#import "ggml-metal.h" #import "ggml.h" #import #import #import #undef MIN #undef MAX #define MIN(a, b) ((a) < (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b)) #ifdef GGML_METAL_NDEBUG #define metal_printf(...) #else #define metal_printf(...) fprintf(stderr, __VA_ARGS__) #endif #define UNUSED(x) (void)(x) #define GGML_MAX_CONCUR (2*GGML_MAX_NODES) struct ggml_metal_buffer { const char * name; void * data; size_t size; id metal; }; struct ggml_metal_context { int n_cb; float * logits; id device; id queue; id library; int n_buffers; struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS]; int concur_list[GGML_MAX_CONCUR]; int concur_list_len; // custom kernels #define GGML_METAL_DECL_KERNEL(name) \ id function_##name; \ id pipeline_##name GGML_METAL_DECL_KERNEL(add); GGML_METAL_DECL_KERNEL(add_row); // TODO: avoid this extra kernel, instead extend the "add" kernel to support broadcast GGML_METAL_DECL_KERNEL(mul); GGML_METAL_DECL_KERNEL(mul_row); // TODO: avoid this extra kernel, instead extend the "mul" kernel to support broadcast GGML_METAL_DECL_KERNEL(scale); GGML_METAL_DECL_KERNEL(silu); GGML_METAL_DECL_KERNEL(relu); GGML_METAL_DECL_KERNEL(gelu); GGML_METAL_DECL_KERNEL(soft_max); GGML_METAL_DECL_KERNEL(diag_mask_inf); GGML_METAL_DECL_KERNEL(get_rows_f16); GGML_METAL_DECL_KERNEL(get_rows_q4_0); GGML_METAL_DECL_KERNEL(get_rows_q4_1); GGML_METAL_DECL_KERNEL(get_rows_q2_K); GGML_METAL_DECL_KERNEL(get_rows_q3_K); GGML_METAL_DECL_KERNEL(get_rows_q4_K); GGML_METAL_DECL_KERNEL(get_rows_q5_K); GGML_METAL_DECL_KERNEL(get_rows_q6_K); GGML_METAL_DECL_KERNEL(rms_norm); GGML_METAL_DECL_KERNEL(norm); GGML_METAL_DECL_KERNEL(mul_mat_f16_f32); GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32); GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32); GGML_METAL_DECL_KERNEL(mul_mat_q2_K_f32); GGML_METAL_DECL_KERNEL(mul_mat_q3_K_f32); GGML_METAL_DECL_KERNEL(mul_mat_q4_K_f32); GGML_METAL_DECL_KERNEL(mul_mat_q5_K_f32); GGML_METAL_DECL_KERNEL(mul_mat_q6_K_f32); GGML_METAL_DECL_KERNEL(rope); GGML_METAL_DECL_KERNEL(alibi_f32); GGML_METAL_DECL_KERNEL(cpy_f32_f16); GGML_METAL_DECL_KERNEL(cpy_f32_f32); GGML_METAL_DECL_KERNEL(cpy_f16_f16); #undef GGML_METAL_DECL_KERNEL }; // MSL code // TODO: move the contents here when ready // for now it is easier to work in a separate file static NSString * const msl_library_source = @"see metal.metal"; // Here to assist with NSBundle Path Hack @interface GGMLMetalClass : NSObject @end @implementation GGMLMetalClass @end struct ggml_metal_context * ggml_metal_init(int n_cb) { fprintf(stderr, "%s: allocating\n", __func__); struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context)); ctx->n_cb = n_cb; ctx->device = MTLCreateSystemDefaultDevice(); ctx->queue = [ctx->device newCommandQueue]; ctx->n_buffers = 0; ctx->concur_list_len = 0; // determine if we can use MPS if (MPSSupportsMTLDevice(ctx->device)) { fprintf(stderr, "%s: using MPS\n", __func__); } else { fprintf(stderr, "%s: not using MPS\n", __func__); GGML_ASSERT(false && "MPS not supported"); } #if 0 // compile from source string and show compile log { NSError * error = nil; ctx->library = [ctx->device newLibraryWithSource:msl_library_source options:nil error:&error]; if (error) { fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]); return NULL; } } #else UNUSED(msl_library_source); // read the source from "ggml-metal.metal" into a string and use newLibraryWithSource { NSError * error = nil; //NSString * path = [[NSBundle mainBundle] pathForResource:@"../../examples/metal/metal" ofType:@"metal"]; NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]]; NSString * path = [bundle pathForResource:@"ggml-metal" ofType:@"metal"]; fprintf(stderr, "%s: loading '%s'\n", __func__, [path UTF8String]); NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error]; if (error) { fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]); return NULL; } #ifdef GGML_QKK_64 MTLCompileOptions* options = [MTLCompileOptions new]; options.preprocessorMacros = @{ @"QK_K" : @(64) }; ctx->library = [ctx->device newLibraryWithSource:src options:options error:&error]; #else ctx->library = [ctx->device newLibraryWithSource:src options:nil error:&error]; #endif if (error) { fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]); return NULL; } } #endif // load kernels { #define GGML_METAL_ADD_KERNEL(name) \ ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \ ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:nil]; \ fprintf(stderr, "%s: loaded %-32s %16p\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name); GGML_METAL_ADD_KERNEL(add); GGML_METAL_ADD_KERNEL(add_row); GGML_METAL_ADD_KERNEL(mul); GGML_METAL_ADD_KERNEL(mul_row); GGML_METAL_ADD_KERNEL(scale); GGML_METAL_ADD_KERNEL(silu); GGML_METAL_ADD_KERNEL(relu); GGML_METAL_ADD_KERNEL(gelu); GGML_METAL_ADD_KERNEL(soft_max); GGML_METAL_ADD_KERNEL(diag_mask_inf); GGML_METAL_ADD_KERNEL(get_rows_f16); GGML_METAL_ADD_KERNEL(get_rows_q4_0); GGML_METAL_ADD_KERNEL(get_rows_q4_1); GGML_METAL_ADD_KERNEL(get_rows_q2_K); GGML_METAL_ADD_KERNEL(get_rows_q3_K); GGML_METAL_ADD_KERNEL(get_rows_q4_K); GGML_METAL_ADD_KERNEL(get_rows_q5_K); GGML_METAL_ADD_KERNEL(get_rows_q6_K); GGML_METAL_ADD_KERNEL(rms_norm); GGML_METAL_ADD_KERNEL(norm); GGML_METAL_ADD_KERNEL(mul_mat_f16_f32); GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32); GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32); GGML_METAL_ADD_KERNEL(mul_mat_q2_K_f32); GGML_METAL_ADD_KERNEL(mul_mat_q3_K_f32); GGML_METAL_ADD_KERNEL(mul_mat_q4_K_f32); GGML_METAL_ADD_KERNEL(mul_mat_q5_K_f32); GGML_METAL_ADD_KERNEL(mul_mat_q6_K_f32); GGML_METAL_ADD_KERNEL(rope); GGML_METAL_ADD_KERNEL(alibi_f32); GGML_METAL_ADD_KERNEL(cpy_f32_f16); GGML_METAL_ADD_KERNEL(cpy_f32_f32); GGML_METAL_ADD_KERNEL(cpy_f16_f16); #undef GGML_METAL_ADD_KERNEL } fprintf(stderr, "%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); fprintf(stderr, "%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false"); if (ctx->device.maxTransferRate != 0) { fprintf(stderr, "%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0); } else { fprintf(stderr, "%s: maxTransferRate = built-in GPU\n", __func__); } return ctx; } void ggml_metal_free(struct ggml_metal_context * ctx) { fprintf(stderr, "%s: deallocating\n", __func__); for (int i = 0; i < ctx->n_buffers; ++i) { [ctx->buffers[i].metal release]; } free(ctx); } void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb) { ctx->n_cb = n_cb; } bool ggml_metal_if_optimized(struct ggml_metal_context * ctx) { if (ctx->concur_list_len) { return true; } return false; } // finds the Metal buffer that contains the tensor data on the GPU device // the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the // Metal buffer based on the host memory pointer // static id ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) { //fprintf(stderr, "%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach); const int64_t tsize = ggml_nbytes(t); // find the view that contains the tensor fully for (int i = 0; i < ctx->n_buffers; ++i) { const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data; if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) { *offs = (size_t) ioffs; //fprintf(stderr, "%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs); return ctx->buffers[i].metal; } } fprintf(stderr, "%s: error: buffer is nil\n", __func__); return nil; } bool ggml_metal_add_buffer( struct ggml_metal_context * ctx, const char * name, void * data, size_t size, size_t max_size) { if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) { fprintf(stderr, "%s: too many buffers\n", __func__); return false; } if (data) { // verify that the buffer does not overlap with any of the existing buffers for (int i = 0; i < ctx->n_buffers; ++i) { const int64_t ioffs = (int64_t) data - (int64_t) ctx->buffers[i].data; if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) { fprintf(stderr, "%s: error: buffer '%s' overlaps with '%s'\n", __func__, name, ctx->buffers[i].name); return false; } } const size_t size_page = getpagesize(); size_t size_aligned = size; if ((size_aligned % size_page) != 0) { size_aligned += (size_page - (size_aligned % size_page)); } // the buffer fits into the max buffer size allowed by the device if (size_aligned <= ctx->device.maxBufferLength) { ctx->buffers[ctx->n_buffers].name = name; ctx->buffers[ctx->n_buffers].data = data; ctx->buffers[ctx->n_buffers].size = size; ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil]; if (ctx->buffers[ctx->n_buffers].metal == nil) { fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0); return false; } fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0); ++ctx->n_buffers; } else { // this overlap between the views will guarantee that the tensor with the maximum size will fully fit into // one of the views const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case const size_t size_step = ctx->device.maxBufferLength - size_ovlp; const size_t size_view = ctx->device.maxBufferLength; for (size_t i = 0; i < size; i += size_step) { const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i); ctx->buffers[ctx->n_buffers].name = name; ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i); ctx->buffers[ctx->n_buffers].size = size_step_aligned; ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil]; if (ctx->buffers[ctx->n_buffers].metal == nil) { fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0); return false; } fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i); if (i + size_step < size) { fprintf(stderr, "\n"); } ++ctx->n_buffers; } } fprintf(stderr, ", (%8.2f / %8.2f)", ctx->device.currentAllocatedSize / 1024.0 / 1024.0, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) { fprintf(stderr, ", warning: current allocated size is greater than the recommended max working set size\n"); } else { fprintf(stderr, "\n"); } } return true; } void ggml_metal_set_tensor( struct ggml_metal_context * ctx, struct ggml_tensor * t) { metal_printf("%s: set input for tensor '%s'\n", __func__, t->name); size_t offs; id id_dst = ggml_metal_get_buffer(ctx, t, &offs); memcpy((void *) ((uint8_t *) id_dst.contents + offs), t->data, ggml_nbytes(t)); } void ggml_metal_get_tensor( struct ggml_metal_context * ctx, struct ggml_tensor * t) { metal_printf("%s: extract results for tensor '%s'\n", __func__, t->name); size_t offs; id id_src = ggml_metal_get_buffer(ctx, t, &offs); memcpy(t->data, (void *) ((uint8_t *) id_src.contents + offs), ggml_nbytes(t)); } void ggml_metal_graph_find_concurrency( struct ggml_metal_context * ctx, struct ggml_cgraph * gf) { int search_depth = gf->n_nodes; //we only find concurrency in this range to avoid wasting too much time int nodes_unused[GGML_MAX_CONCUR]; for (int i = 0; i < GGML_MAX_CONCUR; i++) { ctx->concur_list[i] = 0; } for (int i = 0; i < gf->n_nodes; i++) { nodes_unused[i] = 1; } ctx->concur_list_len = 0; int n_left = gf->n_nodes; int n_start = 0; // all nodes before n_start at nodes_unused array have been sorted and store back to ctx->concur_list int level_pos = 0; // at ctx->concur_list, the last layer (level) ends at level_pos while (n_left > 0) { // number of nodes at a layer (that can be issued concurrently) int concurrency = 0; for (int i = n_start; i < ((n_start + search_depth > gf->n_nodes) ? gf->n_nodes : n_start + search_depth); i++) { if (nodes_unused[i]) { // if the requirements for gf->nodes[i] are satisfied int exe_flag = 1; // scan all srcs for (int src_ind = 0; src_ind < GGML_MAX_SRC; src_ind++) { struct ggml_tensor * src_cur = gf->nodes[i]->src[src_ind]; if (src_cur) { // if is leaf nodes it's satisfied. // TODO: ggml_is_leaf() if (src_cur->op == GGML_OP_NONE && src_cur->grad == NULL) { continue; } // otherwise this src should be the output from previous nodes. int is_found = 0; // scan 2*search_depth back because we inserted barrier. //for (int j = ((level_pos - 2*search_depth) < 0 ? 0 : (level_pos - 2*search_depth)); j < level_pos; j++) { for (int j = MAX(0, level_pos - 2*search_depth); j < level_pos; j++) { if (ctx->concur_list[j] >= 0 && gf->nodes[ctx->concur_list[j]] == src_cur) { is_found = 1; break; } } if (is_found == 0) { exe_flag = 0; break; } } } if (exe_flag) { // check if nodes[i]'s data will be overwritten by a node before nodes[i]. // if node[5] and node[3] write to the same memory region, then we can't issue node[5] before node[3] int64_t data_start = (int64_t) gf->nodes[i]->data; int64_t length = (int64_t) ggml_nbytes(gf->nodes[i]); for (int j = n_start; j < i; j++) { if (nodes_unused[j] && gf->nodes[j]->op != GGML_OP_RESHAPE \ && gf->nodes[j]->op != GGML_OP_VIEW \ && gf->nodes[j]->op != GGML_OP_TRANSPOSE \ && gf->nodes[j]->op != GGML_OP_PERMUTE) { if (((int64_t)gf->nodes[j]->data) >= data_start + length || \ ((int64_t)gf->nodes[j]->data) + (int64_t) ggml_nbytes(gf->nodes[j]) <= data_start) { continue; } exe_flag = 0; } } } if (exe_flag) { ctx->concur_list[level_pos + concurrency] = i; nodes_unused[i] = 0; concurrency++; ctx->concur_list_len++; } } } n_left -= concurrency; // adding a barrier different layer ctx->concur_list[level_pos + concurrency] = -1; ctx->concur_list_len++; // jump all sorted nodes at nodes_bak while (!nodes_unused[n_start]) { n_start++; } level_pos += concurrency + 1; } if (ctx->concur_list_len > GGML_MAX_CONCUR) { fprintf(stderr, "%s: too many elements for metal ctx->concur_list!