#include "ggml-vulkan.h" #ifdef GGML_VULKAN_RUN_TESTS #include <chrono> #endif #include <vulkan/vulkan.hpp> #include <algorithm> #include <cmath> #include <iostream> #include <iomanip> #include <limits> #include <tuple> #include <vector> #include <sstream> #include <utility> #include <memory> #include "ggml.h" #include "ggml-backend-impl.h" #include "ggml-vulkan-shaders.hpp" #define VK_API_VERSION VK_API_VERSION_1_2 #define CEIL_DIV(M, N) (((M) + (N)-1) / (N)) #define VK_VENDOR_ID_AMD 0x1002 #define VK_VENDOR_ID_APPLE 0x106b #define VK_VENDOR_ID_INTEL 0x8086 #define VK_VENDOR_ID_NVIDIA 0x10de #define VK_DEVICE_DESCRIPTOR_POOL_MODE_UNKNOWN 0 #define VK_DEVICE_DESCRIPTOR_POOL_MODE_MULTI 1 #define VK_DEVICE_DESCRIPTOR_POOL_MODE_SINGLE 2 #define VK_NUM_TYPES 16 #define GGML_VK_MAX_NODES 8192 #define MAX_VK_BUFFERS 256 #ifndef K_QUANTS_PER_ITERATION #define K_QUANTS_PER_ITERATION 1 #else static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2"); #endif #define VK_CHECK(err, msg) \ do { \ vk::Result err_ = (err); \ if (err_ != vk::Result::eSuccess) { \ fprintf(stderr, "ggml_vulkan: %s error %s at %s:%d\n", \ #err, to_string(err_).c_str(), __FILE__, __LINE__); \ exit(1); \ } \ } while (0) struct ggml_backend_vk_context; struct vk_queue { uint32_t queue_family_index; vk::Queue queue; vk::CommandPool pool; uint32_t cmd_buffer_idx; std::vector<vk::CommandBuffer> cmd_buffers; vk::PipelineStageFlags stage_flags; }; struct vk_device { vk::PhysicalDevice physical_device; vk::PhysicalDeviceProperties properties; std::string name; uint64_t max_memory_allocation_size; bool fp16; vk::Device device; uint32_t vendor_id; vk_queue compute_queue; vk_queue transfer_queue; bool single_queue; uint32_t descriptor_set_mode; uint32_t subgroup_size; bool uma; ~vk_device() { #ifdef GGML_VULKAN_DEBUG std::cerr << "destroy device " << name << std::endl; #endif device.destroy(); } }; struct vk_buffer_struct { vk::Buffer buffer; vk::DeviceMemory device_memory; vk::MemoryPropertyFlags memory_property_flags; void * ptr; size_t size = 0; ggml_backend_vk_context * ctx; std::shared_ptr<vk_device> device; ~vk_buffer_struct() { if (size == 0) { return; } #ifdef GGML_VULKAN_DEBUG std::cerr << "~vk_buffer_struct(" << buffer << ", " << size << ")" << std::endl; #endif device->device.freeMemory(device_memory); device->device.destroyBuffer(buffer); } }; typedef std::shared_ptr<vk_buffer_struct> vk_buffer; typedef std::weak_ptr<vk_buffer_struct> vk_buffer_ref; struct vk_subbuffer { vk_buffer buffer; uint64_t offset; uint64_t size; }; struct vk_pipeline { std::string name; vk::ShaderModule shader_module; vk::DescriptorSetLayout dsl; std::vector<vk::DescriptorPool> descriptor_pools; std::vector<vk::DescriptorSet> descriptor_sets; uint32_t descriptor_set_idx; vk::PipelineLayout layout; vk::Pipeline pipeline; uint32_t push_constant_size; uint32_t parameter_count; std::array<uint32_t, 3> wg_denoms; uint32_t align; }; struct vk_semaphore { vk::Semaphore s; uint64_t value; }; struct vk_submission { vk::CommandBuffer buffer; std::vector<vk_semaphore> wait_semaphores; std::vector<vk_semaphore> signal_semaphores; }; typedef std::vector<vk_submission> vk_sequence; struct vk_op_push_constants { uint32_t KX; uint32_t KY; float param1; float param2; }; struct vk_op_cpy_push_constants { uint32_t ne; uint32_t ne00; uint32_t ne01; uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t ne10; uint32_t ne11; uint32_t nb10; uint32_t nb11; uint32_t nb12; uint32_t d_offset; }; struct vk_op_diag_mask_push_constants { uint32_t ncols; uint32_t rows_per_channel; int32_t n_past; }; struct vk_op_rope_push_constants { uint32_t ncols; float freq_scale; uint32_t p_delta_rows; float freq_base; float ext_factor; float attn_factor; float corr_dims[4]; }; struct vk_op_rope_neox_push_constants { uint32_t ncols; uint32_t ndims; float freq_scale; uint32_t p_delta_rows; float freq_base; float ext_factor; float attn_factor; float corr_dims[4]; float theta_scale; float inv_ndims; }; // Allow pre-recording command buffers struct vk_staging_memcpy { vk_staging_memcpy(void * _dst, const void * _src, size_t _n) : dst(_dst), src(_src), n(_n) {} void * dst; const void * src; size_t n; }; struct vk_context { size_t idx; vk_submission * s; std::vector<vk_sequence> seqs; ggml_tensor * exit_tensor; std::vector<vk_staging_memcpy> in_memcpys; std::vector<vk_staging_memcpy> out_memcpys; vk_queue * q; }; struct ggml_tensor_extra_gpu { bool ready; size_t ctx_idx; vk_buffer_ref buffer_gpu; uint64_t offset; void reset() { ready = false; ctx_idx = 0; buffer_gpu.reset(); offset = 0; } }; struct ggml_vk_garbage_collector { std::vector<vk_pipeline *> pipelines; std::vector<vk_semaphore> tl_semaphores; std::vector<vk_semaphore> semaphores; std::vector<vk::Event> events; std::vector<vk_buffer> temp_buffers; std::vector<vk_context> contexts; }; struct ggml_backend_vk_context { std::string name; std::weak_ptr<vk_device> device; vk_pipeline pipeline_matmul_f32_l, pipeline_matmul_f32_m, pipeline_matmul_f32_s; vk_pipeline pipeline_matmul_f32_aligned_l, pipeline_matmul_f32_aligned_m, pipeline_matmul_f32_aligned_s; vk_pipeline pipeline_matmul_f16_l, pipeline_matmul_f16_m, pipeline_matmul_f16_s; vk_pipeline pipeline_matmul_f16_aligned_l, pipeline_matmul_f16_aligned_m, pipeline_matmul_f16_aligned_s; vk_pipeline pipeline_matmul_f16_f32_l, pipeline_matmul_f16_f32_m, pipeline_matmul_f16_f32_s; vk_pipeline pipeline_matmul_f16_f32_aligned_l, pipeline_matmul_f16_f32_aligned_m, pipeline_matmul_f16_f32_aligned_s; vk_pipeline pipeline_matmul_split_k_reduce; vk_pipeline pipeline_dequant[VK_NUM_TYPES]; vk_pipeline pipeline_dequant_mul_mat_vec_f32[VK_NUM_TYPES]; vk_pipeline pipeline_mul_mat_vec_p021_f16_f32; vk_pipeline pipeline_mul_mat_vec_nc_f16_f32; vk_pipeline pipeline_get_rows[VK_NUM_TYPES]; vk_pipeline pipeline_get_rows_f32[VK_NUM_TYPES]; vk_pipeline pipeline_mul_f32; vk_pipeline pipeline_add_f32; vk_pipeline pipeline_scale_f32; vk_pipeline pipeline_sqr_f32; vk_pipeline pipeline_clamp_f32; vk_pipeline pipeline_cpy_f32_f32, pipeline_cpy_f32_f16, pipeline_cpy_f16_f16; vk_pipeline pipeline_norm_f32; vk_pipeline pipeline_rms_norm_f32; vk_pipeline pipeline_gelu_f32; vk_pipeline pipeline_silu_f32; vk_pipeline pipeline_relu_f32; vk_pipeline pipeline_diag_mask_inf_f32; vk_pipeline pipeline_soft_max_f32; vk_pipeline pipeline_rope_f32, pipeline_rope_f16; vk_pipeline pipeline_rope_neox_f32, pipeline_rope_neox_f16; size_t semaphore_idx, event_idx; ggml_vk_garbage_collector gc; std::vector<std::tuple<void*, size_t, vk_buffer>> pinned_memory; size_t prealloc_size_qx, prealloc_size_qy, prealloc_size_x, prealloc_size_y, prealloc_size_split_k; vk_buffer prealloc_qx, prealloc_qy, prealloc_x, prealloc_y, prealloc_split_k; vk::Fence fence; vk_buffer staging; size_t staging_size; size_t staging_offset; vk_buffer sync_staging; vk_buffer buffer_pool[MAX_VK_BUFFERS]; vk_context * compute_ctx; vk_context * transfer_ctx; bool disable; bool initialized; size_t idx; }; struct vk_instance { vk::Instance instance; std::vector<size_t> device_indices; std::shared_ptr<vk_device> devices[GGML_VK_MAX_DEVICES]; ggml_backend_t backends[GGML_VK_MAX_DEVICES]; ggml_backend_vk_context contexts[GGML_VK_MAX_DEVICES]; ggml_backend_buffer_type buffer_types[GGML_VK_MAX_DEVICES]; bool initialized[GGML_VK_MAX_DEVICES]; }; #ifdef GGML_VULKAN_CHECK_RESULTS static size_t vk_skip_checks; static size_t vk_output_tensor; static void ggml_vk_print_tensor(ggml_backend * ctx, const ggml_tensor * tensor, const char * name); static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_params * params, ggml_tensor * tensor); static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_params * params, ggml_tensor * tensor); #endif typedef void (*ggml_vk_func_t)(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); static bool vk_instance_initialized = false; static vk_instance vk_instance; GGML_CALL static void ggml_backend_vk_free(ggml_backend_t backend); static void ggml_vk_create_pipeline(ggml_backend_vk_context * ctx, vk_pipeline& pipeline, const std::string& name, size_t spv_size, const void* spv_data, const std::string& entrypoint, uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, std::vector<uint32_t>&& specialization_constants, uint32_t align) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_create_pipeline(" << name << ", " << entrypoint << ", " << parameter_count << ", " << push_constant_size << ", (" << wg_denoms[0] << "," << wg_denoms[1] << "," << wg_denoms[2] << "), specialization_constants, " << align << ")" << std::endl; #endif GGML_ASSERT(parameter_count > 0); GGML_ASSERT(wg_denoms[0] > 0 && wg_denoms[1] > 0 && wg_denoms[2] > 0); // NOLINT pipeline.name = name; pipeline.parameter_count = parameter_count; pipeline.push_constant_size = push_constant_size; pipeline.wg_denoms = wg_denoms; pipeline.align = align; vk::ShaderModuleCreateInfo shader_module_create_info({}, spv_size, reinterpret_cast<const uint32_t *>(spv_data)); pipeline.shader_module = ctx->device.lock()->device.createShaderModule(shader_module_create_info); std::vector<vk::DescriptorSetLayoutBinding> dsl_binding; std::vector<vk::DescriptorBindingFlags> dsl_binding_flags; for (uint32_t i = 0; i < parameter_count; i++) { dsl_binding.push_back({i, vk::DescriptorType::eStorageBuffer, 1, vk::ShaderStageFlagBits::eCompute}); dsl_binding_flags.push_back({}); } vk::DescriptorSetLayoutBindingFlagsCreateInfo dslbfci = { dsl_binding_flags }; vk::PushConstantRange pcr( vk::ShaderStageFlagBits::eCompute, 0, pipeline.push_constant_size ); vk::DescriptorSetLayoutCreateInfo descriptor_set_layout_create_info( {}, dsl_binding); descriptor_set_layout_create_info.setPNext(&dslbfci); pipeline.dsl = ctx->device.lock()->device.createDescriptorSetLayout(descriptor_set_layout_create_info); // Check if device supports multiple descriptors per pool if (ctx->device.lock()->descriptor_set_mode == VK_DEVICE_DESCRIPTOR_POOL_MODE_UNKNOWN) { const uint32_t alloc_count = 2; // Try allocating multiple sets from one pool // This fails on AMD for some reason, so add a fall back to allocating one pool per set vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, pipeline.parameter_count); vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, alloc_count, descriptor_pool_size); vk::DescriptorPool pool = ctx->device.lock()->device.createDescriptorPool(descriptor_pool_create_info); std::vector<vk::DescriptorSetLayout> layouts(alloc_count); for (uint32_t i = 0; i < alloc_count; i++) { layouts[i] = pipeline.dsl; } try { vk::DescriptorSetAllocateInfo descriptor_set_alloc_info(pool, alloc_count, layouts.data()); std::vector<vk::DescriptorSet> sets = ctx->device.lock()->device.allocateDescriptorSets(descriptor_set_alloc_info); } catch(vk::OutOfPoolMemoryError const&) { ctx->device.lock()->descriptor_set_mode = VK_DEVICE_DESCRIPTOR_POOL_MODE_SINGLE; } ctx->device.lock()->device.destroyDescriptorPool(pool); } if (ctx->device.lock()->descriptor_set_mode == VK_DEVICE_DESCRIPTOR_POOL_MODE_MULTI) { vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, pipeline.parameter_count); vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, 128, descriptor_pool_size); pipeline.descriptor_pools.push_back(ctx->device.lock()->device.createDescriptorPool(descriptor_pool_create_info)); } pipeline.descriptor_set_idx = 0; vk::PipelineLayoutCreateInfo pipeline_layout_create_info(vk::PipelineLayoutCreateFlags(), pipeline.dsl, pcr); pipeline.layout = ctx->device.lock()->device.createPipelineLayout(pipeline_layout_create_info); std::vector<vk::SpecializationMapEntry> specialization_entries(specialization_constants.size()); for (size_t i = 0; i < specialization_constants.size(); i++) { specialization_entries[i].constantID = i; specialization_entries[i].offset = i * sizeof(uint32_t); specialization_entries[i].size = sizeof(uint32_t); } vk::SpecializationInfo specialization_info( specialization_entries.size(), specialization_entries.data(), specialization_constants.size() * sizeof(uint32_t), specialization_constants.data() ); vk::PipelineShaderStageCreateInfo pipeline_shader_create_info( vk::PipelineShaderStageCreateFlags(), vk::ShaderStageFlagBits::eCompute, pipeline.shader_module, entrypoint.c_str(), &specialization_info); vk::ComputePipelineCreateInfo compute_pipeline_create_info( vk::PipelineCreateFlags(), pipeline_shader_create_info, pipeline.layout); pipeline.pipeline = ctx->device.lock()->device.createComputePipeline(VK_NULL_HANDLE, compute_pipeline_create_info).value; ctx->gc.pipelines.push_back(&pipeline); } static void ggml_vk_destroy_pipeline(ggml_backend_vk_context * ctx, vk_pipeline * pipeline) { for (auto& pool : pipeline->descriptor_pools) { ctx->device.lock()->device.destroyDescriptorPool(pool); } pipeline->descriptor_pools.clear(); pipeline->descriptor_sets.clear(); pipeline->descriptor_set_idx = 0; ctx->device.lock()->device.destroyDescriptorSetLayout(pipeline->dsl); ctx->device.lock()->device.destroyPipelineLayout(pipeline->layout); ctx->device.lock()->device.destroyShaderModule(pipeline->shader_module); ctx->device.lock()->device.destroyPipeline(pipeline->pipeline); } static void ggml_pipeline_allocate_descriptor_sets(ggml_backend_vk_context * ctx, vk_pipeline& pipeline, uint32_t n) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_pipeline_allocate_descriptor_sets(" << pipeline.name << ", " << n << ")" << std::endl; #endif if (pipeline.descriptor_sets.size() >= pipeline.descriptor_set_idx + n) { // Enough descriptors are available return; } if (ctx->device.lock()->descriptor_set_mode == VK_DEVICE_DESCRIPTOR_POOL_MODE_MULTI) { const uint32_t alloc_count = pipeline.descriptor_set_idx + n - pipeline.descriptor_sets.size(); std::vector<vk::DescriptorSetLayout> layouts(alloc_count); for (uint32_t i = 0; i < alloc_count; i++) { layouts[i] = pipeline.dsl; } vk::DescriptorSetAllocateInfo descriptor_set_alloc_info(pipeline.descriptor_pools[0], alloc_count, layouts.data()); std::vector<vk::DescriptorSet> sets = ctx->device.lock()->device.allocateDescriptorSets(descriptor_set_alloc_info); pipeline.descriptor_sets.insert(pipeline.descriptor_sets.end(), sets.begin(), sets.end()); } else { for (uint32_t i = pipeline.descriptor_sets.size(); i < pipeline.descriptor_set_idx + n; i++) { vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, pipeline.parameter_count); vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, 1, descriptor_pool_size); pipeline.descriptor_pools.push_back(ctx->device.lock()->device.createDescriptorPool(descriptor_pool_create_info)); vk::DescriptorSetAllocateInfo descriptor_set_alloc_info(pipeline.descriptor_pools[i], 1, &pipeline.dsl); std::vector<vk::DescriptorSet> sets = ctx->device.lock()->device.allocateDescriptorSets(descriptor_set_alloc_info); pipeline.descriptor_sets.push_back(sets[0]); } } } static void ggml_pipeline_cleanup(vk_pipeline& pipeline) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_pipeline_cleanup(" << pipeline.name << ")" << std::endl; #endif pipeline.descriptor_set_idx = 0; } static vk::CommandBuffer ggml_vk_create_cmd_buffer(ggml_backend_vk_context * ctx, vk_queue& q) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_create_cmd_buffer()" << std::endl; #endif if (q.cmd_buffers.size() > q.cmd_buffer_idx) { // Reuse command buffer return q.cmd_buffers[q.cmd_buffer_idx++]; } vk::CommandBufferAllocateInfo command_buffer_alloc_info( q.pool, vk::CommandBufferLevel::ePrimary, 1); const std::vector<vk::CommandBuffer> cmd_buffers = ctx->device.lock()->device.allocateCommandBuffers(command_buffer_alloc_info); auto buf = cmd_buffers.front(); q.cmd_buffers.push_back(buf); q.cmd_buffer_idx++; return buf; } static vk_submission ggml_vk_create_submission(ggml_backend_vk_context * ctx, vk_queue& q, std::vector<vk_semaphore> wait_semaphores, std::vector<vk_semaphore> signal_semaphores) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_create_submission()" << std::endl; #endif vk_submission s; s.buffer = ggml_vk_create_cmd_buffer(ctx, q); s.wait_semaphores = std::move(wait_semaphores); s.signal_semaphores = std::move(signal_semaphores); return s; } static void ggml_vk_submit(vk_context * ctx, vk::Fence fence) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_submit(" << ctx->seqs.size() << ", " << fence << ")" << std::endl; #endif if (ctx->seqs.empty()) { return; } std::vector<std::vector<uint64_t>> tl_wait_vals; std::vector<std::vector<uint64_t>> tl_signal_vals; std::vector<std::vector<vk::Semaphore>> tl_wait_semaphores; std::vector<std::vector<vk::Semaphore>> tl_signal_semaphores; std::vector<vk::TimelineSemaphoreSubmitInfo> tl_submit_infos; std::vector<vk::SubmitInfo> submit_infos; int idx = -1; std::vector<std::vector<vk::PipelineStageFlags>> stage_flags; size_t reserve = 0; for (const auto& sequence : ctx->seqs) { reserve += sequence.size(); } // Pre-reserve vectors to prevent reallocation, which invalidates pointers tl_wait_semaphores.reserve(reserve); tl_wait_vals.reserve(reserve); tl_signal_semaphores.reserve(reserve); tl_signal_vals.reserve(reserve); tl_submit_infos.reserve(reserve); submit_infos.reserve(reserve); stage_flags.reserve(reserve); for (const auto& sequence : ctx->seqs) { for (const auto& submission : sequence) { stage_flags.push_back({}); idx++; tl_wait_vals.push_back({}); tl_wait_semaphores.push_back({}); tl_signal_vals.push_back({}); tl_signal_semaphores.push_back({}); for (size_t i = 0; i < submission.wait_semaphores.size(); i++) { stage_flags[idx].push_back(ctx->q->stage_flags); tl_wait_vals[idx].push_back(submission.wait_semaphores[i].value); tl_wait_semaphores[idx].push_back(submission.wait_semaphores[i].s); } for (size_t i = 0; i < submission.signal_semaphores.size(); i++) { tl_signal_vals[idx].push_back(submission.signal_semaphores[i].value); tl_signal_semaphores[idx].push_back(submission.signal_semaphores[i].s); } tl_submit_infos.push_back({ (uint32_t) submission.wait_semaphores.size(), tl_wait_vals[idx].data(), (uint32_t) submission.signal_semaphores.size(), tl_signal_vals[idx].data(), }); tl_submit_infos[idx].sType = vk::StructureType::eTimelineSemaphoreSubmitInfo; tl_submit_infos[idx].pNext = nullptr; vk::SubmitInfo si{ (uint32_t) submission.wait_semaphores.size(), tl_wait_semaphores[idx].data(), stage_flags[idx].data(), 1, &submission.buffer, (uint32_t) submission.signal_semaphores.size(), tl_signal_semaphores[idx].data(), }; si.setPNext(&tl_submit_infos[idx]); submit_infos.push_back(si); } } ctx->q->queue.submit(submit_infos, fence); ctx->seqs.clear(); } static uint32_t ggml_vk_find_queue_family_index(std::vector<vk::QueueFamilyProperties>& queue_family_props, const vk::QueueFlags& required, const vk::QueueFlags& avoid, int32_t compute_index, uint32_t min_num_queues) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_find_queue_family_index()" << std::endl; #endif const uint32_t qfsize = queue_family_props.size(); // Try with avoid preferences first for (uint32_t i = 0; i < qfsize; i++) { if (queue_family_props[i].queueCount >= min_num_queues && (compute_index < 0 || i != (uint32_t) compute_index) && queue_family_props[i].queueFlags & required && !(queue_family_props[i].queueFlags & avoid)) { return i; } } // Fall back to only required for (size_t i = 0; i < qfsize; i++) { if (queue_family_props[i].queueCount >= min_num_queues && (compute_index < 0 || i != (uint32_t) compute_index) && queue_family_props[i].queueFlags & required) { return i; } } // Fall back to reusing compute queue for (size_t i = 0; i < qfsize; i++) { if (queue_family_props[i].queueCount >= min_num_queues && queue_family_props[i].queueFlags & required) { return i; } } // Fall back to ignoring min_num_queries for (size_t i = 0; i < qfsize; i++) { if (queue_family_props[i].queueFlags & required) { return i; } } std::cerr << "ggml_vulkan: No suitable queue family index found." << std::endl; for(auto &q_family : queue_family_props) { std::cerr << "Queue number: " + std::to_string(q_family.queueCount) << " flags: " + to_string(q_family.queueFlags) << std::endl; } abort(); } static void ggml_vk_create_queue(ggml_backend_vk_context * ctx, vk_queue& q, uint32_t queue_family_index, uint32_t queue_index, vk::PipelineStageFlags&& stage_flags) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_create_queue()" << std::endl; #endif q.queue_family_index = queue_family_index; vk::CommandPoolCreateInfo command_pool_create_info_compute(vk::CommandPoolCreateFlags(VK_COMMAND_POOL_CREATE_TRANSIENT_BIT), queue_family_index); q.pool = ctx->device.lock()->device.createCommandPool(command_pool_create_info_compute); q.cmd_buffer_idx = 0; q.queue = ctx->device.lock()->device.getQueue(queue_family_index, queue_index); q.stage_flags = stage_flags; } static vk_context * ggml_vk_create_context(ggml_backend_vk_context * ctx, vk_queue& q) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_create_context()" << std::endl; #endif ctx->gc.contexts.emplace_back(); vk_context * result = &ctx->gc.contexts[ctx->gc.contexts.size() - 1]; memset((void *) result, 0, sizeof(vk_context)); result->idx = ctx->gc.contexts.size() - 1; result->q = &q; return result; } static vk_semaphore * ggml_vk_create_binary_semaphore(ggml_backend_vk_context * ctx) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_create_timeline_semaphore()" << std::endl; #endif vk::SemaphoreTypeCreateInfo tci{ vk::SemaphoreType::eBinary, 0 }; vk::SemaphoreCreateInfo ci{}; ci.setPNext(&tci); vk::Semaphore semaphore = ctx->device.lock()->device.createSemaphore(ci); ctx->gc.semaphores.push_back({ semaphore, 0 }); return &ctx->gc.semaphores[ctx->gc.semaphores.size() - 1]; } static vk_semaphore * ggml_vk_create_timeline_semaphore(ggml_backend_vk_context * ctx) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_create_timeline_semaphore()" << std::endl; #endif if (ctx->semaphore_idx >= ctx->gc.tl_semaphores.size()) { vk::SemaphoreTypeCreateInfo tci{ vk::SemaphoreType::eTimeline, 0 }; vk::SemaphoreCreateInfo ci{}; ci.setPNext(&tci); vk::Semaphore semaphore = ctx->device.lock()->device.createSemaphore(ci); ctx->gc.tl_semaphores.push_back({ semaphore, 0 }); } return &ctx->gc.tl_semaphores[ctx->semaphore_idx++]; } static vk::Event ggml_vk_create_event(ggml_backend_vk_context * ctx) { if (ctx->event_idx >= ctx->gc.events.size()) { ctx->gc.events.push_back(ctx->device.lock()->device.createEvent({})); } return ctx->gc.events[ctx->event_idx++]; } static void ggml_vk_queue_cleanup(ggml_backend_vk_context * ctx, vk_queue& q) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_queue_cleanup()" << std::endl; #endif // Requires command buffers to be done ctx->device.lock()->device.resetCommandPool(q.pool); q.cmd_buffer_idx = 0; } static uint32_t find_properties(const vk::PhysicalDeviceMemoryProperties* mem_props, vk::MemoryRequirements* mem_req, vk::MemoryPropertyFlags flags) { for (uint32_t i = 0; i < mem_props->memoryTypeCount; ++i) { vk::MemoryType memory_type = mem_props->memoryTypes[i]; if ((mem_req->memoryTypeBits & ((uint64_t)1 << i)) && (flags & memory_type.propertyFlags) == flags && mem_props->memoryHeaps[memory_type.heapIndex].size >= mem_req->size) { return static_cast<int32_t>(i); } } return UINT32_MAX; } static vk_buffer ggml_vk_create_buffer(ggml_backend_vk_context * ctx, size_t size, vk::MemoryPropertyFlags req_flags, vk::MemoryPropertyFlags fallback_flags = vk::MemoryPropertyFlags(0)) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_create_buffer(" << size << ", " << to_string(req_flags) << ", " << to_string(fallback_flags) << ")" << std::endl; #endif vk_buffer buf = std::make_shared<vk_buffer_struct>(); if (size == 0) { buf->size = 0; return buf; } buf->size = size; vk::BufferCreateInfo buffer_create_info{ vk::BufferCreateFlags(), size, vk::BufferUsageFlagBits::eStorageBuffer | vk::BufferUsageFlagBits::eTransferSrc | vk::BufferUsageFlagBits::eTransferDst, vk::SharingMode::eExclusive, 0, nullptr, }; buf->buffer = ctx->device.lock()->device.createBuffer(buffer_create_info); vk::MemoryRequirements mem_req = ctx->device.lock()->device.getBufferMemoryRequirements(buf->buffer); vk::PhysicalDeviceMemoryProperties mem_props = ctx->device.lock()->physical_device.getMemoryProperties(); uint32_t memory_type_index = UINT32_MAX; memory_type_index = find_properties(&mem_props, &mem_req, req_flags); buf->memory_property_flags = req_flags; if (memory_type_index == UINT32_MAX && fallback_flags) { memory_type_index = find_properties(&mem_props, &mem_req, fallback_flags); buf->memory_property_flags = fallback_flags; } if (memory_type_index == UINT32_MAX) { ctx->device.lock()->device.destroyBuffer(buf->buffer); buf->size = 0; throw vk::OutOfDeviceMemoryError("No suitable memory type found"); } try { buf->device_memory = ctx->device.lock()->device.allocateMemory({ mem_req.size, memory_type_index }); } catch (const vk::SystemError& e) { // Out of Host/Device memory, clean up buffer ctx->device.lock()->device.destroyBuffer(buf->buffer); buf->size = 0; throw e; } buf->ptr = nullptr; if (buf->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) { buf->ptr = ctx->device.lock()->device.mapMemory(buf->device_memory, 0, VK_WHOLE_SIZE); } ctx->device.lock()->device.bindBufferMemory(buf->buffer, buf->device_memory, 0); buf->ctx = ctx; buf->device = ctx->device.lock(); #ifdef GGML_VULKAN_DEBUG std::cerr << "Created buffer " << buf->buffer << std::endl; #endif return buf; } static vk_buffer ggml_vk_create_buffer_check(ggml_backend_vk_context * ctx, size_t size, vk::MemoryPropertyFlags req_flags, vk::MemoryPropertyFlags fallback_flags = vk::MemoryPropertyFlags(0)) { try { return ggml_vk_create_buffer(ctx, size, req_flags, fallback_flags); } catch (const vk::SystemError& e) { std::cerr << "ggml_vulkan: Memory allocation of size " << size << " failed." << std::endl; std::cerr << "ggml_vulkan: " << e.what() << std::endl; throw e; } } static vk_buffer ggml_vk_create_buffer_device(ggml_backend_vk_context * ctx, size_t size) { vk_buffer buf; try { if (ctx->device.lock()->uma) { // Fall back to host memory type buf = ggml_vk_create_buffer(ctx, size, vk::MemoryPropertyFlagBits::eDeviceLocal, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent); } else { buf = ggml_vk_create_buffer(ctx, size, vk::MemoryPropertyFlagBits::eDeviceLocal); } } catch (const vk::SystemError& e) { std::cerr << "ggml_vulkan: Device memory allocation of size " << size << " failed." << std::endl; std::cerr << "ggml_vulkan: " << e.what() << std::endl; throw e; } return buf; } static void ggml_vk_destroy_buffer(vk_buffer& buf) { buf.reset(); } static vk_subbuffer ggml_vk_subbuffer(vk_buffer& buf) { return { buf, 0, VK_WHOLE_SIZE }; } static void ggml_vk_sync_buffers(vk_context * ctx) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_sync_buffers()" << std::endl; #endif const std::vector<vk::MemoryBarrier> mem_barriers{ { { vk::AccessFlagBits::eMemoryRead | vk::AccessFlagBits::eMemoryWrite }, { vk::AccessFlagBits::eMemoryRead | vk::AccessFlagBits::eMemoryWrite } } }; ctx->s->buffer.pipelineBarrier( ctx->q->stage_flags, ctx->q->stage_flags, {}, mem_barriers, {}, {} ); } static void ggml_vk_wait_events(vk_context * ctx, std::vector<vk::Event>&& events) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_wait_events()" << std::endl; #endif if (events.empty()) { return; } ctx->s->buffer.waitEvents( events, ctx->q->stage_flags, ctx->q->stage_flags, {}, {}, {} ); } static bool ggml_vk_build_shader(ggml_type type) { switch(type) { case GGML_TYPE_F16: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: return true; default: return false; } } static void ggml_vk_load_shaders(ggml_backend_vk_context * ctx) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_load_shaders(" << ctx->name << ")" << std::endl; #endif // mulmat std::initializer_list<uint32_t> warptile_l = { 128, 128, 128, 16, ctx->device.lock()->subgroup_size * 2, 64, 2, 4, 4, ctx->device.lock()->subgroup_size }; std::initializer_list<uint32_t> warptile_m = { 128, 64, 64, 16, ctx->device.lock()->subgroup_size, 32, 2, 4, 2, ctx->device.lock()->subgroup_size }; std::initializer_list<uint32_t> warptile_s = { ctx->device.lock()->subgroup_size, 32, 32, 16, 32, 32, 2, 2, 2, ctx->device.lock()->subgroup_size }; std::array<uint32_t, 3> l_wg_denoms = {128, 128, 1 }; std::array<uint32_t, 3> m_wg_denoms = { 64, 64, 1 }; std::array<uint32_t, 3> s_wg_denoms = { 32, 32, 1 }; uint32_t l_align = 128; uint32_t m_align = 64; uint32_t s_align = 32; if (ctx->device.lock()->fp16) { ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f32_l, "matmul_f32_l", matmul_f32_l_len, matmul_f32_l_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f32_m, "matmul_f32_m", matmul_f32_m_len, matmul_f32_m_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f32_s, "matmul_f32_s", matmul_f32_s_len, matmul_f32_s_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f32_aligned_l, "matmul_f32_aligned_l", matmul_f32_aligned_l_len, matmul_f32_aligned_l_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, l_align); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f32_aligned_m, "matmul_f32_aligned_m", matmul_f32_aligned_m_len, matmul_f32_aligned_m_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, m_align); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f32_aligned_s, "matmul_f32_aligned_s", matmul_f32_aligned_s_len, matmul_f32_aligned_s_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, s_align); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_l, "matmul_f16_l", matmul_f16_l_len, matmul_f16_l_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_m, "matmul_f16_m", matmul_f16_m_len, matmul_f16_m_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_s, "matmul_f16_s", matmul_f16_s_len, matmul_f16_s_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_aligned_l, "matmul_f16_aligned_l", matmul_f16_aligned_l_len, matmul_f16_aligned_l_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, l_align); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_aligned_m, "matmul_f16_aligned_m", matmul_f16_aligned_m_len, matmul_f16_aligned_m_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, m_align); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_aligned_s, "matmul_f16_aligned_s", matmul_f16_aligned_s_len, matmul_f16_aligned_s_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, s_align); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_f32_l, "matmul_f16_f32_l", matmul_f16_f32_l_len, matmul_f16_f32_l_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_f32_m, "matmul_f16_f32_m", matmul_f16_f32_m_len, matmul_f16_f32_m_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_f32_s, "matmul_f16_f32_s", matmul_f16_f32_s_len, matmul_f16_f32_s_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_f32_aligned_l, "matmul_f16_f32_aligned_l", matmul_f16_f32_aligned_l_len, matmul_f16_f32_aligned_l_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, l_align); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_f32_aligned_m, "matmul_f16_f32_aligned_m", matmul_f16_f32_aligned_m_len, matmul_f16_f32_aligned_m_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, m_align); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_f32_aligned_s, "matmul_f16_f32_aligned_s", matmul_f16_f32_aligned_s_len, matmul_f16_f32_aligned_s_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, s_align); } else { ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f32_l, "matmul_f32_l", matmul_f32_l_fp32_len, matmul_f32_l_fp32_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f32_m, "matmul_f32_m", matmul_f32_m_fp32_len, matmul_f32_m_fp32_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f32_s, "matmul_f32_s", matmul_f32_s_fp32_len, matmul_f32_s_fp32_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f32_aligned_l, "matmul_f32_aligned_l", matmul_f32_aligned_l_fp32_len, matmul_f32_aligned_l_fp32_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, l_align); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f32_aligned_m, "matmul_f32_aligned_m", matmul_f32_aligned_m_fp32_len, matmul_f32_aligned_m_fp32_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, m_align); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f32_aligned_s, "matmul_f32_aligned_s", matmul_f32_aligned_s_fp32_len, matmul_f32_aligned_s_fp32_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, s_align); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_l, "matmul_f16_l", matmul_f16_l_fp32_len, matmul_f16_l_fp32_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_m, "matmul_f16_m", matmul_f16_m_fp32_len, matmul_f16_m_fp32_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_s, "matmul_f16_s", matmul_f16_s_fp32_len, matmul_f16_s_fp32_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_aligned_l, "matmul_f16_aligned_l", matmul_f16_aligned_l_fp32_len, matmul_f16_aligned_l_fp32_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, l_align); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_aligned_m, "matmul_f16_aligned_m", matmul_f16_aligned_m_fp32_len, matmul_f16_aligned_m_fp32_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, m_align); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_aligned_s, "matmul_f16_aligned_s", matmul_f16_aligned_s_fp32_len, matmul_f16_aligned_s_fp32_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, s_align); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_f32_l, "matmul_f16_f32_l", matmul_f16_f32_l_fp32_len, matmul_f16_f32_l_fp32_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_f32_m, "matmul_f16_f32_m", matmul_f16_f32_m_fp32_len, matmul_f16_f32_m_fp32_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_f32_s, "matmul_f16_f32_s", matmul_f16_f32_s_fp32_len, matmul_f16_f32_s_fp32_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_f32_aligned_l, "matmul_f16_f32_aligned_l", matmul_f16_f32_aligned_l_fp32_len, matmul_f16_f32_aligned_l_fp32_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, l_align); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_f32_aligned_m, "matmul_f16_f32_aligned_m", matmul_f16_f32_aligned_m_fp32_len, matmul_f16_f32_aligned_m_fp32_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, m_align); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_f32_aligned_s, "matmul_f16_f32_aligned_s", matmul_f16_f32_aligned_s_fp32_len, matmul_f16_f32_aligned_s_fp32_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, s_align); } ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f32", mul_mat_vec_f16_f32_len, mul_mat_vec_f16_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f32", mul_mat_vec_q4_0_f32_len, mul_mat_vec_q4_0_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f32", mul_mat_vec_q4_1_f32_len, mul_mat_vec_q4_1_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f32", mul_mat_vec_q5_0_f32_len, mul_mat_vec_q5_0_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f32", mul_mat_vec_q5_1_f32_len, mul_mat_vec_q5_1_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f32", mul_mat_vec_q8_0_f32_len, mul_mat_vec_q8_0_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_K_f32", mul_mat_vec_q2_K_f32_len, mul_mat_vec_q2_K_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_K_f32", mul_mat_vec_q3_K_f32_len, mul_mat_vec_q3_K_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_K_f32", mul_mat_vec_q4_K_f32_len, mul_mat_vec_q4_K_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_K_f32", mul_mat_vec_q5_K_f32_len, mul_mat_vec_q5_K_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_K_f32", mul_mat_vec_q6_K_f32_len, mul_mat_vec_q6_K_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1); // dequant shaders ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant[GGML_TYPE_F32 ], "f32_to_f16", f32_to_f16_len, f32_to_f16_data, "main", 2, 4 * sizeof(int), { 64, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant[GGML_TYPE_F16 ], "dequant_f16", dequant_f16_len, dequant_f16_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant[GGML_TYPE_Q4_0], "dequant_q4_0", dequant_q4_0_len, dequant_q4_0_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant[GGML_TYPE_Q4_1], "dequant_q4_1", dequant_q4_1_len, dequant_q4_1_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant[GGML_TYPE_Q5_0], "dequant_q5_0", dequant_q5_0_len, dequant_q5_0_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant[GGML_TYPE_Q5_1], "dequant_q5_1", dequant_q5_1_len, dequant_q5_1_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant[GGML_TYPE_Q8_0], "dequant_q8_0", dequant_q8_0_len, dequant_q8_0_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant[GGML_TYPE_Q2_K], "dequant_q2_K", dequant_q2_K_len, dequant_q2_K_data, "main", 2, 4 * sizeof(int), {256 * 64, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant[GGML_TYPE_Q3_K], "dequant_q3_K", dequant_q3_K_len, dequant_q3_K_data, "main", 2, 4 * sizeof(int), {256 * 64, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant[GGML_TYPE_Q4_K], "dequant_q4_K", dequant_q4_K_len, dequant_q4_K_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant[GGML_TYPE_Q5_K], "dequant_q5_K", dequant_q5_K_len, dequant_q5_K_data, "main", 2, 4 * sizeof(int), {256 * 64, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant[GGML_TYPE_Q6_K], "dequant_q6_K", dequant_q6_K_len, dequant_q6_K_data, "main", 2, 4 * sizeof(int), {256 * 64, 1, 1}, {}, 1); // get_rows ggml_vk_create_pipeline(ctx, ctx->pipeline_get_rows[GGML_TYPE_F16 ], "get_rows_f16", get_rows_f16_len, get_rows_f16_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_get_rows[GGML_TYPE_Q4_0], "get_rows_q4_0", get_rows_q4_0_len, get_rows_q4_0_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_get_rows[GGML_TYPE_Q4_1], "get_rows_q4_1", get_rows_q4_1_len, get_rows_q4_1_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_get_rows[GGML_TYPE_Q5_0], "get_rows_q5_0", get_rows_q5_0_len, get_rows_q5_0_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_get_rows[GGML_TYPE_Q5_1], "get_rows_q5_1", get_rows_q5_1_len, get_rows_q5_1_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_get_rows[GGML_TYPE_Q8_0], "get_rows_q8_0", get_rows_q8_0_len, get_rows_q8_0_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_get_rows_f32[GGML_TYPE_F32 ], "get_rows_f16_f32", get_rows_f16_f32_len, get_rows_f16_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_get_rows_f32[GGML_TYPE_Q4_0], "get_rows_q4_0_f32", get_rows_q4_0_f32_len, get_rows_q4_0_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_get_rows_f32[GGML_TYPE_Q4_1], "get_rows_q4_1_f32", get_rows_q4_1_f32_len, get_rows_q4_1_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_get_rows_f32[GGML_TYPE_Q5_0], "get_rows_q5_0_f32", get_rows_q5_0_f32_len, get_rows_q5_0_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_get_rows_f32[GGML_TYPE_Q5_1], "get_rows_q5_1_f32", get_rows_q5_1_f32_len, get_rows_q5_1_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_get_rows_f32[GGML_TYPE_Q8_0], "get_rows_q8_0_f32", get_rows_q8_0_f32_len, get_rows_q8_0_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_split_k_reduce, "split_k_reduce", split_k_reduce_len, split_k_reduce_data, "main", 2, 2 * sizeof(uint32_t), {256, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_mul_mat_vec_p021_f16_f32, "mul_mat_vec_p021_f16_f32", mul_mat_vec_p021_f16_f32_len, mul_mat_vec_p021_f16_f32_data, "main", 3, 6 * sizeof(uint32_t), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_mul_mat_vec_nc_f16_f32, "mul_mat_vec_nc_f16_f32", mul_mat_vec_nc_f16_f32_len, mul_mat_vec_nc_f16_f32_data, "main", 3, 7 * sizeof(uint32_t), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_norm_f32, "norm_f32", norm_f32_len, norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_rms_norm_f32, "rms_norm_f32", rms_norm_f32_len, rms_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_cpy_f32_f32, "cpy_f32_f32", cpy_f32_f32_len, cpy_f32_f32_data, "main", 2, sizeof(vk_op_cpy_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_cpy_f32_f16, "cpy_f32_f16", cpy_f32_f16_len, cpy_f32_f16_data, "main", 2, sizeof(vk_op_cpy_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_cpy_f16_f16, "cpy_f16_f16", cpy_f16_f16_len, cpy_f16_f16_data, "main", 2, sizeof(vk_op_cpy_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_add_f32, "add_f32", add_f32_len, add_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_mul_f32, "mul_f32", mul_f32_len, mul_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_scale_f32, "scale_f32", scale_f32_len, scale_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_sqr_f32, "sqr_f32", sqr_f32_len, sqr_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_clamp_f32, "clamp_f32", clamp_f32_len, clamp_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_gelu_f32, "gelu_f32", gelu_f32_len, gelu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_silu_f32, "silu_f32", silu_f32_len, silu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_relu_f32, "relu_f32", relu_f32_len, relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_diag_mask_inf_f32, "diag_mask_inf_f32", diag_mask_inf_f32_len, diag_mask_inf_f32_data, "main", 2, sizeof(vk_op_diag_mask_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_soft_max_f32, "soft_max_f32", soft_max_f32_len, soft_max_f32_data, "main", 3, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_rope_f32, "rope_f32", rope_f32_len, rope_f32_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_rope_f16, "rope_f16", rope_f16_len, rope_f16_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_rope_neox_f32, "rope_neox_f32", rope_neox_f32_len, rope_neox_f32_data, "main", 3, sizeof(vk_op_rope_neox_push_constants), {1, 512, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->pipeline_rope_neox_f16, "rope_neox_f16", rope_neox_f16_len, rope_neox_f16_data, "main", 3, sizeof(vk_op_rope_neox_push_constants), {1, 512, 1}, {}, 1); } static void ggml_vk_print_gpu_info(size_t idx) { GGML_ASSERT(idx < vk_instance.device_indices.size()); size_t dev_num = vk_instance.device_indices[idx]; #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_print_gpu_info(" << dev_num << ")" << std::endl; #endif GGML_ASSERT(vk_instance.initialized); std::vector<vk::PhysicalDevice> devices = vk_instance.instance.enumeratePhysicalDevices(); if (dev_num >= devices.size()) { std::cerr << "ggml_vulkan: Device with index " << dev_num << " does not exist." << std::endl; throw std::runtime_error("Device not found"); } vk::PhysicalDevice physical_device = devices[dev_num]; std::vector<vk::ExtensionProperties> ext_props = physical_device.enumerateDeviceExtensionProperties(); vk::PhysicalDeviceProperties2 props2; vk::PhysicalDeviceMaintenance3Properties props3; vk::PhysicalDeviceSubgroupProperties subgroup_props; props2.pNext = &props3; props3.pNext = &subgroup_props; physical_device.getProperties2(&props2); const size_t subgroup_size = subgroup_props.subgroupSize; const bool uma = props2.properties.deviceType == vk::PhysicalDeviceType::eIntegratedGpu; bool fp16_storage = false; bool fp16_compute = false; for (auto properties : ext_props) { if (strcmp("VK_KHR_16bit_storage", properties.extensionName) == 0) { fp16_storage = true; } else if (strcmp("VK_KHR_shader_float16_int8", properties.extensionName) == 0) { fp16_compute = true; } } const char* GGML_VULKAN_DISABLE_F16 = getenv("GGML_VULKAN_DISABLE_F16"); bool force_disable_f16 = GGML_VULKAN_DISABLE_F16 != nullptr; bool fp16 = !force_disable_f16 && fp16_storage && fp16_compute; vk::PhysicalDeviceFeatures device_features = physical_device.getFeatures(); VkPhysicalDeviceFeatures2 device_features2; device_features2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2; device_features2.pNext = nullptr; device_features2.features = (VkPhysicalDeviceFeatures)device_features; VkPhysicalDeviceVulkan11Features vk11_features; vk11_features.pNext = nullptr; vk11_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES; device_features2.pNext = &vk11_features; VkPhysicalDeviceVulkan12Features vk12_features; vk12_features.pNext = nullptr; vk12_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES; vk11_features.pNext = &vk12_features; vkGetPhysicalDeviceFeatures2(physical_device, &device_features2); fp16 = fp16 && vk12_features.shaderFloat16; std::string device_name = props2.properties.deviceName.data(); std::cerr << GGML_VK_NAME << idx << ": " << device_name << " | uma: " << uma << " | fp16: " << fp16 << " | warp size: " << subgroup_size << std::endl; if (props2.properties.deviceType == vk::PhysicalDeviceType::eCpu) { std::cerr << "ggml_vulkan: Warning: Device type is CPU. This is probably not the device you want." << std::endl; } } void ggml_vk_instance_init() { if (vk_instance_initialized) { return; } #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_instance_init()" << std::endl; #endif vk::ApplicationInfo app_info{ "ggml-vulkan", 1, nullptr, 0, VK_API_VERSION }; const std::vector<const char*> layers = { #ifdef GGML_VULKAN_VALIDATE "VK_LAYER_KHRONOS_validation", #endif }; const std::vector<const char*> extensions = { #ifdef GGML_VULKAN_VALIDATE "VK_EXT_validation_features", #endif }; vk::InstanceCreateInfo instance_create_info(vk::InstanceCreateFlags(), &app_info, layers, extensions); #ifdef GGML_VULKAN_VALIDATE const std::vector<vk::ValidationFeatureEnableEXT> features_enable = { vk::ValidationFeatureEnableEXT::eBestPractices }; vk::ValidationFeaturesEXT validation_features = { features_enable, {}, }; validation_features.setPNext(nullptr); instance_create_info.setPNext(&validation_features); std::cerr << "ggml_vulkan: Validation layers enabled" << std::endl; #endif vk_instance.instance = vk::createInstance(instance_create_info); memset(vk_instance.initialized, 0, sizeof(bool) * GGML_VK_MAX_DEVICES); size_t num_available_devices = vk_instance.instance.enumeratePhysicalDevices().size(); // Emulate behavior of CUDA_VISIBLE_DEVICES for Vulkan char * devices_env = getenv("GGML_VK_VISIBLE_DEVICES"); if (devices_env != nullptr) { std::string devices(devices_env); std::replace(devices.begin(), devices.end(), ',', ' '); std::stringstream ss(devices); size_t tmp; while (ss >> tmp) { if(tmp >= num_available_devices) { std::cerr << "ggml_vulkan: Invalid device index " << tmp << " in GGML_VK_VISIBLE_DEVICES." << std::endl; throw std::runtime_error("Invalid Vulkan device index"); } vk_instance.device_indices.push_back(tmp); } } else { vk_instance.device_indices.push_back(0); } vk_instance_initialized = true; } void ggml_vk_init(ggml_backend_vk_context * ctx, size_t idx) { GGML_ASSERT(idx < vk_instance.device_indices.size()); size_t dev_num = vk_instance.device_indices[idx]; #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_init(" << ctx->name << ", " << dev_num << ")" << std::endl; #endif ggml_vk_instance_init(); std::vector<vk::PhysicalDevice> devices = vk_instance.instance.enumeratePhysicalDevices(); if (dev_num >= devices.size()) { std::cerr << "ggml_vulkan: Device with index " << dev_num << " does not exist." << std::endl; throw std::runtime_error("Device not found"); } vk_instance.devices[idx] = std::make_shared<vk_device>(); ctx->device = vk_instance.devices[idx]; ctx->device.lock()->physical_device = devices[dev_num]; std::vector<vk::ExtensionProperties> ext_props = ctx->device.lock()->physical_device.enumerateDeviceExtensionProperties(); bool maintenance4_support = false; // Check if maintenance4 is supported for (auto properties : ext_props) { if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) { maintenance4_support = true; } } vk::PhysicalDeviceProperties2 props2; vk::PhysicalDeviceMaintenance3Properties props3; vk::PhysicalDeviceMaintenance4Properties props4; vk::PhysicalDeviceSubgroupProperties subgroup_props; props2.pNext = &props3; props3.pNext = &subgroup_props; if (maintenance4_support) { subgroup_props.pNext = &props4; } ctx->device.lock()->physical_device.getProperties2(&props2); ctx->device.lock()->properties = props2.properties; if (maintenance4_support) { ctx->device.lock()->max_memory_allocation_size = std::min(props3.maxMemoryAllocationSize, props4.maxBufferSize); } else { ctx->device.lock()->max_memory_allocation_size = props3.maxMemoryAllocationSize; } ctx->device.lock()->vendor_id = ctx->device.lock()->properties.vendorID; ctx->device.lock()->subgroup_size = subgroup_props.subgroupSize; ctx->device.lock()->uma = ctx->device.lock()->properties.deviceType == vk::PhysicalDeviceType::eIntegratedGpu; bool fp16_storage = false; bool fp16_compute = false; for (auto properties : ext_props) { if (strcmp("VK_KHR_16bit_storage", properties.extensionName) == 0) { fp16_storage = true; } else if (strcmp("VK_KHR_shader_float16_int8", properties.extensionName) == 0) { fp16_compute = true; } } const char* GGML_VULKAN_DISABLE_F16 = getenv("GGML_VULKAN_DISABLE_F16"); bool force_disable_f16 = GGML_VULKAN_DISABLE_F16 != nullptr; ctx->device.lock()->fp16 = !force_disable_f16 && fp16_storage && fp16_compute; std::vector<vk::QueueFamilyProperties> queue_family_props = ctx->device.lock()->physical_device.getQueueFamilyProperties(); // Try to find a non-graphics compute queue and transfer-focused queues const uint32_t compute_queue_family_index = ggml_vk_find_queue_family_index(queue_family_props, vk::QueueFlagBits::eCompute, vk::QueueFlagBits::eGraphics, -1, 