx != -1) { printf("%s: model license = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "general.architecture"); if (keyidx != -1) { printf("%s: model architecture = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "general.file_type"); if (keyidx != -1) { printf("%s: model file type = %" PRIu32 "\n", __func__, gguf_get_val_u32(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "gptneox.tensor_data_layout"); if (keyidx != -1) { printf("%s: model data layout = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "general.source.huggingface.repository"); if (keyidx != -1) { printf("%s: model source HF repo = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } } // check required metadata { int keyidx; // check model architecture kv keyidx = gguf_find_key(ggufctx, "general.architecture"); if (keyidx != -1) { if ( strcmp(gguf_get_val_str(ggufctx, keyidx), "falcon") != 0) { printf("%s: model architecture not supported!\n", __func__); return false; } } else { printf("%s: gguf model architecture not found!\n", __func__); return false; } // check model tensor data layout kv keyidx = gguf_find_key(ggufctx, "falcon.tensor_data_layout"); if (keyidx != -1) { if ( strcmp(gguf_get_val_str(ggufctx, keyidx), "jploski") != 0) { printf("%s: model tensor data layout not supported!\n", __func__); return false; } } else { printf("%s: gguf model tensor data layout not found!\n", __func__); return false; } } // load hparams { auto & hparams = model.hparams; bool ok = true; int keyidx; if (ok) { keyidx = gguf_find_key(ggufctx, "falcon.context_length"); if (keyidx != -1) { hparams.n_ctx = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } } if (ok) { keyidx = gguf_find_key(ggufctx, "falcon.embedding_length"); if (keyidx != -1) { hparams.n_embd = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } } if (ok) { keyidx = gguf_find_key(ggufctx, "falcon.attention.head_count"); if (keyidx != -1) { hparams.n_head = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } } if (ok) { keyidx = gguf_find_key(ggufctx, "falcon.feed_forward_length"); if (keyidx != -1) { hparams.n_ff = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } } if (ok) { keyidx = gguf_find_key(ggufctx, "falcon.block_count"); if (keyidx != -1) { hparams.n_block = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } } if (ok) { keyidx = gguf_find_key(ggufctx, "falcon.attention.layer_norm_epsilon"); if (keyidx != -1) { hparams.norm_eps= gguf_get_val_f32(ggufctx, keyidx); } else { ok = false; } } if (!ok) { fprintf(stderr, "%s: required hparam missing!\n", __func__); return false; } keyidx = gguf_find_key(ggufctx, "falcon.attention.head_count_kv"); if (keyidx != -1) { hparams.n_head_kv = gguf_get_val_u32(ggufctx, keyidx); } printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx); printf("%s: n_embd = %d\n", __func__, hparams.n_embd); printf("%s: n_head = %d\n", __func__, hparams.n_head); printf("%s: n_head_kv = %d\n", __func__, hparams.n_head_kv); printf("%s: n_block = %d\n", __func__, hparams.n_block); printf("%s: norm_eps = %g\n", __func__, hparams.norm_eps); } // load vocab { auto & hparams = model.hparams; int keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.model"); if (keyidx != -1) { if ( strcmp(gguf_get_val_str(ggufctx, keyidx), "gpt2") != 0) { printf("%s: tokenizer model not supported!\n", __func__); return false; } } else { printf("%s: tokenizer model not found!\n", __func__); return false; } int tokens_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.tokens"); if (tokens_keyidx == -1) { printf("%s: gpt2 tokenizer vocab not found!\n", __func__); return false; } int merges_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.merges"); if (merges_keyidx == -1) { printf("%s: gpt2 tokenizer merges not found!