#include "common.h" #include "console.h" #include "llama.h" #include <cassert> #include <cinttypes> #include <cmath> #include <cstdio> #include <cstring> #include <ctime> #include <fstream> #include <iostream> #include <sstream> #include <string> #include <vector> #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) #include <signal.h> #include <unistd.h> #elif defined (_WIN32) #define WIN32_LEAN_AND_MEAN #ifndef NOMINMAX #define NOMINMAX #endif #include <windows.h> #include <signal.h> #endif #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif static llama_context ** g_ctx; static llama_model ** g_model; static gpt_sampler ** g_smpl; static gpt_params * g_params; static std::vector<llama_token> * g_input_tokens; static std::ostringstream * g_output_ss; static std::vector<llama_token> * g_output_tokens; static bool is_interacting = false; static bool need_insert_eot = false; static void print_usage(int, char ** argv) { printf("\nexample usage:\n"); printf("\n text generation: %s -m your_model.gguf -p \"I believe the meaning of life is\" -n 128\n", argv[0]); printf("\n chat (conversation): %s -m your_model.gguf -p \"You are a helpful assistant\" -cnv\n", argv[0]); printf("\n"); } static bool file_exists(const std::string & path) { std::ifstream f(path.c_str()); return f.good(); } static bool file_is_empty(const std::string & path) { std::ifstream f; f.exceptions(std::ifstream::failbit | std::ifstream::badbit); f.open(path.c_str(), std::ios::in | std::ios::binary | std::ios::ate); return f.tellg() == 0; } static void write_logfile( const llama_context * ctx, const gpt_params & params, const llama_model * model, const std::vector<llama_token> & input_tokens, const std::string & output, const std::vector<llama_token> & output_tokens ) { if (params.logdir.empty()) { return; } const std::string timestamp = string_get_sortable_timestamp(); const bool success = fs_create_directory_with_parents(params.logdir); if (!success) { fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n", __func__, params.logdir.c_str()); return; } const std::string logfile_path = params.logdir + timestamp + ".yml"; FILE * logfile = fopen(logfile_path.c_str(), "w"); if (logfile == NULL) { fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str()); return; } fprintf(logfile, "binary: main\n"); char model_desc[128]; llama_model_desc(model, model_desc, sizeof(model_desc)); yaml_dump_non_result_info(logfile, params, ctx, timestamp, input_tokens, model_desc); fprintf(logfile, "\n"); fprintf(logfile, "######################\n"); fprintf(logfile, "# Generation Results #\n"); fprintf(logfile, "######################\n"); fprintf(logfile, "\n"); yaml_dump_string_multiline(logfile, "output", output.c_str()); yaml_dump_vector_int(logfile, "output_tokens", output_tokens); llama_perf_dump_yaml(logfile, ctx); fclose(logfile); } #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32) static void sigint_handler(int signo) { if (signo == SIGINT) { if (!is_interacting && g_params->interactive) { is_interacting = true; need_insert_eot = true; } else { console::cleanup(); printf("\n"); gpt_perf_print(*g_ctx, *g_smpl); write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens); _exit(130); } } } #endif static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) { (void) level; (void) user_data; LOG_TEE("%s", text); } static std::string chat_add_and_format(struct llama_model * model, std::vector<llama_chat_msg> & chat_msgs, std::string role, std::string content) { llama_chat_msg new_msg{role, content}; auto formatted = llama_chat_format_single(model, g_params->chat_template, chat_msgs, new_msg, role == "user"); chat_msgs.push_back({role, content}); LOG("formatted: %s\n", formatted.c_str()); return formatted; } int main(int argc, char ** argv) { gpt_params params; g_params = ¶ms; auto options = gpt_params_parser_init(params, LLAMA_EXAMPLE_MAIN, print_usage); if (!gpt_params_parse(argc, argv, params, options)) { return 1; } auto & sparams = params.sparams; #ifndef LOG_DISABLE_LOGS log_set_target(log_filename_generator("main", "log")); LOG_TEE("Log start\n"); log_dump_cmdline(argc, argv); llama_log_set(llama_log_callback_logTee, nullptr); #endif // LOG_DISABLE_LOGS // TODO: Dump params ? //LOG("Params perplexity: %s\n", LOG_TOSTR(params.perplexity)); // save choice to use color for later // (note for later: this is a slightly awkward choice) console::init(params.simple_io, params.use_color); atexit([]() { console::cleanup(); }); if (params.logits_all) { printf("\n************\n"); printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__); printf("************\n\n"); return 0; } if (params.embedding) { printf("\n************\n"); printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__); printf("************\n\n"); return 0; } if (params.n_ctx != 0 && params.n_ctx < 8) { LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__); params.n_ctx = 8; } if (params.rope_freq_base != 0.0) { LOG_TEE("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base); } if (params.rope_freq_scale != 0.0) { LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale); } print_build_info(); LOG_TEE("%s: seed = %u\n", __func__, params.sparams.seed); LOG("%s: llama backend init\n", __func__); llama_backend_init(); llama_numa_init(params.numa); llama_model * model = nullptr; llama_context * ctx = nullptr; gpt_sampler * smpl = nullptr; std::vector<llama_chat_msg> chat_msgs; g_model = &model; g_ctx = &ctx; g_smpl = &smpl; // load the model and apply lora adapter, if any LOG("%s: load the model and apply lora adapter, if any\n", __func__); llama_init_result llama_init = llama_init_from_gpt_params(params); model = llama_init.model; ctx = llama_init.context; if (model == NULL) { LOG_TEE("%s: error: unable to load model\n", __func__); return 1; } LOG("%s: llama threadpool init = n_threads = %d\n", __func__, (int) params.cpuparams.n_threads ); struct ggml_threadpool_params tpp_batch = ggml_threadpool_params_from_cpu_params(params.cpuparams_batch); struct ggml_threadpool_params tpp = ggml_threadpool_params_from_cpu_params(params.cpuparams); set_process_priority(params.cpuparams.priority); struct ggml_threadpool * threadpool_batch = NULL; if (!ggml_threadpool_params_match(&tpp, &tpp_batch)) { threadpool_batch = ggml_threadpool_new(&tpp_batch); if (!threadpool_batch) { LOG_TEE("%s: batch threadpool create failed : n_threads %d\n", __func__, tpp_batch.n_threads); exit(1); } // Start the non-batch threadpool in the paused state tpp.paused = true; } struct ggml_threadpool * threadpool = ggml_threadpool_new(&tpp); if (!threadpool) { LOG_TEE("%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads); exit(1); } llama_attach_threadpool(ctx, threadpool, threadpool_batch); const int n_ctx_train = llama_n_ctx_train(model); const int n_ctx = llama_n_ctx(ctx); LOG("n_ctx: %d\n", n_ctx); if (n_ctx > n_ctx_train) { LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx); } // print chat template example in conversation mode if (params.conversation) { if (params.enable_chat_template) { LOG_TEE("%s: chat template example: %s\n", __func__, llama_chat_format_example(model, params.chat_template).c_str()); } else { LOG_TEE("%s: in-suffix/prefix is specified, chat template will be disabled\n", __func__); } } // print system information { LOG_TEE("\n"); LOG_TEE("%s\n", gpt_params_get_system_info(params).c_str()); } std::string path_session = params.path_prompt_cache; std::vector<llama_token> session_tokens; if (!path_session.empty()) { LOG_TEE("%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str()); if (!file_exists(path_session)) { LOG_TEE("%s: session file does not exist, will create.\n", __func__); } else if (file_is_empty(path_session)) { LOG_TEE("%s: The session file is empty. A new session will be initialized.\n", __func__); } else { // The file exists and is not empty session_tokens.resize(n_ctx); size_t n_token_count_out = 0; if (!llama_state_load_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) { LOG_TEE("%s: error: failed to load session file '%s'\n", __func__, path_session.c_str()); return 1; } session_tokens.resize(n_token_count_out); LOG_TEE("%s: loaded a session with prompt size of %d tokens\n", __func__, (int)session_tokens.size()); } } const bool add_bos = llama_add_bos_token(model); if (!llama_model_has_encoder(model)) { GGML_ASSERT(!llama_add_eos_token(model)); } LOG("add_bos: %d\n", add_bos); std::vector<llama_token> embd_inp; { auto prompt = (params.conversation && params.enable_chat_template && !params.prompt.empty()) ? chat_add_and_format(model, chat_msgs, "system", params.prompt) // format the system prompt in conversation mode : params.prompt; if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) { LOG("tokenize the prompt\n"); embd_inp = ::llama_tokenize(ctx, prompt, true, true); } else { LOG("use session tokens\n"); embd_inp = session_tokens; } LOG("prompt: \"%s\"\n", log_tostr(prompt)); LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str()); } // Should not run without any tokens if (embd_inp.empty()) { if (add_bos) { embd_inp.push_back(llama_token_bos(model)); LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str()); } else { LOG_TEE("error: input is empty\n"); return -1; } } // Tokenize negative prompt if ((int) embd_inp.size() > n_ctx - 4) { LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4); return 1; } // debug message about similarity of saved session, if applicable size_t n_matching_session_tokens = 0; if (!session_tokens.empty()) { for (llama_token id : session_tokens) { if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) { break; } n_matching_session_tokens++; } if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) { LOG_TEE("%s: using full prompt from session file\n", __func__); } else if (n_matching_session_tokens >= embd_inp.size()) { LOG_TEE("%s: session file has exact match for prompt!