# Usage: #! ./llama-server -m some-model.gguf & #! pip install pydantic #! python json-schema-pydantic-example.py from pydantic import BaseModel, TypeAdapter from annotated_types import MinLen from typing import Annotated, List, Optional import json, requests if True: def create_completion(*, response_model=None, endpoint="http://localhost:8080/v1/chat/completions", messages, **kwargs): ''' Creates a chat completion using an OpenAI-compatible endpoint w/ JSON schema support (llama.cpp server, llama-cpp-python, Anyscale / Together...) The response_model param takes a type (+ supports Pydantic) and behaves just as w/ Instructor (see below) ''' if response_model: type_adapter = TypeAdapter(response_model) schema = type_adapter.json_schema() messages = [{ "role": "system", "content": f"You respond in JSON format with the following schema: {json.dumps(schema, indent=2)}" }] + messages response_format={"type": "json_object", "schema": schema} data = requests.post(endpoint, headers={"Content-Type": "application/json"}, json=dict(messages=messages, response_format=response_format, **kwargs)).json() if 'error' in data: raise Exception(data['error']['message']) content = data["choices"][0]["message"]["content"] return type_adapter.validate_json(content) if type_adapter else content else: # This alternative branch uses Instructor + OpenAI client lib. # Instructor support streamed iterable responses, retry & more. # (see https://python.useinstructor.com/) #! pip install instructor openai import instructor, openai client = instructor.patch( openai.OpenAI(api_key="123", base_url="http://localhost:8080"), mode=instructor.Mode.JSON_SCHEMA) create_completion = client.chat.completions.create if __name__ == '__main__': class QAPair(BaseModel): question: str concise_answer: str justification: str stars: Annotated[int, Field(ge=1, le=5)] class PyramidalSummary(BaseModel): title: str summary: str question_answers: Annotated[List[QAPair], MinLen(2)] sub_sections: Optional[Annotated[List['PyramidalSummary'], MinLen(2)]] print("# Summary\n", create_completion( model="...", response_model=PyramidalSummary, messages=[{ "role": "user", "content": f""" You are a highly efficient corporate document summarizer. Create a pyramidal summary of an imaginary internal document about our company processes (starting high-level, going down to each sub sections). Keep questions short, and answers even shorter (trivia / quizz style). """ }]))