1); const uint32_t transfer_queue_family_index = ggml_vk_find_queue_family_index(queue_family_props, vk::QueueFlagBits::eTransfer, vk::QueueFlagBits::eCompute | vk::QueueFlagBits::eGraphics, compute_queue_family_index, 1); const float priorities[] = { 1.0f, 1.0f }; ctx->device.lock()->single_queue = compute_queue_family_index == transfer_queue_family_index && queue_family_props[compute_queue_family_index].queueCount == 1; std::vector<vk::DeviceQueueCreateInfo> device_queue_create_infos; if (compute_queue_family_index != transfer_queue_family_index) { device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), compute_queue_family_index, 1, priorities}); device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), transfer_queue_family_index, 1, priorities + 1}); } else if(!ctx->device.lock()->single_queue) { device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), compute_queue_family_index, 2, priorities}); } else { device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), compute_queue_family_index, 1, priorities}); } vk::DeviceCreateInfo device_create_info; std::vector<const char *> device_extensions; vk::PhysicalDeviceFeatures device_features = ctx->device.lock()->physical_device.getFeatures(); VkPhysicalDeviceFeatures2 device_features2; device_features2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2; device_features2.pNext = nullptr; device_features2.features = (VkPhysicalDeviceFeatures)device_features; VkPhysicalDeviceVulkan11Features vk11_features; vk11_features.pNext = nullptr; vk11_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES; device_features2.pNext = &vk11_features; VkPhysicalDeviceVulkan12Features vk12_features; vk12_features.pNext = nullptr; vk12_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES; vk11_features.pNext = &vk12_features; vkGetPhysicalDeviceFeatures2(ctx->device.lock()->physical_device, &device_features2); ctx->device.lock()->fp16 = ctx->device.lock()->fp16 && vk12_features.shaderFloat16; if (!vk11_features.storageBuffer16BitAccess) { std::cerr << "ggml_vulkan: device " << GGML_VK_NAME << idx << " does not support 16-bit storage." << std::endl; throw std::runtime_error("Unsupported device"); } device_extensions.push_back("VK_KHR_16bit_storage"); #ifdef GGML_VULKAN_VALIDATE device_extensions.push_back("VK_KHR_shader_non_semantic_info"); #endif if (ctx->device.lock()->fp16) { device_extensions.push_back("VK_KHR_shader_float16_int8"); } ctx->device.lock()->name = ctx->device.lock()->properties.deviceName.data(); device_create_info = { vk::DeviceCreateFlags(), device_queue_create_infos, {}, device_extensions }; device_create_info.setPNext(&device_features2); ctx->device.lock()->device = ctx->device.lock()->physical_device.createDevice(device_create_info); ctx->device.lock()->descriptor_set_mode = VK_DEVICE_DESCRIPTOR_POOL_MODE_UNKNOWN; // Shaders ggml_vk_load_shaders(ctx); // Queues ggml_vk_create_queue(ctx, ctx->device.lock()->compute_queue, compute_queue_family_index, 0, { vk::PipelineStageFlagBits::eComputeShader | vk::PipelineStageFlagBits::eTransfer }); if (!ctx->device.lock()->single_queue) { const uint32_t transfer_queue_index = compute_queue_family_index == transfer_queue_family_index ? 1 : 0; ggml_vk_create_queue(ctx, ctx->device.lock()->transfer_queue, transfer_queue_family_index, transfer_queue_index, { vk::PipelineStageFlagBits::eTransfer }); } else { // TODO: Use pointer or reference to avoid copy ctx->device.lock()->transfer_queue = ctx->device.lock()->compute_queue; } ctx->fence = ctx->device.lock()->device.createFence({}); ctx->compute_ctx = nullptr; ctx->transfer_ctx = nullptr; ctx->disable = false; ctx->initialized = true; ctx->idx = idx; #ifdef GGML_VULKAN_CHECK_RESULTS const char* skip_checks = getenv("GGML_VULKAN_SKIP_CHECKS"); vk_skip_checks = (skip_checks == NULL ? 0 : atoi(skip_checks)); const char* output_tensor = getenv("GGML_VULKAN_OUTPUT_TENSOR"); vk_output_tensor = (output_tensor == NULL ? 0 : atoi(output_tensor)); #endif } static vk_pipeline* ggml_vk_get_to_fp16(ggml_backend_vk_context * ctx, ggml_type type) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_get_to_fp16()" << std::endl; #endif switch (type) { case GGML_TYPE_F32: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: break; default: return nullptr; } return &ctx->pipeline_dequant[type]; } static vk_pipeline* ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context * ctx, ggml_type type) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_get_dequantize_mul_mat_vec()" << std::endl; #endif switch (type) { case GGML_TYPE_F16: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: break; default: return nullptr; } return &ctx->pipeline_dequant_mul_mat_vec_f32[type]; } static vk_buffer ggml_vk_pool_malloc(ggml_backend_vk_context * ctx, size_t size) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_pool_malloc(" << size << ")" << std::endl; #endif int best_i = -1; size_t best_size = std::numeric_limits<size_t>::max(); //smallest unused buffer that fits our needs int worst_i = -1; size_t worst_size = 0; //largest unused buffer seen so far for (int i = 0; i < MAX_VK_BUFFERS; ++i) { vk_buffer &b = ctx->buffer_pool[i]; if (b != nullptr && b->size >= size && b->size < best_size) { best_i = i; best_size = b->size; } if (b != nullptr && b->size > worst_size) { worst_i = i; worst_size = b->size; } } if(best_i != -1) { //found the smallest buffer that fits our needs vk_buffer b = ctx->buffer_pool[best_i]; ctx->buffer_pool[best_i].reset(); return b; } if(worst_i != -1) { //no buffer that fits our needs, resize largest one to save memory vk_buffer& b = ctx->buffer_pool[worst_i]; ggml_vk_destroy_buffer(b); } return ggml_vk_create_buffer_check(ctx, size, vk::MemoryPropertyFlagBits::eDeviceLocal); } static void ggml_vk_pool_free(ggml_backend_vk_context * ctx, vk_buffer& buffer) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_pool_free(" << buffer->size << ")" << std::endl; #endif for (int i = 0; i < MAX_VK_BUFFERS; ++i) { vk_buffer& b = ctx->buffer_pool[i]; if (b == nullptr) { b = buffer; return; } } std::cerr << "ggml_vulkan: WARNING: vk buffer pool full, increase MAX_VK_BUFFERS" << std::endl; ggml_vk_destroy_buffer(buffer); } // Returns an available temporary buffer that may only be used temporarily, it will be reused static vk_buffer ggml_vk_create_buffer_temp(ggml_backend_vk_context * ctx, size_t size) { // Try to find existing temp buffer with enough capacity for (auto& buffer : ctx->gc.temp_buffers) { if (buffer->size >= size) { return buffer; } } // Otherwise create new buffer vk_buffer buf = ggml_vk_pool_malloc(ctx, size); ctx->gc.temp_buffers.push_back(buf); return buf; } static void * ggml_vk_host_malloc(ggml_backend_vk_context * ctx, size_t size) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_host_malloc(" << size << ")" << std::endl; #endif vk_buffer buf = ggml_vk_create_buffer(ctx, size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent); if(!(buf->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible)) { fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory\n", size/1024.0/1024.0); ctx->device.lock()->device.freeMemory(buf->device_memory); ctx->device.lock()->device.destroyBuffer(buf->buffer); return nullptr; } ctx->pinned_memory.push_back(std::make_tuple(buf->ptr, size, buf)); return buf->ptr; } static void ggml_vk_host_free(ggml_backend_vk_context * ctx, void* ptr) { if (ptr == nullptr) { return; } #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_host_free(" << ptr << ")" << std::endl; #endif vk_buffer buf; size_t index; for (size_t i = 0; i < ctx->pinned_memory.size(); i++) { const uint8_t* addr = (const uint8_t*) std::get<0>(ctx->pinned_memory[i]); const uint8_t* endr = addr + std::get<1>(ctx->pinned_memory[i]); if (ptr >= addr && ptr < endr) { buf = std::get<2>(ctx->pinned_memory[i]); index = i; break; } } if (buf == nullptr) { fprintf(stderr, "WARNING: failed to free pinned memory: memory not in map\n"); return; } ggml_vk_destroy_buffer(buf); ctx->pinned_memory.erase(ctx->pinned_memory.begin() + index); } static void ggml_vk_host_get(ggml_backend_vk_context * ctx, const void * ptr, vk_buffer& buf, size_t& buf_offset) { buf = nullptr; buf_offset = 0; for (size_t i = 0; i < ctx->pinned_memory.size(); i++) { const uint8_t* addr = (const uint8_t*) std::get<0>(ctx->pinned_memory[i]); const uint8_t* endr = addr + std::get<1>(ctx->pinned_memory[i]); if (ptr >= addr && ptr < endr) { buf = std::get<2>(ctx->pinned_memory[i]); buf_offset = ((const uint8_t *)ptr) - addr; break; } } } static vk_submission ggml_vk_begin_submission(ggml_backend_vk_context * ctx, vk_queue& q, bool one_time = true) { vk_submission s; s.buffer = ggml_vk_create_cmd_buffer(ctx, q); if (one_time) { s.buffer.begin({ vk::CommandBufferUsageFlagBits::eOneTimeSubmit }); } else { s.buffer.begin({ vk::CommandBufferUsageFlags{} }); } return s; } static void ggml_vk_dispatch_pipeline(ggml_backend_vk_context * ctx, vk_context * subctx, vk_pipeline& pipeline, std::vector<vk_subbuffer>&& buffers, size_t push_constant_size, const void* push_constants, std::array<uint32_t, 3> elements) { const uint32_t wg0 = CEIL_DIV(elements[0], pipeline.wg_denoms[0]); const uint32_t wg1 = CEIL_DIV(elements[1], pipeline.wg_denoms[1]); const uint32_t wg2 = CEIL_DIV(elements[2], pipeline.wg_denoms[2]); #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_dispatch_pipeline(" << pipeline.name << ", (" << wg0 << "," << wg1 << "," << wg2 << "))" << std::endl; #endif std::vector<vk::DescriptorBufferInfo> descriptor_buffer_infos; std::vector<vk::WriteDescriptorSet> write_descriptor_sets; GGML_ASSERT(pipeline.descriptor_set_idx < pipeline.descriptor_sets.size()); GGML_ASSERT(buffers.size() == pipeline.parameter_count); vk::DescriptorSet& descriptor_set = pipeline.descriptor_sets[pipeline.descriptor_set_idx++]; for (uint32_t i = 0; i < pipeline.parameter_count; i++) { descriptor_buffer_infos.push_back({buffers[i].buffer->buffer, buffers[i].offset, buffers[i].size}); } for (uint32_t i = 0; i < pipeline.parameter_count; i++) { write_descriptor_sets.push_back({descriptor_set, i, 0, 1, vk::DescriptorType::eStorageBuffer, nullptr, &descriptor_buffer_infos[i]}); } ctx->device.lock()->device.updateDescriptorSets(write_descriptor_sets, {}); subctx->s->buffer.pushConstants(pipeline.layout, vk::ShaderStageFlagBits::eCompute, 0, push_constant_size, push_constants); subctx->s->buffer.bindPipeline(vk::PipelineBindPoint::eCompute, pipeline.pipeline); subctx->s->buffer.bindDescriptorSets(vk::PipelineBindPoint::eCompute, pipeline.layout, 0, { descriptor_set }, {}); subctx->s->buffer.dispatch(wg0, wg1, wg2); } static void ggml_vk_end_submission(vk_submission& s, std::vector<vk_semaphore> wait_semaphores, std::vector<vk_semaphore> signal_semaphores) { s.buffer.end(); s.wait_semaphores = std::move(wait_semaphores); s.signal_semaphores = std::move(signal_semaphores); } static void ggml_vk_ctx_end(vk_context * ctx) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_ctx_end(" << ctx << ", " << ctx->seqs.size() << ")" << std::endl; #endif if (ctx->s == nullptr) { return; } ctx->s->buffer.end(); ctx->s = nullptr; } static void ggml_vk_ctx_begin(ggml_backend_vk_context * ctx, vk_context * subctx) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_ctx_begin(" << ctx << ")" << std::endl; #endif if (subctx->s != nullptr) { ggml_vk_ctx_end(subctx); } subctx->seqs.push_back({ ggml_vk_begin_submission(ctx, *subctx->q) }); subctx->s = subctx->seqs[subctx->seqs.size() - 1].data(); } static size_t ggml_vk_align_size(size_t width, size_t align) { return CEIL_DIV(width, align) * align; } static void deferred_memcpy(void * dst, const void * src, size_t size, std::vector<vk_staging_memcpy>* memcpys = nullptr) { if (memcpys == nullptr) { memcpy(dst, src, size); } else { memcpys->emplace_back(dst, src, size); } } static void ggml_vk_ensure_sync_staging_buffer(ggml_backend_vk_context * ctx, size_t size) { if (ctx->sync_staging == nullptr || ctx->sync_staging->size < size) { ggml_vk_destroy_buffer(ctx->sync_staging); ctx->sync_staging = ggml_vk_create_buffer_check(ctx, size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent); } } static void ggml_vk_buffer_write_nc_async(ggml_backend_vk_context * ctx, vk_context * subctx, vk_buffer& dst, size_t offset, const ggml_tensor * tensor, bool sync_staging = false) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_buffer_write_nc_async(" << tensor << ")" << std::endl; #endif GGML_ASSERT(!ggml_is_contiguous(tensor)); // Buffer is already mapped if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) { std::cerr << "ggml_vulkan: buffer_write_nc_async dst buffer is host_visible. Use synchronous write." << std::endl; GGML_ASSERT(false); } // Check if src is pinned memory vk_buffer buf; size_t buf_offset; ggml_vk_host_get(ctx, tensor->data, buf, buf_offset); const uint64_t ne0 = tensor->ne[0]; const uint64_t ne1 = tensor->ne[1]; const uint64_t ne2 = tensor->ne[2]; const uint64_t ne3 = tensor->ne[3]; const uint64_t nb0 = tensor->nb[0]; const uint64_t nb1 = tensor->nb[1]; const uint64_t nb2 = tensor->nb[2]; const uint64_t nb3 = tensor->nb[3]; const ggml_type type = tensor->type; const uint64_t ts = ggml_type_size(type); const uint64_t bs = ggml_blck_size(type); const uint64_t dstnb0 = ts; const uint64_t dstnb1 = dstnb0*(ne0/bs); const uint64_t dstnb2 = dstnb1*ne1; const uint64_t dstnb3 = dstnb2*ne2; const uint64_t ne = ggml_nelements(tensor); if (buf != nullptr) { // Memory is pinned, use as staging buffer std::vector<vk::BufferCopy> slices; for (uint64_t i3 = 0; i3 < ne3; i3++) { for (uint64_t i2 = 0; i2 < ne2; i2++) { // Find longest contiguous slice if (ne1*nb1 == dstnb2) { slices.push_back({ buf_offset + i3*nb3 + i2*nb2, offset + i3*dstnb3 + i2*dstnb2, dstnb2 }); } else { for (uint64_t i1 = 0; i1 < ne1; i1++) { if (ne0*nb0/bs == dstnb1) { slices.push_back({ buf_offset + i3*nb3 + i2*nb2 + i1*nb1, offset + i3*dstnb3 + i2*dstnb2 + i1*dstnb1, dstnb1 }); } else { const uint64_t s_off = buf_offset + i3*nb3 + i2*nb2 + i1*nb1; const uint64_t d_off = offset + i3*dstnb3 + i2*dstnb2 + i1*dstnb1; for (uint64_t i0 = 0; i0 < ne0; i0++) { slices.push_back({ s_off + i1*nb0, d_off + i0*dstnb0, dstnb0 }); } } } } } } ggml_vk_sync_buffers(subctx); subctx->s->buffer.copyBuffer(buf->buffer, dst->buffer, slices); return; } // Staging buffer required vk_buffer staging = ctx->staging; size_t staging_offset = ctx->staging_offset; const size_t copy_size = ts*ne/bs; if (ctx->staging->size < ctx->staging_offset + copy_size) { if (sync_staging) { // Create temporary larger buffer ggml_vk_ensure_sync_staging_buffer(ctx, copy_size); staging = ctx->sync_staging; staging_offset = 0; } else { GGML_ASSERT(false); } } VkBufferCopy buf_copy{ staging_offset, offset, copy_size }; ggml_vk_sync_buffers(subctx); vkCmdCopyBuffer(subctx->s->buffer, staging->buffer, dst->buffer, 1, &buf_copy); for (uint64_t i3 = 0; i3 < ne3; i3++) { for (uint64_t i2 = 0; i2 < ne2; i2++) { // Find longest contiguous slice if (ne1*nb1 == dstnb2) { deferred_memcpy((uint8_t *)staging->ptr + staging_offset + i3*dstnb3 + i2*dstnb2, (const uint8_t *) tensor->data + buf_offset + i3*nb3 + i2*nb2, dstnb2, &subctx->in_memcpys); } else { for (uint64_t i1 = 0; i1 < ne1; i1++) { if (ne0*nb0/bs == dstnb1) { deferred_memcpy((uint8_t *)staging->ptr + staging_offset + i3*dstnb3 + i2*dstnb2 + i1*dstnb1, (const uint8_t *) tensor->data + buf_offset + i3*nb3 + i2*nb2 + i1*nb1, dstnb1, &subctx->in_memcpys); } else { const uint64_t s_off = buf_offset + i3*nb3 + i2*nb2 + i1*nb1; const uint64_t d_off = staging_offset + i3*dstnb3 + i2*dstnb2 + i1*dstnb1; for (uint64_t i0 = 0; i0 < ne0; i0++) { deferred_memcpy((uint8_t *)staging->ptr + d_off + i0*dstnb0, (const uint8_t *) tensor->data + s_off + i0*nb0, dstnb0, &subctx->in_memcpys); } } } } } } } static void ggml_vk_buffer_write_2d_async(ggml_backend_vk_context * ctx, vk_context * subctx, vk_buffer& dst, size_t offset, const void * src, size_t spitch, size_t width, size_t height, bool sync_staging = false) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_buffer_write_2d_async(" << width << ", " << height << ")" << std::endl; #endif // Make sure ctx owns the buffer GGML_ASSERT(dst->ctx == ctx); // Buffer is already mapped if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) { std::cerr << "ggml_vulkan: buffer_write_async dst buffer is host_visible. Use synchronous write." << std::endl; GGML_ASSERT(false); } // Check if src is pinned memory vk_buffer buf = nullptr; size_t buf_offset; ggml_vk_host_get(ctx, src, buf, buf_offset); if (buf != nullptr) { // Memory is pinned, use as staging buffer std::vector<vk::BufferCopy> slices(1); if (width == spitch) { // Only do single write if stride is equal slices[0].srcOffset = buf_offset; slices[0].dstOffset = offset; slices[0].size = width * height; } else { slices.resize(height); for (size_t i = 0; i < height; i++) { slices[i].srcOffset = buf_offset + i * spitch; slices[i].dstOffset = offset + i * width; slices[i].size = width; } } ggml_vk_sync_buffers(subctx); subctx->s->buffer.copyBuffer(buf->buffer, dst->buffer, slices); return; } #ifdef GGML_VULKAN_DEBUG std::cerr << "STAGING" << std::endl; #endif // Staging buffer required vk_buffer staging = ctx->staging; size_t staging_offset = ctx->staging_offset; const size_t copy_size = width*height; if (ctx->staging == nullptr || ctx->staging->size < ctx->staging_offset + copy_size) { if (sync_staging) { ggml_vk_ensure_sync_staging_buffer(ctx, copy_size); staging = ctx->sync_staging; staging_offset = 0; } else { GGML_ASSERT(false); } } VkBufferCopy buf_copy = { staging_offset, offset, copy_size}; ggml_vk_sync_buffers(subctx); vkCmdCopyBuffer(subctx->s->buffer, staging->buffer, dst->buffer, 1, &buf_copy); if (width == spitch) { deferred_memcpy((uint8_t *)staging->ptr + staging_offset, src, width * height, &subctx->in_memcpys); } else { for (size_t i = 0; i < height; i++) { deferred_memcpy((uint8_t *)staging->ptr + staging_offset + i * width, (const uint8_t *) src + i * spitch, width, &subctx->in_memcpys); } } } static void ggml_vk_buffer_write_async(ggml_backend_vk_context * ctx, vk_context * subctx, vk_buffer& dst, size_t offset, const void * src, size_t size, bool sync_staging = false) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_buffer_write_async(" << size << ")" << std::endl; #endif return ggml_vk_buffer_write_2d_async(ctx, subctx, dst, offset, src, size, size, 1, sync_staging); } static void ggml_vk_buffer_write_2d(ggml_backend_vk_context * ctx, vk_buffer& dst, size_t offset, const void * src, size_t spitch, size_t width, size_t height) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_buffer_write_2d(" << width << ", " << height << ")" << std::endl; #endif // Buffer is already mapped if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) { GGML_ASSERT(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostCoherent); for (size_t i = 0; i < height; i++) { memcpy((uint8_t *)dst->ptr + offset + i * width, (const uint8_t *) src + i * spitch, width); } } else { vk_context * subctx = ggml_vk_create_context(ctx, ctx->device.lock()->transfer_queue); ggml_vk_ctx_begin(ctx, subctx); ggml_vk_buffer_write_2d_async(ctx, subctx, dst, offset, src, spitch, width, height, true); ggml_vk_ctx_end(subctx); for (auto& cpy : subctx->in_memcpys) { memcpy(cpy.dst, cpy.src, cpy.n); } ggml_vk_submit(subctx, ctx->fence); VK_CHECK(ctx->device.lock()->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "vk_buffer_write_2d waitForFences"); ctx->device.lock()->device.resetFences({ ctx->fence }); } } static void ggml_vk_buffer_write(ggml_backend_vk_context * ctx, vk_buffer& dst, size_t offset, const void * src, size_t size) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_buffer_write(" << size << ")" << std::endl; #endif ggml_vk_buffer_write_2d(ctx, dst, offset, src, 0, size, 1); } static void ggml_vk_buffer_read_2d_async(ggml_backend_vk_context * ctx, vk_context * subctx, vk_buffer& src, size_t offset, void * dst, size_t spitch, size_t dpitch, size_t width, size_t height, bool sync_staging = false) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_buffer_read_2d_async(offset=" << offset << ", width=" << width << ", height=" << height << ")" << std::endl; #endif GGML_ASSERT(width > 0); GGML_ASSERT(height > 0); GGML_ASSERT(src != nullptr); // Make sure ctx owns the buffer GGML_ASSERT(src->ctx == ctx); // Check if dst is pinned memory vk_buffer buf = nullptr; size_t buf_offset; ggml_vk_host_get(ctx, dst, buf, buf_offset); std::vector<vk::BufferCopy> slices(1); if (width == spitch && width == dpitch) { // Only do single write if stride is equal slices[0].srcOffset = offset; slices[0].dstOffset = buf_offset; slices[0].size = width * height; } else { slices.resize(height); for (size_t i = 0; i < height; i++) { slices[i].srcOffset = offset + i * spitch; slices[i].dstOffset = buf_offset + i * dpitch; slices[i].size = width; } } if (buf != nullptr) { // Memory is pinned, use as staging buffer ggml_vk_sync_buffers(subctx); subctx->s->buffer.copyBuffer(src->buffer, buf->buffer, slices); return; } #ifdef GGML_VULKAN_DEBUG std::cerr << "STAGING" << std::endl; #endif // Fall back to staging buffer vk_buffer staging = ctx->staging; const size_t copy_size = dpitch * height; if (ctx->staging == nullptr || ctx->staging->size < ctx->staging_offset + copy_size) { if (sync_staging) { // Create temporary larger buffer ggml_vk_ensure_sync_staging_buffer(ctx, copy_size); staging = ctx->sync_staging; } else { GGML_ASSERT(false); } } ggml_vk_sync_buffers(subctx); subctx->s->buffer.copyBuffer(src->buffer, staging->buffer, slices); deferred_memcpy(dst, staging->ptr, copy_size, &subctx->out_memcpys); } static void ggml_vk_buffer_read_async(ggml_backend_vk_context * ctx, vk_context * subctx, vk_buffer& src, size_t offset, void * dst, size_t size, bool sync_staging = false) { return ggml_vk_buffer_read_2d_async(ctx, subctx, src, offset, dst, size, size, size, 1, sync_staging); } static void ggml_vk_buffer_read(ggml_backend_vk_context * ctx, vk_buffer& src, size_t offset, void * dst, size_t size) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_buffer_read(" << offset << ", " << size << ")" << std::endl; #endif if(src->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) { GGML_ASSERT(src->memory_property_flags & vk::MemoryPropertyFlagBits::eHostCoherent); memcpy(dst, (uint8_t *) src->ptr + offset, size); } else { vk_context * subctx = ggml_vk_create_context(ctx, ctx->device.lock()->transfer_queue); ggml_vk_ctx_begin(ctx, subctx); ggml_vk_buffer_read_async(ctx, subctx, src, offset, dst, size, true); ggml_vk_ctx_end(subctx); ggml_vk_submit(subctx, ctx->fence); VK_CHECK(ctx->device.lock()->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "vk_buffer_read waitForFences"); ctx->device.lock()->device.resetFences({ ctx->fence }); for (auto& cpy : subctx->out_memcpys) { memcpy(cpy.dst, cpy.src, cpy.n); } } } static void ggml_vk_buffer_copy_async(vk_context * ctx, vk_buffer& dst, size_t dst_offset, vk_buffer& src, size_t src_offset, size_t size) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_buffer_copy_async(" << size << ")" << std::endl; #endif // Make sure both buffers are on same ctx GGML_ASSERT(src->ctx == dst->ctx); VkBufferCopy bc{ src_offset, dst_offset, size }; vkCmdCopyBuffer(ctx->s->buffer, src->buffer, dst->buffer, 1, &bc); } static void ggml_vk_buffer_copy(vk_buffer& dst, size_t dst_offset, vk_buffer& src, size_t src_offset, size_t size) { if (src->ctx == dst->ctx) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_buffer_copy(SINGLE_DEVICE, " << size << ")" << std::endl; #endif // Copy within the device ggml_backend_vk_context * ctx = src->ctx; VkBufferCopy bc{ src_offset, dst_offset, size }; vk_context * subctx = ggml_vk_create_context(ctx, ctx->device.lock()->transfer_queue); ggml_vk_ctx_begin(ctx, subctx); ggml_vk_buffer_copy_async(subctx, dst, dst_offset, src, src_offset, size); ggml_vk_ctx_end(subctx); ggml_vk_submit(subctx, ctx->fence); VK_CHECK(ctx->device.lock()->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "vk_buffer_copy waitForFences"); ctx->device.lock()->device.resetFences({ ctx->fence }); } else { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_buffer_copy(MULTI_DEVICE, " << size << ")" << std::endl; #endif // Copy device to device ggml_backend_vk_context * src_ctx = src->ctx; ggml_backend_vk_context * dst_ctx = dst->ctx; ggml_vk_ensure_sync_staging_buffer(src_ctx, size); ggml_vk_ensure_sync_staging_buffer(dst_ctx, size); // Copy to src staging buffer ggml_vk_buffer_copy(src_ctx->sync_staging, 0, src, src_offset, size); // memcpy to dst staging buffer memcpy(dst_ctx->sync_staging->ptr, src_ctx->sync_staging->ptr, size); // Copy to dst buffer ggml_vk_buffer_copy(dst, dst_offset, dst_ctx->sync_staging, 0, size); } } static void ggml_vk_buffer_memset(ggml_backend_vk_context * ctx, vk_buffer& dst, size_t offset, uint32_t c, size_t size) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_buffer_memset(" << offset << ", " << c << ", " << size << ")" << std::endl; #endif // Make sure ctx owns the buffer GGML_ASSERT(dst->ctx == ctx); vk_context * subctx = ggml_vk_create_context(ctx, ctx->device.lock()->transfer_queue); ggml_vk_ctx_begin(ctx, subctx); subctx->s->buffer.fillBuffer(dst->buffer, offset, size, c); ggml_vk_ctx_end(subctx); ggml_vk_submit(subctx, ctx->fence); VK_CHECK(ctx->device.lock()->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "vk_memset waitForFences"); ctx->device.lock()->device.resetFences({ ctx->fence }); } static void ggml_vk_h2d_tensor_2d(ggml_backend_vk_context * ctx, vk_context * subctx, vk_buffer& dst, size_t offset, const ggml_tensor * src, uint64_t i3, uint64_t i2, uint64_t i1) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_h2d_tensor_2d(dst=" << dst << ", offset=" << offset << ", src=" << src << ", i3=" << i3 << ", i2=" << i2 << ", i1=" << i1 << ")" << std::endl; #endif const uint64_t ne0 = src->ne[0]; const uint64_t ne1 = src->ne[1]; const uint64_t nb0 = src->nb[0]; const uint64_t nb1 = src->nb[1]; const uint64_t nb2 = src->nb[2]; const uint64_t nb3 = src->nb[3]; const enum ggml_type type = src->type; const size_t ts = ggml_type_size(type); const size_t bs = ggml_blck_size(type); const size_t row_length = ts*ne0/bs; const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3); if (nb0 == ts && nb1 == row_length) { return ggml_vk_buffer_write_async(ctx, subctx, dst, offset, x, i1*nb1); } if (nb0 == ts && (i1 == ne1 || !ggml_is_permuted(src))) { return ggml_vk_buffer_write_2d_async(ctx, subctx, dst, offset, x, nb1, row_length, i1); } GGML_ASSERT(i3 == 0); GGML_ASSERT(i2 == 0); GGML_ASSERT(i1 == (uint64_t) ggml_nrows(src)); return ggml_vk_buffer_write_nc_async(ctx, subctx, dst, offset, src); } static void ggml_vk_d2h_tensor_2d(ggml_backend_vk_context * ctx, vk_context * subctx, vk_buffer& src, size_t offset, const ggml_tensor * dst) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_d2h_tensor_2d()" << std::endl; #endif const uint64_t ne0 = dst->ne[0]; const uint64_t ne1 = dst->ne[1]; const uint64_t ne2 = dst->ne[2]; const uint64_t ne3 = dst->ne[3]; const uint64_t nb0 = dst->nb[0]; const uint64_t nb1 = dst->nb[1]; // const uint64_t nb2 = dst->nb[2]; // const uint64_t nb3 = dst->nb[3]; const enum ggml_type type = dst->type; const size_t ts = ggml_type_size(type); const size_t bs = ggml_blck_size(type); const size_t row_length = ts*ne0/bs; if (ggml_is_contiguous(dst)) { return ggml_vk_buffer_read_async(ctx, subctx, src, offset, dst->data, ne1*nb1*ne2*ne3); } if (nb0 == ts) { return ggml_vk_buffer_read_2d_async(ctx, subctx, src, offset, dst->data, nb1, nb1, row_length, ne1*ne2*ne3); } GGML_ASSERT(false); } static uint32_t ggml_vk_guess_split_k(int m, int n, int k) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_guess_split_k(" << m << ", " << n << ", " << k << ")"; #endif if (k > 128 && (m < 128 || n < 128) && m > 2 && n > 2) { #ifdef GGML_VULKAN_DEBUG std::cerr << " = 4" << std::endl; #endif return 4; } #ifdef GGML_VULKAN_DEBUG std::cerr << " = 1" << std::endl; #endif return 1; } static uint32_t ggml_vk_guess_matmul_pipeline_align(ggml_backend_vk_context * ctx, int m, int n) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_guess_matmul_pipeline_align(" << m << ", " << n << ")" << std::endl; #endif if (m <= 32 || n <= 32) { return ctx->pipeline_matmul_f32_aligned_s.align; } if (ctx->device.lock()->subgroup_size == 64 || m <= 64 || n <= 64) { return ctx->pipeline_matmul_f32_aligned_m.align; } return ctx->pipeline_matmul_f32_aligned_l.align; } static vk_pipeline* ggml_vk_guess_matmul_pipeline_amd(ggml_backend_vk_context * ctx, bool bit16_x, bool bit16_y, int m, int n, bool aligned) { if (bit16_x && bit16_y) { if (m <= 32 || n <= 32) { #ifdef GGML_VULKAN_DEBUG std::cerr << " S" << std::endl; #endif return aligned ? &ctx->pipeline_matmul_f16_aligned_s : &ctx->pipeline_matmul_f16_s; } #ifdef GGML_VULKAN_DEBUG std::cerr << " M" << std::endl; #endif return aligned ? &ctx->pipeline_matmul_f16_aligned_m : &ctx->pipeline_matmul_f16_m; } if (bit16_x && !bit16_y) { if (m <= 32 || n <= 32) { #ifdef GGML_VULKAN_DEBUG std::cerr << " S" << std::endl; #endif return aligned ? &ctx->pipeline_matmul_f16_f32_aligned_s : &ctx->pipeline_matmul_f16_f32_s; } #ifdef GGML_VULKAN_DEBUG std::cerr << " M" << std::endl; #endif return aligned ? &ctx->pipeline_matmul_f16_f32_aligned_m : &ctx->pipeline_matmul_f16_f32_m; } if (!bit16_x && bit16_y) { GGML_ASSERT(false); } if (m <= 32 || n <= 32) { #ifdef GGML_VULKAN_DEBUG std::cerr << " S" << std::endl; #endif return aligned ? &ctx->pipeline_matmul_f32_aligned_s : &ctx->pipeline_matmul_f32_s; } #ifdef GGML_VULKAN_DEBUG std::cerr << " M" << std::endl; #endif return aligned ? &ctx->pipeline_matmul_f32_aligned_m : &ctx->pipeline_matmul_f32_m; } static vk_pipeline* ggml_vk_guess_matmul_pipeline_apple(ggml_backend_vk_context * ctx, bool bit16_x, bool bit16_y, bool aligned) { #ifdef GGML_VULKAN_DEBUG std::cerr << " M" << std::endl; #endif if (bit16_x && bit16_y) { return aligned ? &ctx->pipeline_matmul_f16_aligned_m : &ctx->pipeline_matmul_f16_m; } if (bit16_x && !bit16_y) { return aligned ? &ctx->pipeline_matmul_f16_f32_aligned_m : &ctx->pipeline_matmul_f16_f32_m; } if (!bit16_x && bit16_y) { GGML_ASSERT(false); } return aligned ? &ctx->pipeline_matmul_f32_aligned_m : &ctx->pipeline_matmul_f32_m; } static vk_pipeline* ggml_vk_guess_matmul_pipeline_intel(ggml_backend_vk_context * ctx, bool bit16_x, bool bit16_y, bool aligned) { #ifdef GGML_VULKAN_DEBUG std::cerr << " S" << std::endl; #endif if (bit16_x && bit16_y) { return aligned ? &ctx->pipeline_matmul_f16_aligned_s : &ctx->pipeline_matmul_f16_s; } if (bit16_x && !bit16_y) { return aligned ? &ctx->pipeline_matmul_f16_f32_aligned_s : &ctx->pipeline_matmul_f16_f32_s; } if (!bit16_x && bit16_y) { GGML_ASSERT(false); } return aligned ? &ctx->pipeline_matmul_f32_aligned_s : &ctx->pipeline_matmul_f32_s; } static vk_pipeline* ggml_vk_guess_matmul_pipeline(ggml_backend_vk_context * ctx, bool bit16_x, bool bit16_y, int m, int n, bool aligned) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_guess_matmul_pipeline(" << bit16_x << ", " << bit16_y << ", " << m << ", " << n << ", " << aligned << ")"; #endif switch (ctx->device.lock()->vendor_id) { case VK_VENDOR_ID_AMD: return ggml_vk_guess_matmul_pipeline_amd(ctx, bit16_x, bit16_y, m, n, aligned); case VK_VENDOR_ID_APPLE: return ggml_vk_guess_matmul_pipeline_apple(ctx, bit16_x, bit16_y, aligned); case VK_VENDOR_ID_INTEL: return ggml_vk_guess_matmul_pipeline_intel(ctx, bit16_x, bit16_y, aligned); } if (bit16_x && bit16_y) { if (m <= 32 || n <= 32) { #ifdef GGML_VULKAN_DEBUG std::cerr << " S" << std::endl; #endif return aligned ? &ctx->pipeline_matmul_f16_aligned_s : &ctx->pipeline_matmul_f16_s; } if (m <= 64 || n <= 64) { #ifdef GGML_VULKAN_DEBUG std::cerr << " M" << std::endl; #endif return aligned ? &ctx->pipeline_matmul_f16_aligned_m : &ctx->pipeline_matmul_f16_m; } #ifdef GGML_VULKAN_DEBUG std::cerr << " L" << std::endl; #endif return aligned ? &ctx->pipeline_matmul_f16_aligned_l : &ctx->pipeline_matmul_f16_l; } if (bit16_x && !bit16_y) { if (m <= 32 || n <= 32) { #ifdef GGML_VULKAN_DEBUG std::cerr << " S" << std::endl; #endif return aligned ? &ctx->pipeline_matmul_f16_f32_aligned_s : &ctx->pipeline_matmul_f16_f32_s; } if (m <= 64 || n <= 64) { #ifdef GGML_VULKAN_DEBUG std::cerr << " M" << std::endl; #endif return aligned ? &ctx->pipeline_matmul_f16_f32_aligned_m : &ctx->pipeline_matmul_f16_f32_m; } #ifdef GGML_VULKAN_DEBUG std::cerr << " L" << std::endl; #endif return aligned ? &ctx->pipeline_matmul_f16_f32_aligned_l : &ctx->pipeline_matmul_f16_f32_l; } if (!bit16_x && bit16_y) { GGML_ASSERT(false); } if (m <= 32 || n <= 32) { #ifdef GGML_VULKAN_DEBUG std::cerr << " S" << std::endl; #endif return aligned ? &ctx->pipeline_matmul_f32_aligned_s : &ctx->pipeline_matmul_f32_s; } if (m <= 64 || n <= 64) { #ifdef GGML_VULKAN_DEBUG std::cerr << " M" << std::endl; #endif return aligned ? &ctx->pipeline_matmul_f32_aligned_m : &ctx->pipeline_matmul_f32_m; } #ifdef GGML_VULKAN_DEBUG std::cerr << " L" << std::endl; #endif return aligned ? &ctx->pipeline_matmul_f32_aligned_l : &ctx->pipeline_matmul_f32_l; } static void ggml_vk_matmul(ggml_backend_vk_context * ctx, vk_context * subctx, vk_pipeline& pipeline, vk_subbuffer&& a, vk_subbuffer&& b, vk_subbuffer&& d, vk_subbuffer&& split_k_buffer, uint32_t m, uint32_t n, uint32_t k, uint32_t stride_a, uint32_t stride_b, uint32_t stride_d, uint32_t split_k, uint32_t batch, uint32_t ne02, uint32_t ne12, uint32_t broadcast2, uint32_t broadcast3, uint32_t batch_stride_a, uint32_t batch_stride_b, uint32_t batch_stride_d) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_matmul(a: (" << a.buffer->buffer << ", " << a.offset << ", " << a.size << "), b: (" << b.buffer->buffer << ", " << b.offset << ", " << b.size << "), c: (" << d.buffer->buffer << ", " << d.offset << ", " << d.size << "), split_k: (" << split_k_buffer.buffer->buffer << ", " << split_k_buffer.offset << ", " << split_k_buffer.size << "), m: " << m << ", n: " << n << ", k: " << k << ", stride_a: " << stride_a << ", stride_b: " << stride_b << ", stride_d: " << stride_d << ", split_k: " << split_k << ", batch: " << batch << ", ne02: " << ne02 << ", ne12: " << ne12 << ", broadcast2: " << broadcast2 << ", broadcast3: " << broadcast3 << ", batch_stride_a: " << batch_stride_a << ", batch_stride_b: " << batch_stride_b << ", batch_stride_d: " << batch_stride_d << ")" << std::endl; #endif ggml_vk_sync_buffers(subctx); if (split_k == 1) { const std::array<uint32_t, 14> pc = { m, n, k, stride_a, stride_b, stride_d, k, ne02, ne12, broadcast2, broadcast3, batch_stride_a, batch_stride_b, batch_stride_d }; ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, d }, pc.size() * sizeof(uint32_t), pc.data(), { m, n, batch }); return; } GGML_ASSERT(batch_stride_d == m * n); const std::array<uint32_t, 14> pc1 = { m, n, k, stride_a, stride_b, stride_d, CEIL_DIV(k, split_k), ne02, ne12, broadcast2, broadcast3, batch_stride_a, batch_stride_b, batch_stride_d }; // Make sure enough workgroups get assigned for split k to work ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, split_k_buffer }, pc1.size() * sizeof(uint32_t), pc1.data(), { (CEIL_DIV(m, pipeline.wg_denoms[0]) * pipeline.wg_denoms[0]) * split_k, n, batch }); ggml_vk_sync_buffers(subctx); const std::array<uint32_t, 2> pc2 = { (uint32_t)(m * n * batch), split_k }; ggml_vk_dispatch_pipeline(ctx, subctx, ctx->pipeline_matmul_split_k_reduce, { split_k_buffer, d }, pc2.size() * sizeof(uint32_t), pc2.data(), { m * n * batch, 1, 1 }); } static bool ggml_vk_dim01_contiguous(const ggml_tensor * tensor) { return tensor->nb[0] == ggml_type_size(tensor->type) && tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) && tensor->nb[3] == tensor->nb[2]*tensor->ne[2]; } static vk_pipeline * ggml_vk_get_cpy_pipeline(ggml_backend_vk_context * ctx, ggml_type from, ggml_type to) { if (from == GGML_TYPE_F32 && to == GGML_TYPE_F32) { return &ctx->pipeline_cpy_f32_f32; } if (from == GGML_TYPE_F32 && to == GGML_TYPE_F16) { return &ctx->pipeline_cpy_f32_f16; } if (from == GGML_TYPE_F16 && to == GGML_TYPE_F16) { return &ctx->pipeline_cpy_f16_f16; } std::cerr << "Missing CPY op for types: " << ggml_type_name(from) << " " << ggml_type_name(to) << std::endl; GGML_ASSERT(false); } static void ggml_vk_cpy_to_contiguous(ggml_backend_vk_context * ctx, vk_context * subctx, vk_pipeline * pipeline, const ggml_tensor * tensor, vk_subbuffer&& in, vk_subbuffer&& out, ggml_type buffer_type, bool aligned=true) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_cpy_to_contiguous((" << tensor << ", type=" << tensor->type << ", backend=" << tensor->backend << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << "), "; std::cerr << "buffer in size=" << in.buffer->size << ", buffer out size=" << out.buffer->size << ")" << std::endl; #endif const int tensor_type_size = ggml_type_size(tensor->type); const int dst_type_size = ggml_type_size(buffer_type); const uint32_t ne = tensor->ne[0] * tensor->ne[1] * tensor->ne[2]; const uint32_t nb2 = aligned ? ggml_vk_align_size(dst_type_size * tensor->ne[0] * tensor->ne[1], ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size : tensor->ne[0] * tensor->ne[1]; const vk_op_cpy_push_constants pc = { (uint32_t)ne, (uint32_t)tensor->ne[0], (uint32_t)tensor->ne[1], (uint32_t)tensor->nb[0] / tensor_type_size, (uint32_t)tensor->nb[1] / tensor_type_size, (uint32_t)tensor->nb[2] / tensor_type_size, (uint32_t)tensor->ne[0], (uint32_t)tensor->ne[1], 1 , (uint32_t)tensor->ne[0] , nb2, 0, }; ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, *pipeline, { in, out }, sizeof(vk_op_cpy_push_constants), &pc, { ne, 1, 1 }); } static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_mul_mat_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl; #endif GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); // NOLINT GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT const uint64_t ne00 = src0->ne[0]; const uint64_t ne01 = src0->ne[1]; const uint64_t ne02 = src0->ne[2]; const uint64_t ne03 = src0->ne[3]; const uint64_t ne10 = src1->ne[0]; const uint64_t ne11 = src1->ne[1]; const uint64_t ne12 = src1->ne[2]; const uint64_t ne13 = src1->ne[3]; const uint64_t ne20 = dst->ne[0]; const uint64_t ne21 = dst->ne[1]; const uint64_t r2 = ne12 / ne02; const uint64_t r3 = ne13 / ne03; ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra; ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra; ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra; vk_buffer d_Qx; size_t qx_buf_offset = 0; vk_buffer d_Qy; size_t qy_buf_offset = 0; bool src0_uma = false; bool src1_uma = false; if (ctx->device.lock()->uma) { ggml_vk_host_get(ctx, src0->data, d_Qx, qx_buf_offset); ggml_vk_host_get(ctx, src1->data, d_Qy, qy_buf_offset); src0_uma = d_Qx != nullptr; src1_uma = d_Qy != nullptr; } const bool load_x = src0->backend != GGML_BACKEND_GPU && !src0_uma; const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma; const bool x_non_contig = !load_x && !ggml_vk_dim01_contiguous(src0); const bool y_non_contig = !load_y && !ggml_vk_dim01_contiguous(src1); const bool f16_f32_kernel = src1->type == GGML_TYPE_F32 && !y_non_contig; const bool qx_needs_dequant = src0->type != GGML_TYPE_F16 || x_non_contig; const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !f16_f32_kernel) || y_non_contig; // Not implemented GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT const int x_ne = ne01 * ne00; const int y_ne = ne11 * ne10; const int d_ne = ne11 * ne01; const uint32_t kpad = ggml_vk_align_size(ne10, ggml_vk_guess_matmul_pipeline_align(ctx, ne01, ne11)); const bool aligned = ne10 == kpad; const uint32_t split_k = ggml_vk_guess_split_k(ne01, ne11, ne10); vk_pipeline * pipeline = ggml_vk_guess_matmul_pipeline(ctx, true, !f16_f32_kernel, ne01, ne11, aligned); const uint64_t qx_sz = ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type); const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type); const uint64_t x_sz = sizeof(ggml_fp16_t) * x_ne; const uint64_t y_sz = f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne; const uint64_t d_sz = sizeof(float) * d_ne; vk_buffer d_D = extra->buffer_gpu.lock(); const uint64_t d_buf_offset = extra->offset; GGML_ASSERT(d_D != nullptr); GGML_ASSERT(d_D->size >= d_buf_offset + d_sz * ne02 * ne03); vk_buffer d_X; uint64_t x_buf_offset = 0; vk_buffer d_Y; uint64_t y_buf_offset = 0; if (load_x) { d_Qx = ctx->prealloc_qx; } else if (!src0_uma) { d_Qx = extra_src0->buffer_gpu.lock(); qx_buf_offset = extra_src0->offset; GGML_ASSERT(d_Qx != nullptr); } if (load_y) { d_Qy = ctx->prealloc_qy; } else if (!src1_uma) { d_Qy = extra_src1->buffer_gpu.lock(); qy_buf_offset = extra_src1->offset; GGML_ASSERT(d_Qy != nullptr); } if (qx_needs_dequant) { d_X = ctx->prealloc_x; GGML_ASSERT(d_X->size >= x_sz * ne02 * ne03); } else { d_X = d_Qx; x_buf_offset = qx_buf_offset; GGML_ASSERT(qx_sz == x_sz); // NOLINT } if (qy_needs_dequant) { d_Y = ctx->prealloc_y; GGML_ASSERT(d_Y->size >= y_sz * ne02 * ne03); } else { d_Y = d_Qy; y_buf_offset = qy_buf_offset; GGML_ASSERT(qy_sz == y_sz); } vk_pipeline * to_fp16_vk_0 = nullptr; vk_pipeline * to_fp16_vk_1 = nullptr; if (x_non_contig) { to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0->type, GGML_TYPE_F16); } else { to_fp16_vk_0 = ggml_vk_get_to_fp16(ctx, src0->type); } if (y_non_contig) { to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1->type, GGML_TYPE_F16); } else { to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type); } GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT // Allocate descriptor sets ggml_pipeline_allocate_descriptor_sets(ctx, *pipeline, ne12 * ne13); if (qx_needs_dequant) { ggml_pipeline_allocate_descriptor_sets(ctx, *to_fp16_vk_0, x_non_contig ? 1 : ne12 * ne13); } if (qy_needs_dequant) { ggml_pipeline_allocate_descriptor_sets(ctx, *to_fp16_vk_1, y_non_contig ? 1 : ne12 * ne13); } if (split_k > 1) { ggml_pipeline_allocate_descriptor_sets(ctx, ctx->pipeline_matmul_split_k_reduce, ne12 * ne13); } if (x_non_contig) { ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE }, dst->type, false); } else if (load_x || qx_needs_dequant) { if (load_x) { // copy data to device ggml_vk_h2d_tensor_2d(ctx, subctx, d_Qx, 0, src0, 0, 0, ggml_nrows(src0)); ctx->staging_offset = qx_sz * ne02 * ne03; } if (qx_needs_dequant) { const std::vector<int> pc = { (int)ne01, (int)ne10, (int)ne10, (int)ne10 }; ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, *to_fp16_vk_0, { { d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, { d_X, 0, x_sz * ne02 * ne03 } }, pc.size() * sizeof(int), pc.data(), { (uint32_t)(x_ne * ne02 * ne03), 1, 1}); } } if (y_non_contig) { ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }, dst->type); } else if (load_y) { ggml_vk_h2d_tensor_2d(ctx, subctx, d_Qy, 0, src1, 0, 0, ggml_nrows(src1)); } uint32_t stride_batch_x = ne00*ne01; uint32_t stride_batch_y = ne10*ne11; if (!ggml_vk_dim01_contiguous(src0) && !load_x && !qx_needs_dequant) { stride_batch_x = src0->nb[0] / ggml_type_size(src0->type); } if (!ggml_vk_dim01_contiguous(src1) && !load_y && !qy_needs_dequant) { stride_batch_y = src1->nb[0] / ggml_type_size(src1->type); } // compute ggml_vk_matmul(ctx, subctx, *pipeline, { d_X, x_buf_offset, x_sz * ne02 * ne03 }, { d_Y, y_buf_offset, y_sz * ne12 * ne13 }, { d_D, d_buf_offset, d_sz * ne12 * ne13 }, { ctx->prealloc_split_k, 0, d_sz * ne12 * ne13 * split_k }, ne01, ne11, ne10, ne10, ne10, ne01, split_k, ne12*ne13, ne02, ne12, r2, r3, stride_batch_x, stride_batch_y, ne20*ne21); // NOLINT if (dst->backend == GGML_BACKEND_CPU) { // copy dst to host float * d = (float *) ((char *) dst->data); ggml_vk_buffer_read_async(ctx, subctx, d_D, 0, d, sizeof(float) * d_ne * ne12 * ne13); } } static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_mul_mat_vec_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl; #endif GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); // NOLINT GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT const uint64_t ne00 = src0->ne[0]; const uint64_t ne01 = src0->ne[1]; const uint64_t ne02 = src0->ne[2]; const uint64_t ne03 = src0->ne[3]; const uint64_t ne10 = src1->ne[0]; const uint64_t ne11 = src1->ne[1]; const uint64_t ne12 = src1->ne[2]; const uint64_t ne13 = src1->ne[3]; GGML_ASSERT(ne11 == 1); const uint64_t nb2 = dst->nb[2]; const uint64_t nb3 = dst->nb[3]; const uint64_t r2 = ne12 / ne02; const uint64_t r3 = ne13 / ne03; ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra; ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra; ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra; vk_buffer d_Qx; size_t qx_buf_offset = 0; vk_buffer d_Qy; size_t qy_buf_offset = 0; bool src0_uma = false; bool src1_uma = false; if (ctx->device.lock()->uma) { ggml_vk_host_get(ctx, src0->data, d_Qx, qx_buf_offset); ggml_vk_host_get(ctx, src1->data, d_Qy, qy_buf_offset); src0_uma = d_Qx != nullptr; src1_uma = d_Qy != nullptr; } const bool load_x = src0->backend != GGML_BACKEND_GPU && !src0_uma; const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma; const bool x_non_contig = !load_x && !ggml_vk_dim01_contiguous(src0); const bool y_non_contig = !load_y && !ggml_vk_dim01_contiguous(src1); const bool f16_f32_kernel = src1->type == GGML_TYPE_F32; const bool qx_needs_dequant = x_non_contig; const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !f16_f32_kernel) || y_non_contig; const uint64_t x_ne = ne01 * ne00; const uint64_t y_ne = ne11 * ne10; const uint64_t d_ne = ne11 * ne01; const uint64_t qx_sz = ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment); const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type); const uint64_t x_sz = x_non_contig ? ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) : qx_sz; const uint64_t y_sz = f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne; const uint64_t d_sz = sizeof(float) * d_ne; vk_buffer d_D = extra->buffer_gpu.lock(); const uint64_t d_buf_offset = extra->offset; GGML_ASSERT(d_D != nullptr); vk_buffer d_X; uint64_t x_buf_offset = 0; vk_buffer d_Y; uint64_t y_buf_offset = 0; if (load_x) { d_Qx = ctx->prealloc_qx; } else if(!src1_uma) { d_Qx = extra_src0->buffer_gpu.lock(); qx_buf_offset = extra_src0->offset; GGML_ASSERT(d_Qx != nullptr); } if (load_y) { d_Qy = ctx->prealloc_qy; } else if(!src1_uma) { d_Qy = extra_src1->buffer_gpu.lock(); qy_buf_offset = extra_src1->offset; GGML_ASSERT(d_Qy != nullptr); } if (qx_needs_dequant) { d_X = ctx->prealloc_x; } else { d_X = d_Qx; x_buf_offset = qx_buf_offset; GGML_ASSERT(qx_sz == x_sz); } if (qy_needs_dequant) { d_Y = ctx->prealloc_y; } else { d_Y = d_Qy; y_buf_offset = qy_buf_offset; GGML_ASSERT(qy_sz == y_sz); } vk_pipeline * to_fp16_vk_0 = nullptr; vk_pipeline* to_fp16_vk_1 = nullptr; if (x_non_contig) { to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0->type, src0->type); } if (y_non_contig) { to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1->type, src1->type); } else { to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type); } vk_pipeline* dmmv = ggml_vk_get_dequantize_mul_mat_vec(ctx, src0->type); GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT GGML_ASSERT(dmmv != nullptr); // Allocate descriptor sets if (qx_needs_dequant) { ggml_pipeline_allocate_descriptor_sets(ctx, *to_fp16_vk_0, 1); } if (qy_needs_dequant) { ggml_pipeline_allocate_descriptor_sets(ctx, *to_fp16_vk_1, y_non_contig ? 