\n", __func__); } else if (n_matching_session_tokens < (embd_inp.size() / 2)) { LOG_TEE("%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n", __func__, n_matching_session_tokens, embd_inp.size()); } else { LOG_TEE("%s: session file matches %zu / %zu tokens of prompt\n", __func__, n_matching_session_tokens, embd_inp.size()); } // remove any "future" tokens that we might have inherited from the previous session llama_kv_cache_seq_rm(ctx, -1, n_matching_session_tokens, -1); } LOGLN( "recalculate the cached logits (check): embd_inp.empty() %s, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu", log_tostr(embd_inp.empty()), n_matching_session_tokens, embd_inp.size(), session_tokens.size()); // if we will use the cache for the full prompt without reaching the end of the cache, force // reevaluation of the last token to recalculate the cached logits if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() && session_tokens.size() > embd_inp.size()) { LOGLN("recalculate the cached logits (do): session_tokens.resize( %zu )", embd_inp.size() - 1); session_tokens.resize(embd_inp.size() - 1); } // number of tokens to keep when resetting context if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) { params.n_keep = (int)embd_inp.size(); } else { params.n_keep += add_bos; // always keep the BOS token } if (params.conversation) { params.interactive_first = true; } // enable interactive mode if interactive start is specified if (params.interactive_first) { params.interactive = true; } if (params.verbose_prompt) { LOG_TEE("\n"); LOG_TEE("%s: prompt: '%s'\n", __func__, params.prompt.c_str()); LOG_TEE("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); for (int i = 0; i < (int) embd_inp.size(); i++) { LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str()); } if (params.n_keep > add_bos) { LOG_TEE("%s: static prompt based on n_keep: '", __func__); for (int i = 0; i < params.n_keep; i++) { LOG_TEE("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str()); } LOG_TEE("'\n"); } LOG_TEE("\n"); } // ctrl+C handling { #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) struct sigaction sigint_action; sigint_action.sa_handler = sigint_handler; sigemptyset (&sigint_action.sa_mask); sigint_action.sa_flags = 0; sigaction(SIGINT, &sigint_action, NULL); #elif defined (_WIN32) auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL { return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false; }; SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true); #endif } if (params.interactive) { LOG_TEE("%s: interactive mode on.\n", __func__); if (!params.antiprompt.empty()) { for (const auto & antiprompt : params.antiprompt) { LOG_TEE("Reverse prompt: '%s'\n", antiprompt.c_str()); if (params.verbose_prompt) { auto tmp = ::llama_tokenize(ctx, antiprompt, false, true); for (int i = 0; i < (int) tmp.size(); i++) { LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str()); } } } } if (params.input_prefix_bos) { LOG_TEE("Input prefix with BOS\n"); } if (!params.input_prefix.empty()) { LOG_TEE("Input prefix: '%s'\n", params.input_prefix.c_str()); if (params.verbose_prompt) { auto tmp = ::llama_tokenize(ctx, params.input_prefix, true, true); for (int i = 0; i < (int) tmp.size(); i++) { LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str()); } } } if (!params.input_suffix.empty()) { LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str()); if (params.verbose_prompt) { auto tmp = ::llama_tokenize(ctx, params.input_suffix, false, true); for (int i = 0; i < (int) tmp.size(); i++) { LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str()); } } } } smpl = gpt_sampler_init(model, sparams); if (!smpl) { fprintf(stderr, "%s: failed to initialize sampling subsystem\n", __func__); exit(1); } LOG_TEE("sampling params: \n%s\n", sparams.print().c_str()); LOG_TEE(" sampler constr: \n%s\n", gpt_sampler_print(smpl).c_str()); LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep); // group-attention state // number of grouped KV tokens so far (used only if params.grp_attn_n > 1) int ga_i = 0; const int ga_n = params.grp_attn_n; const int ga_w = params.grp_attn_w; if (ga_n != 1) { GGML_ASSERT(ga_n > 0 && "grp_attn_n must be positive"); // NOLINT GGML_ASSERT(ga_w % ga_n == 0 && "grp_attn_w must be a multiple of grp_attn_n"); // NOLINT //GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of grp_attn_w"); // NOLINT //GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * grp_attn_n"); // NOLINT LOG_TEE("self-extend: n_ctx_train = %d, grp_attn_n = %d, grp_attn_w = %d\n", n_ctx_train, ga_n, ga_w); } LOG_TEE("\n\n"); if (params.interactive) { const char * control_message; if (params.multiline_input) { control_message = " - To return control to the AI, end your input with '\\'.