\n", __func__); return false; } hparams.n_vocab = gguf_get_arr_n(ggufctx,tokens_keyidx); hparams.n_merges = gguf_get_arr_n(ggufctx,merges_keyidx); printf("%s: gpt2 tokenizer vocab = %zu\n", __func__, hparams.n_vocab); printf("%s: gpt2 tokenizer merges = %zu\n", __func__, hparams.n_merges); for (size_t i = 0; i < hparams.n_vocab; i++) { std::string word = gguf_get_arr_str(ggufctx, tokens_keyidx, i); // printf("token %d = '%s'\n",i,word.c_str() ); vocab.token_to_id[word] = i; vocab.id_to_token[i] = word; if( vocab.id_to_token[i] == "\n" ) { vocab.linefeed_id = i; } } std::vector<std::pair<std::string, std::string>> bpe_merges; for (size_t i = 0; i < hparams.n_merges; i++) { std::string word = gguf_get_arr_str(ggufctx, merges_keyidx, i); // Split the merges std::string first, second; size_t pos = word.find(' ', 1); // Start the search from the second character if (pos != std::string::npos) { first = word.substr(0, pos); second = word.substr(pos + 1); } bpe_merges.push_back(std::make_pair(first, second)); } vocab.populate_bpe_ranks(bpe_merges); keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.bos_token_id"); if( keyidx != -1 ) { vocab.special_bos_id = (int32_t)gguf_get_val_u32(ggufctx, keyidx); } keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.eos_token_id"); if( keyidx != -1 ) { vocab.special_eos_id = (int32_t)gguf_get_val_u32(ggufctx, keyidx); } keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.unknown_token_id"); if( keyidx != -1 ) { vocab.special_unk_id = (int32_t)gguf_get_val_u32(ggufctx, keyidx); } keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.separator_token_id"); if( keyidx != -1 ) { vocab.special_sep_id = (int32_t)gguf_get_val_u32(ggufctx, keyidx); } keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.padding_token_id"); if( keyidx != -1 ) { vocab.special_pad_id = (int32_t)gguf_get_val_u32(ggufctx, keyidx); } if( vocab.special_bos_id != -1 ) { printf("%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].c_str() ); } if( vocab.special_eos_id != -1 ) { printf("%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].c_str() ); } if( vocab.special_unk_id != -1 ) { printf("%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].c_str() ); } if( vocab.special_sep_id != -1 ) { printf("%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].c_str() ); } if( vocab.special_pad_id != -1 ) { printf("%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].c_str() ); } if( vocab.linefeed_id != -1 ) { printf("%s: LF token = %d\n", __func__, vocab.linefeed_id ); } } auto & ctx = model.ctx; size_t ctx_size = ggml_get_mem_size(ctx); printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); // print tensor info #if 0 { const int n_tensors = gguf_get_n_tensors(ggufctx); printf("%s: n_tensors: %d\n", __func__, n_tensors); for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name (ggufctx, i); const size_t offset = gguf_get_tensor_offset(ggufctx, i); printf("%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset); } } #endif // prepare memory for the weights { auto & hparams = model.hparams; const int n_block = hparams.n_block; model.blocks.resize(n_block); model.tok_embeddings = ggml_get_tensor(ctx, "token_embd.weight"); model.output_norm = ggml_get_tensor(ctx, "output_norm.weight"); model.output_norm_b = ggml_get_tensor(ctx, "output_norm.bias"); model.lm_head = ggml_get_tensor(ctx, "output.weight"); // map by name model.tensors["token_embd.weight"] = model.tok_embeddings; model.tensors["output_norm.weight"] = model.output_norm; model.tensors["output_norm.bias"] = model.output_norm_b; model.tensors["output.weight"] = model.lm_head; for (int i = 0; i < n_block; ++i) { auto& block = model.blocks[i]; std::string blocknamestart = "blk." + std::to_string(i) + "."; block.input_layernorm = get_tensor_ex(ctx, blocknamestart + "attn_norm.weight" ); block.input_layernorm_b = get_tensor_ex(ctx, blocknamestart + "attn_norm.bias" ); if ( hparams.n_head_kv == 8 ) { // Falcon-40B block.attention_norm = get_tensor_ex(ctx, blocknamestart + "attn_norm_2.weight" ); block.attention_norm_b = get_tensor_ex(ctx, blocknamestart + "attn_norm_2.bias" ); } // query_key_value shape for config.multi_query == True: block.query_key_value = get_tensor_ex(ctx, blocknamestart + "attn_qkv.weight" ); block.wo = get_tensor_ex(ctx, blocknamestart + "attn_output.weight" ); block.ffn_up = get_tensor_ex(ctx, blocknamestart + "ffn_up.weight" ); block.ffn_down = get_tensor_ex(ctx, blocknamestart + "ffn_down.weight" ); // map by name if ( hparams.n_head_kv == 8 ) { // Falcon-40B // Falcon-40B: model.tensors[blocknamestart + "attn_norm.weight"] = block.input_layernorm; model.tensors[blocknamestart + "attn_norm.bias"] = block.input_layernorm_b; model.tensors[blocknamestart + "attn_norm_2.weight"] = block.attention_norm; model.tensors[blocknamestart + "attn_norm_2.bias"] = block.attention_norm_b; } else { // Falcon-7B: model.tensors[blocknamestart + "attn_norm.weight"] = block.input_layernorm; model.tensors[blocknamestart + "attn_norm.bias"] = block.input_layernorm_b; } model.tensors[blocknamestart + "attn_qkv.weight"] = block.query_key_value; model.tensors[blocknamestart + "attn_output.weight"] = block.wo; model.tensors[blocknamestart + "ffn_up.weight"] = block.ffn_up; model.tensors[blocknamestart + "ffn_down.weight"] = block.ffn_down; } } // key + value memory { const auto & kvctx = model.kvctx; const auto & hparams = model.hparams; const int n_block = hparams.n_block; const int n_ctx = hparams.n_ctx; const int n_embd = hparams.n_embd; const int64_t n_mem = n_block*n_ctx; const int64_t n_elements = n_embd*n_mem; // create the ggml context { struct ggml_init_params params = { /*.mem_size =*/ size_t(n_elements*4+ggml_tensor_overhead()*2), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ false, }; model.kvctx = ggml_init(params); if (!model.kvctx) { fprintf(stderr, "%s: kv ggml_init() failed\n", __func__); return false; } } model.memory_k = ggml_new_tensor_1d(kvctx, GGML_TYPE_F16, n_elements); model.memory_v = ggml_new_tensor_1d(kvctx, GGML_TYPE_F16, n_elements); const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v); printf("%s: memory_size = %8.2f MB, n_mem = %" PRId64 "\n", __func__, memory_size/1024.0/1024.0, n_mem); } return true; } // evaluate the transformer // // - model: the model // - n_threads: number of threads to use // - n_past: the context size so far // - embd_inp: the embeddings of the tokens in the context // - embd_w: the predicted logits for the next token // bool falcon_eval( const falcon_model & model, const int n_threads, const int n_past, const std::vector<gpt2bpe_vocab::id> & embd_inp, std::vector<float> & embd_w, size_t & mem_per_token) { const int N = embd_inp.size(); const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_block = hparams.n_block; const int n_ctx = hparams.n_ctx; const int n_head = hparams.n_head; const int n_head_kv = hparams.n_head_kv; const int n_vocab = hparams.n_vocab; const size_t head_dim = n_embd / n_head; static size_t buf_size = 256u*1024*1024; static void * buf = malloc(buf_size); // use 2 scratch buffers // TODO: very hacky solution - reimplement in a more elegant way static size_t scr0_size = 256u*1024*1024; static void * scr0 = malloc(scr0_size); static size_t scr1_size = 256u*1024*1024; static void * scr1 = malloc(scr1_size); if (mem_per_token > 0 && mem_per_token*N > buf_size) { const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead //printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new); // reallocate buf_size = buf_size_new; buf = realloc(buf, buf_size); if (buf == nullptr) { fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size); return false; } } struct ggml_init_params params = { /*.mem_size =*/ buf_size, /*.mem_buffer =*/ buf, /*.no_alloc =*/ false, }; struct ggml_context * ctx0 = ggml_init(params); struct ggml_cgraph gf = {}; // gf.n_threads = n_threads; struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd)); // wte struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd); // struct ggml_tensor* repeat_dummy = ggml_new_tensor_3d(ctx0, inpL->type, head_dim, N + n_past, n_head); ggml_type wtype = GGML_TYPE_F32; const int sizeof_wtype = ggml_type_sizef(wtype); for (int il = 0; il < n_block; ++il) { struct ggml_tensor * cur; struct ggml_tensor * layernorm_output; ggml_set_scratch(ctx0, { 0, scr0_size, scr0, }); // self-attention { layernorm_output = ggml_norm(ctx0, inpL); layernorm_output = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.blocks[il].input_layernorm, layernorm_output), layernorm_output), ggml_repeat(ctx0, model.blocks[il].input_layernorm_b, layernorm_output)); if ( hparams.n_head_kv == 8 ) { // Falcon-40B cur = ggml_norm(ctx0, inpL); cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.blocks[il].attention_norm, cur), cur), ggml_repeat(ctx0, model.blocks[il].attention_norm_b, cur)); } else { // Falcon 7B cur = layernorm_output; } // compute QKV cur = ggml_mul_mat(ctx0, model.blocks[il].query_key_value, cur); // Note that the strides for Kcur, Vcur are set up