\n", __func__); } } void ggml_metal_graph_compute( struct ggml_metal_context * ctx, struct ggml_cgraph * gf) { metal_printf("%s: evaluating graph\n", __func__); // if there is ctx->concur_list, dispatch concurrently // else fallback to serial dispatch MTLComputePassDescriptor * edesc = MTLComputePassDescriptor.computePassDescriptor; const bool has_concur = ctx->concur_list_len && ctx->concur_list_len <= GGML_MAX_CONCUR; const int n_nodes = has_concur ? ctx->concur_list_len : gf->n_nodes; edesc.dispatchType = has_concur ? MTLDispatchTypeConcurrent : MTLDispatchTypeSerial; // create multiple command buffers and enqueue them // then, we encode the graph into the command buffers in parallel const int n_cb = ctx->n_cb; NSMutableArray * command_buffers = [NSMutableArray arrayWithCapacity:n_cb]; for (int i = 0; i < n_cb; ++i) { command_buffers[i] = [ctx->queue commandBuffer]; // enqueue the command buffers in order to specify their execution order [command_buffers[i] enqueue]; } // TODO: is this the best way to start threads? dispatch_queue_t queue = dispatch_queue_create("llama.cpp", DISPATCH_QUEUE_CONCURRENT); for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) { const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb; dispatch_async(queue, ^{ size_t offs_src0 = 0; size_t offs_src1 = 0; size_t offs_dst = 0; id command_buffer = command_buffers[cb_idx]; id encoder = nil; const int node_start = (cb_idx + 0) * n_nodes_per_cb; const int node_end = (cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb; for (int ind = node_start; ind < node_end; ++ind) { const int i = has_concur ? ctx->concur_list[ind] : ind; if (i == -1) { if (encoder == nil) { encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; continue; } [encoder memoryBarrierWithScope:MTLBarrierScopeBuffers]; continue; } metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op)); struct ggml_tensor * src0 = gf->nodes[i]->src[0]; struct ggml_tensor * src1 = gf->nodes[i]->src[1]; struct ggml_tensor * dst = gf->nodes[i]; const int64_t ne00 = src0 ? src0->ne[0] : 0; const int64_t ne01 = src0 ? src0->ne[1] : 0; const int64_t ne02 = src0 ? src0->ne[2] : 0; const int64_t ne03 = src0 ? src0->ne[3] : 0; const uint64_t nb00 = src0 ? src0->nb[0] : 0; const uint64_t nb01 = src0 ? src0->nb[1] : 0; const uint64_t nb02 = src0 ? src0->nb[2] : 0; const uint64_t nb03 = src0 ? src0->nb[3] : 0; const int64_t ne10 = src1 ? src1->ne[0] : 0; const int64_t ne11 = src1 ? src1->ne[1] : 0; const int64_t ne12 = src1 ? src1->ne[2] : 0; const int64_t ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13); const uint64_t nb10 = src1 ? src1->nb[0] : 0; const uint64_t nb11 = src1 ? src1->nb[1] : 0; const uint64_t nb12 = src1 ? src1->nb[2] : 0; const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13); const int64_t ne0 = dst ? dst->ne[0] : 0; const int64_t ne1 = dst ? dst->ne[1] : 0; const int64_t ne2 = dst ? dst->ne[2] : 0; const int64_t ne3 = dst ? dst->ne[3] : 0; const uint64_t nb0 = dst ? dst->nb[0] : 0; const uint64_t nb1 = dst ? dst->nb[1] : 0; const uint64_t nb2 = dst ? dst->nb[2] : 0; const uint64_t nb3 = dst ? dst->nb[3] : 0; const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT; const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT; const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT; id id_src0 = src0 ? ggml_metal_get_buffer(ctx, src0, &offs_src0) : nil; id id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil; id id_dst = dst ? ggml_metal_get_buffer(ctx, dst, &offs_dst) : nil; //metal_printf("%s: op - %s\n", __func__, ggml_op_name(dst->op)); //if (src0) { // metal_printf("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02, // ggml_is_contiguous(src0), src0->name); //} //if (src1) { // metal_printf("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12, // ggml_is_contiguous(src1), src1->name); //} //if (dst) { // metal_printf("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2, // dst->name); //} switch (dst->op) { case GGML_OP_NONE: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_TRANSPOSE: case GGML_OP_PERMUTE: { // noop } break; case GGML_OP_ADD: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; } if (ggml_nelements(src1) == ne10) { // src1 is a row [encoder setComputePipelineState:ctx->pipeline_add_row]; } else { [encoder setComputePipelineState:ctx->pipeline_add]; } [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_MUL: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; } if (ggml_nelements(src1) == ne10) { // src1 is a row [encoder setComputePipelineState:ctx->pipeline_mul_row]; } else { [encoder setComputePipelineState:ctx->pipeline_mul]; } [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_SCALE: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; } const float scale = *(const float *) src1->data; [encoder setComputePipelineState:ctx->pipeline_scale]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&scale length:sizeof(scale) atIndex:2]; const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_UNARY: switch (ggml_get_unary_op(gf->nodes[i])) { case GGML_UNARY_OP_SILU: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; } [encoder setComputePipelineState:ctx->pipeline_silu]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_UNARY_OP_RELU: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; } [encoder setComputePipelineState:ctx->pipeline_relu]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_UNARY_OP_GELU: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; } [encoder setComputePipelineState:ctx->pipeline_gelu]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; default: { fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); GGML_ASSERT(false); } } break; case GGML_OP_SOFT_MAX: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; } const int nth = 32; [encoder setComputePipelineState:ctx->pipeline_soft_max]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_DIAG_MASK_INF: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; } const int n_past = ((int32_t *)(dst->op_params))[0]; [encoder setComputePipelineState:ctx->pipeline_diag_mask_inf]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; [encoder setBytes:&n_past length:sizeof(int) atIndex:4]; [encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_MUL_MAT: { // TODO: needs to be updated after PR: https://github.com/ggerganov/ggml/pull/224 GGML_ASSERT(ne00 == ne10); // GGML_ASSERT(ne02 == ne12); // Should be checked on individual data types until broadcast is implemented everywhere GGML_ASSERT(ne03 == ne13); if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && (src0t == GGML_TYPE_F32 || src0t == GGML_TYPE_F16) && ne11 > 1) { if (encoder != nil) { [encoder endEncoding]; encoder = nil; } MPSDataType src0dt = src0t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16; MPSDataType src1dt = src1t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16; // for F32 x F32 we use MPS MPSMatrixDescriptor * desc0 = [MPSMatrixDescriptor matrixDescriptorWithRows:ne01 columns:ne00 rowBytes:src0->nb[1] dataType:src0dt]; MPSMatrixDescriptor * desc1 = [MPSMatrixDescriptor matrixDescriptorWithRows:ne11 columns:ne10 rowBytes:src1->nb[1] dataType:src1dt]; MPSMatrixDescriptor * desc = [MPSMatrixDescriptor matrixDescriptorWithRows:ne1 columns:ne0 rowBytes:dst->nb[1] dataType:MPSDataTypeFloat32]; MPSMatrixMultiplication * mul = [[MPSMatrixMultiplication alloc] initWithDevice:ctx->device transposeLeft:false transposeRight:true resultRows:ne11 resultColumns:ne01 interiorColumns:ne00 alpha:1.0 beta:0.0]; // we need to do ne12 multiplications // TODO: is there a way to do this in parallel - currently very slow .. // TODO: might be possible to offload part of the computation to ANE using Accelerate's CBLAS for (int64_t i02 = 0; i02 < ne12; ++i02) { size_t offs_src0_cur = offs_src0 + i02/(ne12/ne02)*nb02; // gqa not used for now