\n" " - To return control without starting a new line, end your input with '/'.\n"; } else { control_message = " - Press Return to return control to the AI.\n" " - To return control without starting a new line, end your input with '/'.\n" " - If you want to submit another line, end your input with '\\'.\n"; } LOG_TEE("== Running in interactive mode. ==\n"); #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32) LOG_TEE( " - Press Ctrl+C to interject at any time.\n"); #endif LOG_TEE( "%s\n", control_message); is_interacting = params.interactive_first; } bool is_antiprompt = false; bool input_echo = true; bool display = true; bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < embd_inp.size(); int n_past = 0; int n_remain = params.n_predict; int n_consumed = 0; int n_session_consumed = 0; std::vector<int> input_tokens; g_input_tokens = &input_tokens; std::vector<int> output_tokens; g_output_tokens = &output_tokens; std::ostringstream output_ss; g_output_ss = &output_ss; std::ostringstream assistant_ss; // for storing current assistant message, used in conversation mode // the first thing we will do is to output the prompt, so set color accordingly console::set_display(console::prompt); display = params.display_prompt; std::vector<llama_token> embd; // tokenized antiprompts std::vector<std::vector<llama_token>> antiprompt_ids; antiprompt_ids.reserve(params.antiprompt.size()); for (const std::string & antiprompt : params.antiprompt) { antiprompt_ids.emplace_back(::llama_tokenize(ctx, antiprompt, false, true)); } if (llama_model_has_encoder(model)) { int enc_input_size = embd_inp.size(); llama_token * enc_input_buf = embd_inp.data(); if (llama_encode(ctx, llama_batch_get_one(enc_input_buf, enc_input_size, 0, 0))) { LOG_TEE("%s : failed to eval\n", __func__); return 1; } llama_token decoder_start_token_id = llama_model_decoder_start_token(model); if (decoder_start_token_id == -1) { decoder_start_token_id = llama_token_bos(model); } embd_inp.clear(); embd_inp.push_back(decoder_start_token_id); } while ((n_remain != 0 && !is_antiprompt) || params.interactive) { // predict if (!embd.empty()) { // Note: (n_ctx - 4) here is to match the logic for commandline prompt handling via // --prompt or --file which uses the same value. int max_embd_size = n_ctx - 4; // Ensure the input doesn't exceed the context size by truncating embd if necessary. if ((int) embd.size() > max_embd_size) { const int skipped_tokens = (int) embd.size() - max_embd_size; embd.resize(max_embd_size); console::set_display(console::error); printf("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : ""); console::set_display(console::reset); fflush(stdout); } if (ga_n == 1) { // infinite text generation via context shifting // if we run out of context: // - take the n_keep first tokens from the original prompt (via n_past) // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches if (n_past + (int) embd.size() >= n_ctx) { if (params.n_predict == -2) { LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict); break; } const int n_left = n_past - params.n_keep; const int n_discard = n_left/2; LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n", n_past, n_left, n_ctx, params.n_keep, n_discard); llama_kv_cache_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard); llama_kv_cache_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard); n_past -= n_discard; LOG("after swap: n_past = %d\n", n_past); LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str()); LOG("clear session path\n"); path_session.clear(); } } else { // context extension via Self-Extend while (n_past >= ga_i + ga_w) { const int ib = (ga_n*ga_i)/ga_w; const int bd = (ga_w/ga_n)*(ga_n - 1); const int dd = (ga_w/ga_n) - ib*bd - ga_w; LOG("\n"); LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i, n_past, ib*bd, ga_i + ib*bd, n_past + ib*bd); LOG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n); LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd); llama_kv_cache_seq_add(ctx, 