so that the // resulting views are misaligned with the tensor's storage // (by applying the K/V offset we shift the tensor's original // view to stick out behind the viewed QKV tensor's allocated // memory, so to say). This is ok because no actual accesses // happen to that out-of-range memory, but it can require some // trickery when trying to accurately dump these views for // debugging. struct ggml_tensor * Qcur = ggml_view_3d( ctx0, cur, head_dim, n_head, N, head_dim * sizeof_wtype, head_dim * (n_head + 2 * n_head_kv) * sizeof_wtype, 0); struct ggml_tensor * Kcur = ggml_view_3d( ctx0, cur, head_dim, n_head_kv, N, head_dim * sizeof_wtype, head_dim * (n_head + 2 * n_head_kv) * sizeof_wtype, head_dim * n_head * sizeof_wtype); struct ggml_tensor * Vcur = ggml_view_3d( ctx0, cur, head_dim, n_head_kv, N, head_dim * sizeof_wtype, head_dim * (n_head + 2 * n_head_kv) * sizeof_wtype, head_dim * (n_head + n_head_kv) * sizeof_wtype); // using mode = 2 for neox mode Qcur = ggml_rope_inplace(ctx0, Qcur, n_past, head_dim, 2, 0); Kcur = ggml_rope_inplace(ctx0, Kcur, n_past, head_dim, 2, 0); // store key and value to memory { struct ggml_tensor* k = ggml_view_1d( ctx0, model.memory_k, N * n_head_kv * head_dim, (ggml_element_size(model.memory_k) * n_head_kv * head_dim) * (il * n_ctx + n_past)); struct ggml_tensor* v = ggml_view_1d( ctx0, model.memory_v, N * n_head_kv * head_dim, (ggml_element_size(model.memory_v) * n_head_kv * head_dim) * (il * n_ctx + n_past)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); } struct ggml_tensor * K = ggml_permute( ctx0, ggml_reshape_3d( ctx0, ggml_view_1d(ctx0, model.memory_k, (n_past + N) * n_head_kv * head_dim, il * n_ctx * ggml_element_size(model.memory_k) * n_head_kv * head_dim), head_dim, n_head_kv, n_past + N), 0, 2, 1, 3); // K * Q // K = ggml_cont(ctx0, ggml_repeat2(ctx0, K, repeat_dummy)); struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); // KQ_scaled = KQ / sqrt(n_embd/n_head) struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, ggml_new_f32(ctx0, 1.0f/sqrt(float(head_dim))) ); // KQ_masked = mask_past(KQ_scaled) struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); // KQ = soft_max(KQ_masked) struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous() struct ggml_tensor* V = ggml_permute( ctx0, ggml_reshape_3d( ctx0, ggml_view_1d(ctx0, model.memory_v, (n_past + N) * n_head_kv * head_dim, il * n_ctx * ggml_element_size(model.memory_v) * n_head_kv * head_dim), head_dim, n_head_kv, n_past + N), 0, 2, 1, 3); // V = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_repeat2(ctx0, V, repeat_dummy))); V = ggml_cont(ctx0, ggml_transpose(ctx0, V)); // KQV = transpose(V) * KQ_soft_max struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); // KQV_merged = KQV.permute(0, 2, 1, 3) struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); // cur = KQV_merged.contiguous().view(n_embd, N) cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); // projection { cur = ggml_mul_mat(ctx0, model.blocks[il].wo, cur); } } ggml_set_scratch(ctx0, { 0, scr1_size, scr1, }); struct ggml_tensor* inpFF = layernorm_output; struct ggml_tensor* attn_out = ggml_cpy( ctx0, cur, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); { cur = ggml_mul_mat(ctx0, model.blocks[il].ffn_up, inpFF); cur = ggml_gelu(ctx0, cur); cur = ggml_mul_mat(ctx0, model.blocks[il].ffn_down, cur); } cur = ggml_add(ctx0, cur, attn_out); cur = ggml_add(ctx0, cur, inpL); // input for next layer inpL = cur; } ggml_set_scratch(ctx0, { 0, scr0_size, scr0, }); // norm { inpL = ggml_norm(ctx0, inpL); // inpL = ln_f_g*inpL + ln_f_b inpL = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.output_norm, inpL), inpL), ggml_repeat(ctx0, model.output_norm_b, inpL)); } ggml_set_scratch(ctx0, { 0, 0, nullptr, }); // lm_head { inpL = ggml_mul_mat(ctx0, model.lm_head, inpL); //inpL = ggml_add(ctx0, // ggml_repeat(ctx0, model.lmh_b, inpL), // inpL); } // logits -> probs //inpL = ggml_soft_max_inplace(ctx0, inpL); // run the computation ggml_build_forward_expand(&gf, inpL); // ggml_graph_compute (ctx0, &gf); ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); //if (n_past%100 == 0) { // ggml_graph_print (&gf); // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot"); //} // return