#ifndef _GNU_SOURCE #define _GNU_SOURCE #endif #include "build-info.h" #include "common.h" #include "llama.h" #include "grammar-parser.h" #include #include #include #include int main(int argc, char ** argv) { gpt_params params; if (gpt_params_parse(argc, argv, params) == false) { return 1; } if (params.model_draft.empty()) { fprintf(stderr, "%s: error: --model-draft is required\n", __func__); return 1; } #ifndef LOG_DISABLE_LOGS log_set_target(log_filename_generator("speculative", "log")); LOG_TEE("Log start\n"); log_dump_cmdline(argc, argv); #endif // LOG_DISABLE_LOGS // init llama.cpp llama_backend_init(params.numa); llama_model * model_tgt = NULL; llama_model * model_dft = NULL; llama_context * ctx_tgt = NULL; llama_context * ctx_dft = NULL; // load the target model params.perplexity = true; // HACK: enable logits_all = true std::tie(model_tgt, ctx_tgt) = llama_init_from_gpt_params(params); // load the draft model params.model = params.model_draft; std::tie(model_dft, ctx_dft) = llama_init_from_gpt_params(params); // tokenize the prompt std::vector inp; inp = ::llama_tokenize(ctx_tgt, params.prompt, true); const int max_context_size = llama_n_ctx(ctx_tgt); const int max_tokens_list_size = max_context_size - 4; if ((int) inp.size() > max_tokens_list_size) { fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size); return 1; } fprintf(stderr, "\n\n"); for (auto id : inp) { fprintf(stderr, "%s", llama_token_to_piece(ctx_tgt, id).c_str()); } fflush(stderr); const int n_input = inp.size(); const auto t_enc_start = ggml_time_us(); // eval the prompt with both models llama_eval(ctx_tgt, inp.data(), int(inp.size() - 1), 0, params.n_threads); llama_eval(ctx_tgt, &inp.back(), 1, inp.size() - 1, params.n_threads); llama_eval(ctx_dft, inp.data(), int(inp.size()), 0, params.n_threads); const auto t_enc_end = ggml_time_us(); // the 2 models should have the same vocab const int n_ctx = llama_n_ctx(ctx_tgt); const int n_vocab = llama_n_vocab(ctx_tgt); //GGML_ASSERT(n_vocab == llama_n_vocab(ctx_dft)); // how many tokens to draft each time const int n_draft = params.n_draft; int n_predict = 0; int n_drafted = 0; int n_accept = 0; int n_past_tgt = inp.size(); int n_past_dft = inp.size(); std::vector drafted; std::vector last_tokens(n_ctx); std::fill(last_tokens.begin(), last_tokens.end(), 0); for (auto & id : inp) { last_tokens.erase(last_tokens.begin()); last_tokens.push_back(id); } std::vector candidates; candidates.reserve(n_vocab); // used to determine end of generation bool has_eos = false; // grammar stuff struct llama_grammar * grammar_dft = NULL; struct llama_grammar * grammar_tgt = NULL; grammar_parser::parse_state parsed_grammar; std::vector grammar_mem(n_draft, NULL); // if requested - load the grammar, error checking is omitted for brevity if (!params.grammar.empty()) { parsed_grammar = grammar_parser::parse(params.grammar.c_str()); // will be empty (default) if there are parse errors if (parsed_grammar.rules.empty()) { return 1; } std::vector grammar_rules(parsed_grammar.c_rules()); grammar_dft = llama_grammar_init(grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root")); grammar_tgt = llama_grammar_init(grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root")); } const auto t_dec_start = ggml_time_us(); while (true) { LOG("drafted: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_dft, drafted)); int i_dft = 0; while (true) { // sample from the target model const llama_token id = llama_sample_token(ctx_tgt, NULL, grammar_tgt, params, last_tokens, candidates, i_dft); // remember which tokens were sampled - used for repetition penalties during sampling last_tokens.erase(last_tokens.begin()); last_tokens.push_back(id); //LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, last_tokens)); const std::string token_str = llama_token_to_piece(ctx_tgt, id); printf("%s", token_str.c_str()); fflush(stdout); if (id == llama_token_eos(ctx_tgt)) { has_eos = true; } ++n_predict; // check if the draft matches the target if (i_dft < (int) drafted.size() && id == drafted[i_dft]) { LOG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str()); ++n_accept; ++n_past_tgt; ++n_past_dft; ++i_dft; continue; } // the drafted token was rejected or we are out of drafted tokens if (i_dft < (int) drafted.size()) { LOG("the %dth drafted token (%d, '%s') does not match the sampled target token (%d, '%s') - rejected\n", i_dft, drafted[i_dft], llama_token_to_piece(ctx_dft, drafted[i_dft]).c_str(), id, token_str.c_str()); if (grammar_mem[i_dft]) { grammar_dft = llama_grammar_copy(grammar_mem[i_dft]); LOG("restored draft grammar state %d\n", i_dft); } } else { LOG("out of drafted tokens\n"); } llama_eval(ctx_dft, &id, 1, n_past_dft, params.n_threads); ++n_past_dft; drafted.clear(); drafted.push_back(id); if (grammar_dft != NULL) { llama_grammar_accept_token(ctx_dft, grammar_dft, id); } break; } for (int i = 0; i < (int) grammar_mem.size(); ++i) { auto & g = grammar_mem[i]; if (g) { LOG("freeing grammar state %d\n", i); llama_grammar_free(g); g = NULL; } } if (n_predict > params.n_predict || has_eos) { break; } // sample n_draft tokens from the draft model using greedy decoding int n_past_cur = n_past_dft; for (int i = 0; i < n_draft; ++i) { // remember the grammar state if (grammar_dft != NULL) { grammar_mem[i] = llama_grammar_copy(grammar_dft); } float * logits = llama_get_logits(ctx_dft); candidates.clear(); for (llama_token token_id = 0; token_id < n_vocab; token_id++) { candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); } llama_token_data_array cur_p = { candidates.data(), candidates.size(), false }; if (grammar_dft != NULL) { llama_sample_grammar(ctx_dft, &cur_p, grammar_dft); } // computes softmax and sorts the candidates llama_sample_softmax(ctx_dft, &cur_p); for (int i = 0; i < 3; ++i) { LOG(" - draft candidate %3d: %6d (%8.3f) '%s'\n", i, cur_p.data[i].id, cur_p.data[i].p, llama_token_to_piece(ctx_dft, cur_p.data[i].id).c_str()); } // TODO: better logic? if (cur_p.data[0].p < 2*cur_p.data[1].p) { LOG("stopping drafting, probability too low: %8.f < 2*%8.f\n", cur_p.data[0].p, cur_p.data[1].p); break; } // drafted token const llama_token id = cur_p.data[0].id; if (grammar_dft != NULL) { llama_grammar_accept_token(ctx_dft, grammar_dft, id); } drafted.push_back(id); ++n_drafted; // no need to evaluate the last drafted token, since we won't use the result if (i == n_draft - 1) { break; } // evaluate the drafted token on the draft model llama_eval(ctx_dft, &drafted.back(), 1, n_past_cur, params.n_threads); ++n_past_cur; } // evaluate the target model on the drafted tokens llama_eval(ctx_tgt, drafted.data(), drafted.size(), n_past_tgt, params.n_threads); ++n_past_tgt; // the first token is always proposed by the traget model before the speculation loop drafted.erase(drafted.begin()); } auto t_dec_end = ggml_time_us(); LOG_TEE("\n\n"); LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f)); LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f)); // TODO: make sure these numbers are computed correctly LOG_TEE("\n"); LOG_TEE("n_draft = %d\n", n_draft); LOG_TEE("n_predict = %d\n", n_predict); LOG_TEE("n_drafted = %d\n", n_drafted); LOG_TEE("n_accept = %d\n", n_accept); LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted); LOG_TEE("\ndraft:\n"); llama_print_timings(ctx_dft); LOG_TEE("\ntarget:\n"); llama_print_timings(ctx_tgt); llama_free(ctx_tgt); llama_free_model(model_tgt); llama_free(ctx_dft); llama_free_model(model_dft); if (grammar_dft != NULL) { llama_grammar_free(grammar_dft); llama_grammar_free(grammar_tgt); } llama_backend_free(); fprintf(stderr, "\n\n"); return 0; }