0, ga_i, n_past, ib*bd); llama_kv_cache_seq_div(ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n); llama_kv_cache_seq_add(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd); n_past -= bd; ga_i += ga_w/ga_n; LOG("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", n_past + bd, n_past, ga_i); } } // try to reuse a matching prefix from the loaded session instead of re-eval (via n_past) if (n_session_consumed < (int) session_tokens.size()) { size_t i = 0; for ( ; i < embd.size(); i++) { if (embd[i] != session_tokens[n_session_consumed]) { session_tokens.resize(n_session_consumed); break; } n_past++; n_session_consumed++; if (n_session_consumed >= (int) session_tokens.size()) { ++i; break; } } if (i > 0) { embd.erase(embd.begin(), embd.begin() + i); } } for (int i = 0; i < (int) embd.size(); i += params.n_batch) { int n_eval = (int) embd.size() - i; if (n_eval > params.n_batch) { n_eval = params.n_batch; } LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str()); if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) { LOG_TEE("%s : failed to eval\n", __func__); return 1; } n_past += n_eval; LOG("n_past = %d\n", n_past); // Display total tokens alongside total time if (params.n_print > 0 && n_past % params.n_print == 0) { LOG_TEE("\n\033[31mTokens consumed so far = %d / %d \033[0m\n", n_past, n_ctx); } } if (!embd.empty() && !path_session.empty()) { session_tokens.insert(session_tokens.end(), embd.begin(), embd.end()); n_session_consumed = session_tokens.size(); } } embd.clear(); if ((int) embd_inp.size() <= n_consumed && !is_interacting) { // optionally save the session on first sample (for faster prompt loading next time) if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) { need_to_save_session = false; llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size()); LOG("saved session to %s\n", path_session.c_str()); } const llama_token id = gpt_sampler_sample(smpl, ctx, -1); gpt_sampler_accept(smpl, id, /* apply_grammar= */ true); // LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, smpl->prev.to_vector()).c_str()); embd.push_back(id); // echo this to console input_echo = true; // decrement remaining sampling budget --n_remain; LOG("n_remain: %d\n", n_remain); } else { // some user input remains from prompt or interaction, forward it to processing LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed); while ((int) embd_inp.size() > n_consumed) { embd.push_back(embd_inp[n_consumed]); // push the prompt in the sampling context in order to apply repetition penalties later // for the prompt, we don't apply grammar rules gpt_sampler_accept(smpl, embd_inp[n_consumed], /* apply_grammar= */ false); ++n_consumed; if ((int) embd.size() >= params.n_batch) { break; } } } // display text if (input_echo && display) { for (auto id : embd) { const std::string token_str = llama_token_to_piece(ctx, id, params.special); // Console/Stream Output fprintf(stdout, "%s", token_str.c_str()); // Record Displayed Tokens To Log // Note: Generated tokens are created one by one hence this check if (embd.size() > 1) { // Incoming Requested Tokens input_tokens.push_back(id); } else { // Outgoing Generated Tokens output_tokens.push_back(id); output_ss << token_str; } fflush(stdout); } } // reset color to default if there is no pending user input if (input_echo && (int) embd_inp.size() == n_consumed) { console::set_display(console::reset); display = true; } // if not currently processing queued inputs; if ((int) embd_inp.size() <= n_consumed) { // check for reverse prompt in the last n_prev tokens if (!params.antiprompt.empty()) { const int n_prev = 32; const std::string last_output = gpt_sampler_prev_str(smpl, ctx, n_prev); is_antiprompt = false; // Check if each of the reverse prompts appears at the end of the output. // If we're not running interactively, the reverse prompt might be tokenized with some following characters // so we'll compensate for that by widening the search window a bit. for (std::string & antiprompt : params.antiprompt) { size_t extra_padding = params.interactive ? 0 : 2; size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding) ? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding) : 0; if (last_output.find(antiprompt, search_start_pos) != std::string::npos) { if (params.interactive) { is_interacting = true; } is_antiprompt = true; break; } } // check for reverse prompt using special tokens llama_token last_token = gpt_sampler_last(smpl); for (std::vector<llama_token> ids : antiprompt_ids) { if (ids.size() == 1 && last_token == ids[0]) { if (params.interactive) { is_interacting = true; } is_antiprompt = true; break; } } if (is_antiprompt) { LOG("found antiprompt: %s\n", last_output.c_str()); } } // deal with end of generation tokens in interactive mode if (llama_token_is_eog(model, gpt_sampler_last(smpl))) { LOG("found an EOG token\n"); if (params.interactive) { if (!params.antiprompt.empty()) { // tokenize and inject first reverse prompt const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false, true); embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end()); is_antiprompt = true; } if (params.enable_chat_template) { chat_add_and_format(model, chat_msgs, "assistant", assistant_ss.str()); } is_interacting = true; printf("\n"); } } // if current token is not EOG, we add it to current assistant message if (params.conversation) { const auto id = gpt_sampler_last(smpl); assistant_ss << llama_token_to_piece(ctx, id, false); } if (n_past > 0 && is_interacting) { LOG("waiting for user input\n"); if (params.conversation) { printf("\n> "); } if (params.input_prefix_bos) { LOG("adding input prefix BOS token\n"); embd_inp.push_back(llama_token_bos(model)); } std::string buffer; if (!params.input_prefix.empty() && !params.conversation) { LOG("appending input prefix: '%s'\n", params.input_prefix.c_str()); printf("%s", params.input_prefix.c_str()); } // color user input only console::set_display(console::user_input); display = params.display_prompt; std::string line; bool another_line = true; do { another_line = console::readline(line, params.multiline_input); buffer += line; } while (another_line); // done taking input, reset color console::set_display(console::reset); display = true; // Add tokens to embd only if the input buffer is non-empty // Entering a empty line lets the user pass control back if (buffer.length() > 1) { // append input suffix if any if (!params.input_suffix.empty() && !params.conversation) { LOG("appending input suffix: '%s'\n", params.input_suffix.c_str()); printf("%s", params.input_suffix.c_str()); } LOG("buffer: '%s'\n", buffer.c_str()); const size_t original_size = embd_inp.size(); if (params.escape) { string_process_escapes(buffer); } bool format_chat = params.conversation && params.enable_chat_template; std::string user_inp = format_chat ? chat_add_and_format(model, chat_msgs, "user", std::move(buffer)) : std::move(buffer); // TODO: one inconvenient of current chat template implementation is that we can't distinguish between user input and special tokens (prefix/postfix) const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true); const auto line_inp = ::llama_tokenize(ctx, user_inp, false, format_chat); const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true); LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str()); // if user stop generation mid-way, we must add EOT to finish model's last response if (need_insert_eot && format_chat) { llama_token eot = llama_token_eot(model); embd_inp.push_back(eot == -1 ? llama_token_eos(model) : eot); need_insert_eot = false; } embd_inp.insert(embd_inp.end(), line_pfx.begin(), line_pfx.end()); embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end()); embd_inp.insert(embd_inp.end(), line_sfx.begin(), line_sfx.end()); for (size_t i = original_size; i < embd_inp.size(); ++i) { const llama_token token = embd_inp[i]; output_tokens.push_back(token); output_ss << llama_token_to_piece(ctx, token); } // reset assistant message assistant_ss.str(""); n_remain -= line_inp.size(); LOG("n_remain: %d\n", n_remain); } else { LOG("empty line, passing control back\n"); } input_echo = false; // do not echo this again } if (n_past > 0) { if (is_interacting) { gpt_sampler_reset(smpl); } is_interacting = false; } } // end of generation if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !(params.interactive)) { LOG_TEE(" [end of text]\n"); break; } // In interactive mode, respect the maximum number of tokens and drop back to user input when reached. // We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size). if (params.interactive && n_remain <= 0 && params.n_predict >= 0) { n_remain = params.n_predict; is_interacting = true; } } if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) { LOG_TEE("\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str()); llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size()); } LOG_TEE("\n"); gpt_perf_print(ctx, smpl); write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens); gpt_sampler_free(smpl); llama_free(ctx); llama_free_model(model); llama_backend_free(); ggml_threadpool_free(threadpool); ggml_threadpool_free(threadpool_batch); #ifndef LOG_DISABLE_LOGS LOG_TEE("Log end\n"); #endif // LOG_DISABLE_LOGS return 0; }