size_t offs_src1_cur = offs_src1 + i02*nb12; size_t offs_dst_cur = offs_dst + i02*nb2; MPSMatrix * mat_src0 = [[MPSMatrix alloc] initWithBuffer:id_src0 offset:offs_src0_cur descriptor:desc0]; MPSMatrix * mat_src1 = [[MPSMatrix alloc] initWithBuffer:id_src1 offset:offs_src1_cur descriptor:desc1]; MPSMatrix * mat_dst = [[MPSMatrix alloc] initWithBuffer:id_dst offset:offs_dst_cur descriptor:desc ]; [mul encodeToCommandBuffer:command_buffer leftMatrix:mat_src1 rightMatrix:mat_src0 resultMatrix:mat_dst]; } } else { if (encoder == nil) { encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; } int nth0 = 32; int nth1 = 1; // use custom matrix x vector kernel switch (src0t) { case GGML_TYPE_F16: { nth0 = 64; nth1 = 1; [encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32]; } break; case GGML_TYPE_Q4_0: { GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne12 == 1); nth0 = 8; nth1 = 8; [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_0_f32]; } break; case GGML_TYPE_Q4_1: { GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne12 == 1); nth0 = 8; nth1 = 8; [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_1_f32]; } break; case GGML_TYPE_Q2_K: { GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne12 == 1); nth0 = 2; nth1 = 32; [encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_K_f32]; } break; case GGML_TYPE_Q3_K: { GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne12 == 1); nth0 = 2; nth1 = 32; [encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_K_f32]; } break; case GGML_TYPE_Q4_K: { GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne12 == 1); nth0 = 2; nth1 = 32; [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_K_f32]; } break; case GGML_TYPE_Q5_K: { GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne12 == 1); nth0 = 2; nth1 = 32; [encoder setComputePipelineState:ctx->pipeline_mul_mat_q5_K_f32]; } break; case GGML_TYPE_Q6_K: { GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne12 == 1); nth0 = 2; nth1 = 32; [encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_K_f32]; } break; default: { fprintf(stderr, "Asserting on type %d\n",(int)src0t); GGML_ASSERT(false && "not implemented"); } }; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6]; [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7]; [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8]; [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:9]; [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:10]; [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:11]; [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:12]; [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:13]; [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:14]; [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:15]; [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16]; if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_Q4_K) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7) / 8, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_Q3_K) { #ifdef GGML_QKK_64 [encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; #else [encoder dispatchThreadgroups:MTLSizeMake((ne01+3)/4, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; #endif } else if (src0t == GGML_TYPE_Q5_K) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3) / 4, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_Q6_K) { [encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else { [encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } } } break; case GGML_OP_GET_ROWS: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; } switch (src0->type) { case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break; case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break; case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break; case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_K]; break; case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_K]; break; case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_K]; break; case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_K]; break; case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_K]; break; default: GGML_ASSERT(false && "not