result for just the last token embd_w.resize(n_vocab); memcpy(embd_w.data(), (float *)ggml_get_data(inpL) + (n_vocab * (N - 1)), sizeof(float) * n_vocab); if (mem_per_token == 0) { mem_per_token = ggml_used_mem(ctx0)/N; } //printf("used_mem = %zu\n", ggml_used_mem(ctx0)); ggml_free(ctx0); return true; } int main(int argc, char ** argv) { ggml_time_init(); const int64_t t_main_start_us = ggml_time_us(); gpt_params params; if (!gpt_params_parse(argc, argv, params)) { return 1; } int64_t t_load_us = 0; gpt2bpe_vocab vocab; falcon_model model; // load the model { const int64_t t_start_us = ggml_time_us(); if (!falcon_model_load(params.model, model, vocab)) { fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); return 1; } t_load_us = ggml_time_us() - t_start_us; } if (params.seed < 0) { params.seed = time(NULL); } if (params.top_k == 0) { params.top_k = model.hparams.n_vocab; } printf("%s: seed = %d\n", __func__, params.seed); printf("%s: temp = %.3f\n", __func__, params.temp); printf("%s: top_k = %d\n", __func__, params.top_k); printf("%s: top_p = %.3f\n", __func__, params.top_p); printf("%s: repeat_last_n = %d\n", __func__, params.repeat_last_n); printf("%s: repeat_penalty = %.3f\n", __func__, params.repeat_penalty); std::mt19937 rng(params.seed); if (params.prompt.empty()) { params.prompt = "Once upon"; } std::vector<int32_t> last_n_tokens(model.hparams.n_ctx); std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0); int n_past = 0; int64_t t_sample_us = 0; int64_t t_predict_us = 0; std::vector<float> logits; // tokenize the prompt std::vector<gpt2bpe_vocab::id> embd_inp = gpt2bpe_tokenize(vocab, params.prompt,false, false); params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size()); printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); // for (size_t i = 0; i < embd_inp.size(); i++) { // printf("%s: token[%zu] = %6d, %s\n", __func__, i, embd_inp[i], vocab.id_to_token[embd_inp[i]].c_str()); // } if( model.hparams.n_ctx < params.n_predict+embd_inp.size() ) { params.n_predict = model.hparams.n_ctx-embd_inp.size(); } printf("%s: n_predict = %d\n", __func__, params.n_predict); printf("\n"); std::vector<gpt2bpe_vocab::id> embd; // determine the required inference memory per token: size_t mem_per_token = 0; falcon_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token); for (size_t i = embd.size(); i < embd_inp.size() + params.n_predict; i++) { // predict if (embd.size() > 0) { const int64_t t_start_us = ggml_time_us(); if (!falcon_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) { printf("Failed to predict\n"); return 1; } t_predict_us += ggml_time_us() - t_start_us; } n_past += embd.size(); embd.clear(); if (i >= embd_inp.size()) { // sample next token const int top_k = params.top_k; const float top_p = params.top_p; const float temp = params.temp; const int repeat_last_n = params.repeat_last_n; const float repeat_penalty = params.repeat_penalty; const int n_vocab = model.hparams.n_vocab; gpt2bpe_vocab::id id = 0; { const int64_t t_start_sample_us = ggml_time_us(); id = sample_top_k_top_p_repeat(vocab, logits.data() + (logits.size() - n_vocab), last_n_tokens.data(), last_n_tokens.size(), top_k, top_p, temp, repeat_last_n, repeat_penalty, rng); last_n_tokens.erase(last_n_tokens.begin()); last_n_tokens.push_back(id); t_sample_us += ggml_time_us() - t_start_sample_us; } // add it to the context embd.push_back(id); } else { // if here, it means we are still processing the input prompt for (size_t k = i; k < embd_inp.size(); k++) { embd.push_back(embd_inp[k]); if (embd.size() > params.n_batch) { break; } } i += embd.size() - 1; } // display text for (auto id : embd) { printf("%s", vocab.id_to_token[id].c_str() ); } fflush(stdout); // end of text token if (vocab.special_eos_id != -1 && embd.back() == vocab.special_eos_id) { break; } } // report timing { const int64_t t_main_end_us = ggml_time_us(); printf("\n\n"); printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token); printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f); printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f); printf("%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past); printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f); } ggml_free(model.ctx); return 0; }