#include "ggml.h" #include "llama.h" #ifdef NDEBUG #undef NDEBUG #endif #include <cmath> #include <numeric> #include <cassert> #include <vector> #include <algorithm> static void dump(const llama_token_data_array * candidates) { for (size_t i = 0; i < candidates->size; i++) { printf("%d: %f (%f)\n", candidates->data[i].id, candidates->data[i].p, candidates->data[i].logit); } } #define DUMP(__candidates) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__candidates)); printf("-\n"); } while(0) static void test_top_k(const std::vector<float> & probs, const std::vector<float> & expected_probs, int k) { size_t n_vocab = probs.size(); std::vector<llama_token_data> candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { float logit = log(probs[token_id]); candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); } llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; llama_sample_softmax(nullptr, &candidates_p); DUMP(&candidates_p); llama_sample_top_k(nullptr, &candidates_p, k, 1); DUMP(&candidates_p); GGML_ASSERT(candidates_p.size == expected_probs.size()); for (size_t i = 0; i < candidates_p.size; i++) { GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-5); } } static void test_top_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) { size_t n_vocab = probs.size(); std::vector<llama_token_data> candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { float logit = log(probs[token_id]); candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); } llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; llama_sample_softmax(nullptr, &candidates_p); DUMP(&candidates_p); llama_sample_top_p(nullptr, &candidates_p, p, 1); DUMP(&candidates_p); GGML_ASSERT(candidates_p.size == expected_probs.size()); for (size_t i = 0; i < candidates_p.size; i++) { GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3); } } static void test_tfs(const std::vector<float> & probs, const std::vector<float> & expected_probs, float z) { size_t n_vocab = probs.size(); std::vector<llama_token_data> candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { float logit = log(probs[token_id]); candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); } llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; DUMP(&candidates_p); llama_sample_tail_free(nullptr, &candidates_p, z, 1); DUMP(&candidates_p); GGML_ASSERT(candidates_p.size == expected_probs.size()); for (size_t i = 0; i < candidates_p.size; i++) { GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3); } } static void test_typical(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) { size_t n_vocab = probs.size(); std::vector<llama_token_data> candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { float logit = log(probs[token_id]); candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); } llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; DUMP(&candidates_p); llama_sample_typical(nullptr, &candidates_p, p, 1); DUMP(&candidates_p); GGML_ASSERT(candidates_p.size == expected_probs.size()); for (size_t i = 0; i < candidates_p.size; i++) { GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3); } } static void test_repetition_penalties( const std::vector<float> & probs, const std::vector<llama_token> & last_tokens, const std::vector<float> & expected_probs, float repeat_penalty, float alpha_frequency, float alpha_presence ) { GGML_ASSERT(probs.size() == expected_probs.size()); size_t n_vocab = probs.size(); std::vector<llama_token_data> candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { float logit = log(probs[token_id]); candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); } llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; llama_sample_softmax(nullptr, &candidates_p); DUMP(&candidates_p); llama_sample_repetition_penalties(nullptr, &candidates_p, (const llama_token *) last_tokens.data(), last_tokens.size(), repeat_penalty, alpha_frequency, alpha_presence); llama_sample_softmax(nullptr, &candidates_p); DUMP(&candidates_p); GGML_ASSERT(candidates_p.size == expected_probs.size()); for (size_t i = 0; i < candidates_p.size; i++) { GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3); } } int main(void) { ggml_time_init(); test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 1); test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 3); test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 0); test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f}, 0.7f); test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 0.8f); test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1); test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f}, 0.25f); test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.75f); test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.99f); test_typical({0.97f, 0.01f, 0.01f, 0.01f}, {0.97f}, 0.5f); test_typical({0.4f, 0.2f, 0.2f, 0.2f}, {0.2f, 0.2f, 0.2f}, 0.5f); test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.25f, 0.25f, 0.25f, 0.25f, 0}, 50.0f, 0.0f, 0.0f); test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f); test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f); test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.249997f, 0.249997f, 0.249997f, 0.249997f, 0.000011f}, 1.0f, 5.0f, 5.0f); test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 1.0f, 5.0f, 5.0f); test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 1.0f, 5.0f, 5.0f); printf("OK\n"); return 0; }