implemented"); } [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBytes:&(src0->ne[0]) length:sizeof( int64_t) atIndex:3]; [encoder setBytes:&(src0->nb[1]) length:sizeof(uint64_t) atIndex:4]; [encoder setBytes:&(dst->nb[1]) length:sizeof(uint64_t) atIndex:5]; const int64_t n = ggml_nelements(src1); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_RMS_NORM: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; } float eps; memcpy(&eps, dst->op_params, sizeof(float)); const int nth = 512; [encoder setComputePipelineState:ctx->pipeline_rms_norm]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3]; [encoder setBytes:&eps length:sizeof( float) atIndex:4]; [encoder setThreadgroupMemoryLength:nth/32*sizeof(float) atIndex:0]; const int64_t nrows = ggml_nrows(src0); [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_NORM: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; } const float eps = 1e-5f; const int nth = 256; [encoder setComputePipelineState:ctx->pipeline_norm]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3]; [encoder setBytes:&eps length:sizeof( float) atIndex:4]; [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0]; const int64_t nrows = ggml_nrows(src0); [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_ALIBI: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; } GGML_ASSERT((src0t == GGML_TYPE_F32)); const int n_past = ((int32_t *) dst->op_params)[0]; UNUSED(n_past); const int n_head = ((int32_t *) dst->op_params)[1]; float max_bias; memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); if (__builtin_popcount(n_head) != 1) { GGML_ASSERT(false && "only power-of-two n_head implemented"); } const int n_heads_log2_floor = 1 << (int) floor(log2(n_head)); const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); [encoder setComputePipelineState:ctx->pipeline_alibi_f32]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; [encoder setBytes:&m0 length:sizeof( float) atIndex:18]; const int nth = 32; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_ROPE: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; } const int n_past = ((int32_t *) dst->op_params)[0]; const int n_dims = ((int32_t *) dst->op_params)[1]; const int mode = ((int32_t *) dst->op_params)[2]; float freq_base; float freq_scale; memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float)); memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float)); [encoder setComputePipelineState:ctx->pipeline_rope]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; [encoder setBytes:&n_past length:sizeof( int) atIndex:18]; [encoder setBytes:&n_dims length:sizeof( int) atIndex:19]; [encoder setBytes:&mode length:sizeof( int) atIndex:20]; [encoder setBytes:&freq_base length:sizeof(float) atIndex:21]; [encoder setBytes:&freq_scale length:sizeof(float) atIndex:22]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_DUP: case GGML_OP_CPY: case GGML_OP_CONT: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; } const int nth = 32; switch (src0t) { case GGML_TYPE_F32: { switch (dstt) { case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f16]; break; case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f32]; break; default: GGML_ASSERT(false && "not implemented"); }; } break; case GGML_TYPE_F16: { switch (dstt) { case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f16_f16]; break; case GGML_TYPE_F32: GGML_ASSERT(false && "cpy_f16_f32 not implemented"); break; default: GGML_ASSERT(false && "not implemented"); }; } break; default: GGML_ASSERT(false && "not implemented"); } [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; default: { fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); GGML_ASSERT(false); } } } if (encoder != nil) { [encoder endEncoding]; encoder = nil; } [command_buffer commit]; }); } // wait for all threads to finish dispatch_barrier_sync(queue, ^{}); [command_buffers[n_cb - 1] waitUntilCompleted]; // check status of command buffers // needed to detect if the device ran out-of-memory for example (#1881) for (int i = 0; i < n_cb; i++) { MTLCommandBufferStatus status = (MTLCommandBufferStatus) [command_buffers[i] status]; if (status != MTLCommandBufferStatusCompleted) { fprintf(stderr, "%s: command buffer %d failed with status %lu\n", __func__, i, status); GGML_ASSERT(false); } } }