1 : ne12 * ne13); } ggml_pipeline_allocate_descriptor_sets(ctx, *dmmv, ne12 * ne13); if (x_non_contig) { GGML_ASSERT(x_sz == ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment)); ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE }, src0->type); } else if (load_x) { // copy data to device ggml_vk_h2d_tensor_2d(ctx, subctx, d_Qx, 0, src0, 0, 0, ggml_nrows(src0)); } if (y_non_contig) { GGML_ASSERT(y_sz == ggml_type_size(src1->type) * y_ne); ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }, src1->type); } else if (load_y) { ggml_vk_h2d_tensor_2d(ctx, subctx, d_Qy, 0, src1, 0, 0, ggml_nrows(src1)); } for (uint64_t i13 = 0; i13 < ne13; i13++) { const uint64_t i03 = i13 / r3; for (uint64_t i12 = 0; i12 < ne12; i12++) { const uint64_t i02 = i12 / r2; const uint64_t it_idx0 = (i03 * ne02 + i02); const uint64_t it_idx1 = (i13 * ne12 + i12); const uint64_t x_offset = x_buf_offset + x_sz * it_idx0; const uint64_t qy_offset = qy_buf_offset + qy_sz * it_idx1; const uint64_t y_offset = y_buf_offset + y_sz * it_idx1; const uint64_t d_offset = d_buf_offset + d_sz * it_idx1; const uint64_t y_buffer_offset = (y_offset / ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) * ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment; const uint64_t y_shader_offset = y_offset - y_buffer_offset; const uint64_t d_buffer_offset = (d_offset / ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) * ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment; const uint64_t d_shader_offset = d_offset - d_buffer_offset; if (!y_non_contig && qy_needs_dequant) { const std::vector<int> pc = { (int)ne11, (int)ne10, (int)ne10, (int)ne10 }; ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, *to_fp16_vk_1, { { d_Qy, qy_offset, qy_sz }, { d_Y, y_offset, y_sz } }, pc.size() * sizeof(int), pc.data(), { (uint32_t)y_ne, 1, 1}); } // compute const std::array<int, 3> pc = { (int)ne00, (int)(y_shader_offset / ggml_type_size(src1->type)), (int)(d_shader_offset / ggml_type_size(dst->type))}; ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, *dmmv, { { d_X, x_offset, x_sz }, { d_Y, y_buffer_offset, y_sz + y_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 3 * sizeof(int), &pc, { (uint32_t)ne01, 1, 1}); if (dst->backend == GGML_BACKEND_CPU) { // copy dst to host float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3); ggml_vk_sync_buffers(subctx); ggml_vk_buffer_read_async(ctx, subctx, d_D, d_offset, d, sizeof(float) * d_ne); } } } } static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_mul_mat_p021_f16_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl; #endif GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1)); GGML_ASSERT(src0->backend == GGML_BACKEND_GPU); GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // NOLINT GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // NOLINT GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); const uint64_t ne00 = src0->ne[0]; const uint64_t ne01 = src0->ne[1]; const uint64_t ne02 = src0->ne[2]; // const uint64_t ne03 = src0->ne[3]; const uint64_t ne10 = src1->ne[0]; const uint64_t ne11 = src1->ne[1]; const uint64_t ne12 = src1->ne[2]; // const uint64_t ne13 = src1->ne[3]; GGML_ASSERT(ne11 == 1); ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra; ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra; ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra; vk_buffer d_Qy; size_t qy_buf_offset = 0; bool src1_uma = false; if (ctx->device.lock()->uma) { ggml_vk_host_get(ctx, src1->data, d_Qy, qy_buf_offset); src1_uma = d_Qy != nullptr; } const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma; const uint64_t x_ne = ne00 * ne01 * ne02; const uint64_t y_ne = ne10 * ne11 * ne12; const uint64_t d_ne = ne01 * ne11 * ne12; const uint64_t qx_sz = ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment); const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type); const uint64_t d_sz = sizeof(float) * d_ne; vk_buffer d_D = extra->buffer_gpu.lock(); const uint64_t d_buf_offset = extra->offset; GGML_ASSERT(d_D != nullptr); vk_buffer d_Qx = extra_src0->buffer_gpu.lock(); const uint64_t qx_buf_offset = extra_src0->offset; GGML_ASSERT(d_Qx != nullptr); if (load_y) { d_Qy = ctx->prealloc_qy; } else if (!src1_uma) { d_Qy = extra_src1->buffer_gpu.lock(); qy_buf_offset = extra_src1->offset; GGML_ASSERT(d_Qx != nullptr); } // Allocate descriptor sets ggml_pipeline_allocate_descriptor_sets(ctx, ctx->pipeline_mul_mat_vec_p021_f16_f32, 1); const uint64_t qy_buffer_offset = (qy_buf_offset / ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) * ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment; const uint64_t qy_shader_offset = qy_buf_offset - qy_buffer_offset; const uint64_t d_buffer_offset = (d_buf_offset / ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) * ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment; const uint64_t d_shader_offset = d_buf_offset - d_buffer_offset; if (load_y) { ggml_vk_h2d_tensor_2d(ctx, subctx, d_Qy, qy_buf_offset, src1, 0, 0, ggml_nrows(src1)); } // compute const std::array<uint32_t, 6> pc = { (uint32_t)ne00, (uint32_t)ne01, (uint32_t)ne02, (uint32_t)ne12, (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) }; ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, ctx->pipeline_mul_mat_vec_p021_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 6 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 }); if (dst->backend == GGML_BACKEND_CPU) { // copy dst to host float * d = (float *) dst->data; ggml_vk_sync_buffers(subctx); ggml_vk_buffer_read_async(ctx, subctx, d_D, d_buf_offset, d, sizeof(float) * d_ne); } } static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_mul_mat_nc_f16_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl; #endif GGML_ASSERT(!ggml_is_transposed(src0)); GGML_ASSERT(!ggml_is_transposed(src1)); GGML_ASSERT(!ggml_is_permuted(src0)); GGML_ASSERT(src0->backend == GGML_BACKEND_GPU); GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); const uint64_t ne00 = src0->ne[0]; const uint64_t ne01 = src0->ne[1]; const uint64_t ne02 = src0->ne[2]; // const uint64_t ne03 = src0->ne[3]; const uint64_t nb01 = src0->nb[1]; const uint64_t nb02 = src0->nb[2]; // const uint64_t ne10 = src1->ne[0]; const uint64_t ne11 = src1->ne[1]; const uint64_t ne12 = src1->ne[2]; // const uint64_t ne13 = src1->ne[3]; GGML_ASSERT(ne11 == 1); ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra; ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra; ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra; vk_buffer d_Qy = nullptr; size_t qy_buf_offset = 0; bool src1_uma = false; if (ctx->device.lock()->uma) { ggml_vk_host_get(ctx, src1->data, d_Qy, qy_buf_offset); src1_uma = d_Qy != nullptr; } const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma; const uint64_t d_ne = ne01 * ne11 * ne12; const uint32_t row_stride_x = nb01 / sizeof(ggml_fp16_t); const uint32_t channel_stride_x = nb02 / sizeof(ggml_fp16_t); const uint64_t qx_sz = ggml_nbytes(src0); const uint64_t qy_sz = ggml_nbytes(src1); const uint64_t d_sz = sizeof(float) * d_ne; vk_buffer d_D = extra->buffer_gpu.lock(); const uint64_t d_buf_offset = extra->offset; GGML_ASSERT(d_D != nullptr); vk_buffer d_Qx = extra_src0->buffer_gpu.lock(); const uint64_t qx_buf_offset = extra_src0->offset; GGML_ASSERT(d_Qx != nullptr); if (load_y) { d_Qy = ctx->prealloc_qy; } else { d_Qy = extra_src1->buffer_gpu.lock(); qy_buf_offset = extra_src1->offset; GGML_ASSERT(d_Qx != nullptr); } // Allocate descriptor sets ggml_pipeline_allocate_descriptor_sets(ctx, ctx->pipeline_mul_mat_vec_nc_f16_f32, 1); const uint64_t qy_buffer_offset = (qy_buf_offset / ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) * ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment; const uint64_t qy_shader_offset = qy_buf_offset - qy_buffer_offset; const uint64_t d_buffer_offset = (d_buf_offset / ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) * ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment; const uint64_t d_shader_offset = d_buf_offset - d_buffer_offset; if (load_y) { ggml_vk_h2d_tensor_2d(ctx, subctx, d_Qy, qy_buf_offset, src1, 0, 0, ggml_nrows(src1)); } // compute const std::array<uint32_t, 7> pc = { (uint32_t)ne00, (uint32_t)ne01, row_stride_x, channel_stride_x, (uint32_t)(ne12 / ne02), (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) }; ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, ctx->pipeline_mul_mat_vec_nc_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 }); if (dst->backend == GGML_BACKEND_CPU) { // copy dst to host float * d = (float *) dst->data; ggml_vk_sync_buffers(subctx); ggml_vk_buffer_read_async(ctx, subctx, d_D, d_buf_offset, d, sizeof(float) * d_ne); } } static bool ggml_vk_can_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * dst) { const uint64_t ne10 = src1->ne[0]; const uint64_t ne0 = dst->ne[0]; const uint64_t ne1 = dst->ne[1]; // TODO: find the optimal values for these return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && (src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16 || ggml_is_quantized(src1->type)) && dst->type == GGML_TYPE_F32 && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_GPU); } static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context * subctx, const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_mul_mat(" << src0 << ", " << src1 << ", " << dst << ")" << std::endl; #endif if (src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) { ggml_vk_mul_mat_vec_p021_f16_f32(ctx, subctx, src0, src1, dst); } else if (src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) { ggml_vk_mul_mat_vec_nc_f16_f32(ctx, subctx, src0, src1, dst); } else if (src1->ne[1] == 1 && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type))) { ggml_vk_mul_mat_vec_q_f16(ctx, subctx, src0, src1, dst); } else { ggml_vk_mul_mat_q_f16(ctx, subctx, src0, src1, dst); } } static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { // guaranteed to be an integer due to the check in ggml_can_repeat const uint64_t ne0 = dst->ne[0]; const uint64_t ne1 = dst->ne[1]; const uint64_t ne2 = dst->ne[2]; const uint64_t ne3 = dst->ne[3]; const uint64_t ne00 = src0->ne[0]; const uint64_t ne01 = src0->ne[1]; const uint64_t ne02 = src0->ne[2]; const uint64_t ne03 = src0->ne[3]; const uint64_t nb0 = dst->nb[0]; const uint64_t nb1 = dst->nb[1]; const uint64_t nb2 = dst->nb[2]; const uint64_t nb3 = dst->nb[3]; const uint64_t nb00 = src0->nb[0]; const uint64_t nb01 = src0->nb[1]; const uint64_t nb02 = src0->nb[2]; const uint64_t nb03 = src0->nb[3]; const uint64_t nr0 = ne0/ne00; const uint64_t nr1 = ne1/ne01; const uint64_t nr2 = ne2/ne02; const uint64_t nr3 = ne3/ne03; // TODO: support for transposed / permuted tensors GGML_ASSERT(nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); GGML_ASSERT(src0->backend == GGML_BACKEND_GPU); GGML_ASSERT(dst->backend == GGML_BACKEND_GPU); ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra; ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra; const vk_buffer src_buf = extra_src0->buffer_gpu.lock(); const uint64_t src_offset = extra_src0->offset; vk_buffer dst_buf = extra->buffer_gpu.lock(); const uint64_t dst_offset = extra->offset; std::vector<vk::BufferCopy> copies; for (uint64_t i3 = 0; i3 < nr3; i3++) { for (uint64_t k3 = 0; k3 < ne03; k3++) { for (uint64_t i2 = 0; i2 < nr2; i2++) { for (uint64_t k2 = 0; k2 < ne02; k2++) { for (uint64_t i1 = 0; i1 < nr1; i1++) { for (uint64_t k1 = 0; k1 < ne01; k1++) { for (uint64_t i0 = 0; i0 < nr0; i0++) { copies.push_back({ src_offset + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0, dst_offset + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01, ne00*nb0, }); } } } } } } } ggml_vk_sync_buffers(subctx); subctx->s->buffer.copyBuffer(src_buf->buffer, dst_buf->buffer, copies); GGML_UNUSED(ctx); GGML_UNUSED(src1); } static vk_pipeline* ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_op op) { switch (op) { case GGML_OP_ADD: if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return &ctx->pipeline_add_f32; } return nullptr; case GGML_OP_GET_ROWS: GGML_ASSERT(src1->type == GGML_TYPE_I32); if (dst->type == GGML_TYPE_F16) { return &ctx->pipeline_get_rows[src0->type]; } if (dst->type == GGML_TYPE_F32) { return &ctx->pipeline_get_rows_f32[src0->type]; } return nullptr; case GGML_OP_MUL: if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return &ctx->pipeline_mul_f32; } return nullptr; case GGML_OP_SCALE: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return &ctx->pipeline_scale_f32; } return nullptr; case GGML_OP_SQR: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return &ctx->pipeline_sqr_f32; } return nullptr; case GGML_OP_CLAMP: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return &ctx->pipeline_clamp_f32; } return nullptr; case GGML_OP_CPY: case GGML_OP_CONT: case GGML_OP_DUP: return ggml_vk_get_cpy_pipeline(ctx, src0->type, dst->type); case GGML_OP_NORM: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return &ctx->pipeline_norm_f32; } return nullptr; case GGML_OP_RMS_NORM: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return &ctx->pipeline_rms_norm_f32; } return nullptr; case GGML_OP_UNARY: switch (ggml_get_unary_op(dst)) { case GGML_UNARY_OP_SILU: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return &ctx->pipeline_silu_f32; } break; case GGML_UNARY_OP_GELU: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return &ctx->pipeline_gelu_f32; } break; case GGML_UNARY_OP_RELU: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return &ctx->pipeline_relu_f32; } break; default: break; } return nullptr; case GGML_OP_DIAG_MASK_INF: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return &ctx->pipeline_diag_mask_inf_f32; } return nullptr; case GGML_OP_SOFT_MAX: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return &ctx->pipeline_soft_max_f32; } return nullptr; case GGML_OP_ROPE: { const int mode = ((const int32_t *) dst->op_params)[2]; const bool is_neox = mode & 2; const bool is_glm = mode & 4; if (is_glm) { return nullptr; } if (is_neox) { if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return &ctx->pipeline_rope_neox_f32; } if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { return &ctx->pipeline_rope_neox_f16; } } else { if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return &ctx->pipeline_rope_f32; } if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { return &ctx->pipeline_rope_f16; } } return nullptr; } default: return nullptr; } } static ggml_vk_func_t ggml_vk_op_get_func(ggml_op op) { switch(op) { case GGML_OP_REPEAT: return ggml_vk_op_repeat; default: return nullptr; } } template<typename PC> static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_op op, const PC&& pc) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_op_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; if (src1 != nullptr) { std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; } std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "), " << ggml_op_name(op) << ")" << std::endl; #endif GGML_ASSERT(!ggml_is_quantized(src0->type) && (src1 == nullptr || !ggml_is_quantized(src1->type))); // NOLINT GGML_ASSERT(op == GGML_OP_CPY || ggml_vk_dim01_contiguous(src0)); // NOLINT GGML_ASSERT(src1 == nullptr || ggml_vk_dim01_contiguous(src1)); // NOLINT GGML_ASSERT(dst->extra != nullptr); const uint64_t ne00 = src0->ne[0]; const uint64_t ne01 = src0->ne[1]; const uint64_t ne02 = src0->ne[2]; const uint64_t ne03 = src0->ne[3]; const uint64_t ne0 = ne00 * ne01; const bool use_src1 = src1 != nullptr; const uint64_t ne10 = use_src1 ? src1->ne[0] : 0; const uint64_t ne11 = use_src1 ? src1->ne[1] : 0; const uint64_t ne12 = use_src1 ? src1->ne[2] : 0; const uint64_t ne13 = use_src1 ? src1->ne[3] : 0; const uint64_t ne1 = ne10 * ne11; // const uint64_t nb10 = use_src1 ? src1->nb[0] : 0; const uint64_t nb2 = dst->nb[2]; const uint64_t nb3 = dst->nb[3]; vk_pipeline * pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, dst, op); ggml_vk_func_t op_func; if (pipeline == nullptr) { op_func = ggml_vk_op_get_func(op); if (op_func == nullptr) { std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(op) << " for " << ggml_type_name(src0->type); if (src1 != nullptr) { std::cerr << " and " << ggml_type_name(src1->type); } std::cerr << " to " << ggml_type_name(dst->type) << std::endl; GGML_ASSERT(false); } op_func(ctx, subctx, src0, src1, dst); return; } ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra; ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra; ggml_tensor_extra_gpu * extra_src1 = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr; vk_buffer d_X = nullptr; size_t x_buf_offset = 0; vk_buffer d_Y = nullptr; size_t y_buf_offset = 0; bool src0_uma = false; bool src1_uma = false; if (ctx->device.lock()->uma) { ggml_vk_host_get(ctx, src0->data, d_X, x_buf_offset); src0_uma = d_X != nullptr; if (use_src1) { ggml_vk_host_get(ctx, src1->data, d_Y, y_buf_offset); src1_uma = d_Y != nullptr; } } const bool transfer_src0 = src0->backend != GGML_BACKEND_GPU && !src0_uma; const bool transfer_src1 = use_src1 && src1->backend != GGML_BACKEND_GPU && !src1_uma; uint64_t x_sz = ggml_vk_align_size(ggml_type_size(src0->type) * ne0, ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment); uint64_t y_sz = use_src1 ? ggml_vk_align_size(ggml_type_size(src1->type) * ne1, ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) : 0; uint64_t d_sz = ggml_type_size(dst->type) * ne0; vk_buffer d_D = extra->buffer_gpu.lock(); // Workaround for tiny tensor inputs on ROPE if (use_src1 && src1->backend == GGML_BACKEND_GPU && y_sz > d_D->size) { y_sz = VK_WHOLE_SIZE; } GGML_ASSERT(d_D != nullptr); uint64_t d_buf_offset = (extra->offset / ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) * ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment; GGML_ASSERT(d_buf_offset == extra->offset || op == GGML_OP_CPY); // NOLINT if (transfer_src0) { d_X = ctx->prealloc_qx; } else if(!src0_uma) { d_X = extra_src0->buffer_gpu.lock(); x_buf_offset = extra_src0->offset; GGML_ASSERT(d_X != nullptr); } if (transfer_src1) { d_Y = ctx->prealloc_qy; } else if (use_src1 && !src1_uma) { d_Y = extra_src1->buffer_gpu.lock(); y_buf_offset = extra_src1->offset; GGML_ASSERT(d_Y != nullptr); } if (op == GGML_OP_CPY) { GGML_ASSERT(!transfer_src0); GGML_ASSERT(!transfer_src1); x_sz = ggml_nbytes(src0); d_sz = ggml_nbytes(dst); if (extra_src0->offset + x_sz >= d_X->size) { x_sz = VK_WHOLE_SIZE; } if (extra->offset + d_sz >= d_D->size) { d_sz = VK_WHOLE_SIZE; } } std::array<uint32_t, 3> elements; // copy src0 to device if (transfer_src0) { ggml_vk_h2d_tensor_2d(ctx, subctx, d_X, 0, src0, 0, 0, ggml_nrows(src0)); ctx->staging_offset = x_sz * ne02 * ne03; } if (transfer_src1) { ggml_vk_h2d_tensor_2d(ctx, subctx, d_Y, 0, src1, 0, 0, ggml_nrows(src1)); } // Single call if dimension 2 is contiguous if (op == GGML_OP_CPY || (ggml_is_contiguous(src0) && (src1 == nullptr || ggml_is_contiguous(src1)))) { ggml_pipeline_allocate_descriptor_sets(ctx, *pipeline, 1); switch (dst->op) { case GGML_OP_NORM: case GGML_OP_RMS_NORM: case GGML_OP_SOFT_MAX: elements = { (uint32_t)ggml_nrows(src0), 1, 1 }; break; case GGML_OP_DIAG_MASK_INF: case GGML_OP_ROPE: elements = { (uint32_t)ggml_nrows(src0), (uint32_t)ne00, 1 }; break; default: elements = { (uint32_t)ggml_nelements(src0), 1, 1 }; break; } if (op != GGML_OP_CPY) { if (x_sz != VK_WHOLE_SIZE) { x_sz *= ne02 * ne03; } if (y_sz != VK_WHOLE_SIZE) { y_sz *= ne12 * ne13; } if (d_sz != VK_WHOLE_SIZE) { d_sz *= ne02 * ne03; } } if (!use_src1 && op == GGML_OP_SOFT_MAX) { // Empty src1 is possible on soft_max, but the shader needs a buffer ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, *pipeline, { { d_X, x_buf_offset, x_sz }, { ctx->prealloc_y, 0, ctx->prealloc_y->size }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); } else if (use_src1) { ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, *pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); } else { ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, *pipeline, { { d_X, x_buf_offset, x_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); } if (dst->backend == GGML_BACKEND_CPU && op == GGML_OP_CPY) { ggml_vk_d2h_tensor_2d(ctx, subctx, d_D, 0, dst); } else if(dst->backend == GGML_BACKEND_CPU) { // copy dst to host float * d = (float *) dst->data; ggml_vk_buffer_read_async(ctx, subctx, d_D, 0, d, d_sz); } } else { ggml_pipeline_allocate_descriptor_sets(ctx, *pipeline, ne02 * ne03); switch (dst->op) { case GGML_OP_NORM: case GGML_OP_RMS_NORM: case GGML_OP_SOFT_MAX: elements = { (uint32_t)ne01, 1, 1 }; break; case GGML_OP_DIAG_MASK_INF: case GGML_OP_ROPE: elements = { (uint32_t)ne01, (uint32_t)ne00, 1 }; break; default: elements = { (uint32_t)ne0, 1, 1 }; break; } for (uint64_t i03 = 0; i03 < ne03; i03++) { for (uint64_t i02 = 0; i02 < ne02; i02++) { const uint32_t it_idx0 = (i03 * ne02 + i02); const uint32_t it_idx1 = use_src1 ? ((i03 % ne13) * ne12 + (i02 % ne12)) : 0; const uint32_t x_offset = x_sz * it_idx0; const uint32_t y_offset = y_sz * it_idx1; const uint32_t d_offset = d_sz * it_idx0; if (!use_src1 && op == GGML_OP_SOFT_MAX) { // Empty src1 is possible on soft_max, but the shader needs a buffer ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, *pipeline, { { d_X, x_buf_offset, x_sz }, { ctx->prealloc_y, 0, ctx->prealloc_y->size }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); } else if (use_src1) { ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, *pipeline, { { d_X, x_buf_offset + x_offset, x_sz }, { d_Y, y_buf_offset + y_offset, y_sz }, { d_D, d_buf_offset + d_offset, d_sz } }, sizeof(PC), &pc, elements); } else { ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, *pipeline, { { d_X, x_buf_offset + x_offset, x_sz }, { d_D, d_buf_offset + d_offset, d_sz } }, sizeof(PC), &pc, elements); } if (dst->backend == GGML_BACKEND_CPU) { // copy dst to host ggml_vk_buffer_read_async(ctx, subctx, d_D, d_buf_offset + d_offset, (char *) dst->data + i02*nb2 + i03*nb3, d_sz); } } } } } static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_REPEAT, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f }); } static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_GET_ROWS, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f }); } static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_ADD, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f }); } static void ggml_vk_mul(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_MUL, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f }); } static void ggml_vk_scale(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { float * op_params = (float *)dst->op_params; ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_SCALE, { (uint32_t)ggml_nelements(src0), 0, op_params[0], 0.0f }); } static void ggml_vk_sqr(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_SQR, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }); } static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { float * op_params = (float *)dst->op_params; ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_CLAMP, { (uint32_t)ggml_nelements(src0), 0, op_params[0], op_params[1] }); } static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra; const int src0_type_size = ggml_type_size(src0->type); const int dst_type_size = ggml_type_size(dst->type); const uint32_t d_offset = (extra->offset % ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size; ggml_vk_op_f32<vk_op_cpy_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_CPY, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, d_offset, }); } static void ggml_vk_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], 0.0f, 0.0f }); } static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { float * op_params = (float *)dst->op_params; ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }); } static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }); } static void ggml_vk_diag_mask_inf(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { int32_t * op_params = (int32_t *)dst->op_params; ggml_vk_op_f32<vk_op_diag_mask_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] }); } static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { float * op_params = (float *)dst->op_params; ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_SOFT_MAX, { (uint32_t)src0->ne[0], (uint32_t)(src1 != nullptr ? ggml_nrows(src1) : 0), op_params[0], 0.0f }); } static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { const int n_dims = ((int32_t *) dst->op_params)[1]; const int mode = ((int32_t *) dst->op_params)[2]; // const int n_ctx = ((int32_t *) dst->op_params)[3]; const int n_orig_ctx = ((int32_t *) dst->op_params)[4]; const float freq_base = ((float *) dst->op_params)[5]; const float freq_scale = ((float *) dst->op_params)[6]; const float ext_factor = ((float *) dst->op_params)[7]; const float attn_factor = ((float *) dst->op_params)[8]; const float beta_fast = ((float *) dst->op_params)[9]; const float beta_slow = ((float *) dst->op_params)[10]; const bool is_neox = mode & 2; const bool is_glm = mode & 4; GGML_ASSERT(!is_glm); float corr_dims[2]; ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims); if (is_neox) { const float theta_scale = powf(freq_base, -2.0f/n_dims); const float inv_ndims = -1.0f / n_dims; ggml_vk_op_f32<vk_op_rope_neox_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_ROPE, { (uint32_t)src0->ne[0], (uint32_t)n_dims, freq_scale, (uint32_t)src0->ne[1], freq_base, ext_factor, attn_factor, corr_dims[0], corr_dims[1], 0.0f, 0.0f, theta_scale, inv_ndims }); } else { ggml_vk_op_f32<vk_op_rope_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_ROPE, { (uint32_t)src0->ne[0], freq_scale, (uint32_t)src0->ne[1], freq_base, ext_factor, attn_factor, corr_dims[0], corr_dims[1], 0.0f, 0.0f }); } } static void ggml_vk_nop(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { // If backend is CPU, data from src0 has to be copied off the device if (dst->backend == GGML_BACKEND_CPU) { ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra; vk_buffer d_D = extra_src0->buffer_gpu.lock(); ggml_vk_sync_buffers(subctx); ggml_vk_buffer_read_async(ctx, subctx, d_D, 0, dst->data, d_D->size); } } #ifdef GGML_VULKAN_RUN_TESTS static void ggml_vk_print_matrix_area(const void * data, ggml_type type, int ne0, int ne1, int i0, int i1, int i2) { if (type != GGML_TYPE_F32 && type != GGML_TYPE_F16) { return; } i0 = std::max(i0, 5); i1 = std::max(i1, 5); i2 = std::max(i2, 0); fprintf(stderr, " "); for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) { fprintf(stderr, "%7d ", idx1); } fprintf(stderr, "\n"); for (int idx0 = i0 - 5; idx0 < i0 + 5; idx0++) { fprintf(stderr, "%7d: ", idx0); for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) { if (idx0 >= 0 && idx0 < ne0 && idx1 >= 0 && idx1 < ne1) { float val; if (type == GGML_TYPE_F32) { val = *((const float *) data + i2*ne1*ne0 + idx1*ne0 + idx0); } else if (type == GGML_TYPE_F16) { val = ggml_fp16_to_fp32(*((const ggml_fp16_t *) data + i2*ne1*ne0 + idx1*ne0 + idx0)); } fprintf(stderr, "% 7.2f ", val); } else { fprintf(stderr, " "); } } fprintf(stderr, "\n"); } } template <typename X_TYPE, typename Y_TYPE> static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t n, size_t k, size_t batch, size_t num_it, int split_k, int shader_size) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_test_matmul(" << m << ", " << n << ", " << k << ", " << batch << ", " << num_it << ", " << split_k << ", " << shader_size << ")" << std::endl; #endif const size_t x_ne = m * k * batch; const size_t y_ne = k * n * batch; const size_t d_ne = m * n * batch; vk_pipeline * p; std::string shname; if (shader_size == 0) { if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) { p = &ctx->pipeline_matmul_f32_aligned_s; shname = "F32_ALIGNED_S"; } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) { p = &ctx->pipeline_matmul_f16_f32_aligned_s; shname = "F16_F32_ALIGNED_S"; } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) { p = &ctx->pipeline_matmul_f16_aligned_s; shname = "F16_ALIGNED_S"; } else { GGML_ASSERT(false); } } else if (shader_size == 1) { if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) { p = &ctx->pipeline_matmul_f32_aligned_m; shname = "F32_ALIGNED_M"; } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) { p = &ctx->pipeline_matmul_f16_f32_aligned_m; shname = "F16_F32_ALIGNED_M"; } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) { p = &ctx->pipeline_matmul_f16_aligned_m; shname = "F16_ALIGNED_M"; } else { GGML_ASSERT(false); } } else if (shader_size == 2) { if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) { p = &ctx->pipeline_matmul_f32_aligned_l; shname = "F32_ALIGNED_L"; } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) { p = &ctx->pipeline_matmul_f16_f32_aligned_l; shname = "F16_F32_ALIGNED_L"; } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) { p = &ctx->pipeline_matmul_f16_aligned_l; shname = "F16_ALIGNED_L"; } else { GGML_ASSERT(false); } } else { GGML_ASSERT(0); } const size_t kpad = ggml_vk_align_size(k, p->align); if (k != kpad) { if (shader_size == 0) { if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) { p = &ctx->pipeline_matmul_f32_s; shname = "F32_S"; } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) { p = &ctx->pipeline_matmul_f16_f32_s; shname = "F16_F32_S"; } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) { p = &ctx->pipeline_matmul_f16_s; shname = "F16_S"; } } else if (shader_size == 1) { if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) { p = &ctx->pipeline_matmul_f32_m; shname = "F32_M"; } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) { p = &ctx->pipeline_matmul_f16_f32_m; shname = "F16_F32_M"; } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) { p = &ctx->pipeline_matmul_f16_m; shname = "F16_M"; } } else if (shader_size == 2) { if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) { p = &ctx->pipeline_matmul_f32_l; shname = "F32_L"; } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) { p = &ctx->pipeline_matmul_f16_f32_l; shname = "F16_F32_L"; } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) { p = &ctx->pipeline_matmul_f16_l; shname = "F16_L"; } } } ggml_pipeline_allocate_descriptor_sets(ctx, *p, num_it); if (split_k > 1) { ggml_pipeline_allocate_descriptor_sets(ctx, ctx->pipeline_matmul_split_k_reduce, num_it); if (ctx->prealloc_split_k == nullptr || ctx->prealloc_split_k->size < sizeof(float) * d_ne * split_k) { // Resize buffer if (ctx->prealloc_split_k != nullptr) { ggml_vk_destroy_buffer(ctx->prealloc_split_k); } ctx->prealloc_split_k = ggml_vk_create_buffer_check(ctx, sizeof(float) * d_ne * split_k, vk::MemoryPropertyFlagBits::eDeviceLocal); } } vk_buffer d_X = ggml_vk_create_buffer_check(ctx, sizeof(X_TYPE) * x_ne, vk::MemoryPropertyFlagBits::eDeviceLocal); vk_buffer d_Y = ggml_vk_create_buffer_check(ctx, sizeof(Y_TYPE) * y_ne, vk::MemoryPropertyFlagBits::eDeviceLocal); vk_buffer d_D = ggml_vk_create_buffer_check(ctx, sizeof(float) * d_ne, vk::MemoryPropertyFlagBits::eDeviceLocal); X_TYPE* x = (X_TYPE *) malloc(sizeof(X_TYPE) * x_ne); Y_TYPE* y = (Y_TYPE *) malloc(sizeof(Y_TYPE) * y_ne); float* d = (float *) malloc(sizeof(float) * d_ne); for (size_t i = 0; i < x_ne; i++) { if (std::is_same<float, X_TYPE>()) { x[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f; } else if (std::is_same<ggml_fp16_t, X_TYPE>()) { x[i] = ggml_fp32_to_fp16((rand() / (float)RAND_MAX) * 2.0f - 1.0f); } else { GGML_ASSERT(false); } } for (size_t i = 0; i < y_ne; i++) { if (std::is_same<float, Y_TYPE>()) { y[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f; } else if (std::is_same<ggml_fp16_t, Y_TYPE>()) { y[i] = ggml_fp32_to_fp16((rand() / (float)RAND_MAX) * 2.0f - 1.0f); } else { GGML_ASSERT(false); } } ggml_vk_buffer_write(ctx, d_X, 0, x, sizeof(X_TYPE) * k * m * batch); ggml_vk_buffer_write(ctx, d_Y, 0, y, sizeof(Y_TYPE) * k * n * batch); vk_context * subctx = ggml_vk_create_context(ctx, ctx->device.lock()->compute_queue); for (size_t i = 0; i < num_it; i++) { ggml_vk_ctx_begin(ctx, subctx); ggml_vk_matmul(ctx, subctx, *p, ggml_vk_subbuffer(d_X), ggml_vk_subbuffer(d_Y), ggml_vk_subbuffer(d_D), ggml_vk_subbuffer(ctx->prealloc_split_k), m, n, k, k, k, m, split_k, batch, batch, batch, 1, 1, k*m, k*n, m*n); ggml_vk_ctx_end(subctx); } auto begin = std::chrono::high_resolution_clock::now(); ggml_vk_submit(subctx, ctx->fence); VK_CHECK(ctx->device.lock()->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_test_matmul waitForFences"); ctx->device.lock()->device.resetFences({ ctx->fence }); auto end = std::chrono::high_resolution_clock::now(); double time = std::chrono::duration_cast<std::chrono::microseconds>(end-begin).count() / 1000.0; // copy dst to host ggml_vk_buffer_read(ctx, d_D, 0, d, sizeof(float) * d_ne); float * d_chk = (float *) malloc(sizeof(float) * d_ne); ggml_init_params iparams = { /*.mem_size =*/ 1024*1024*1024, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; ggml_context * ggml_ctx = ggml_init(iparams); ggml_type src0_type; ggml_type src1_type; if (std::is_same<float, X_TYPE>()) { src0_type = GGML_TYPE_F32; } else if (std::is_same<ggml_fp16_t, X_TYPE>()) { src0_type = GGML_TYPE_F16; } else { GGML_ASSERT(false); } if (std::is_same<float, Y_TYPE>()) { src1_type = GGML_TYPE_F32; } else if (std::is_same<ggml_fp16_t, Y_TYPE>()) { src1_type = GGML_TYPE_F16; } else { GGML_ASSERT(false); } ggml_tensor * src0_ggml = ggml_new_tensor_3d(ggml_ctx, src0_type, k, m, batch); ggml_tensor * src1_ggml = ggml_new_tensor_3d(ggml_ctx, src1_type, k, n, batch); ggml_tensor * tensor_ggml = ggml_mul_mat(ggml_ctx, src0_ggml, src1_ggml); src0_ggml->data = x; src1_ggml->data = y; tensor_ggml->data = d_chk; ctx->disable = true; ggml_cgraph * cgraph = ggml_new_graph(ggml_ctx); ggml_build_forward_expand(cgraph, tensor_ggml); ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 1); ctx->disable = false; ggml_free(ggml_ctx); double avg_err = 0.0; int first_err_n = -1; int first_err_m = -1; int first_err_b = -1; for (size_t i = 0; i < m*n*batch; i++) { double err = std::fabs(d[i] - d_chk[i]); avg_err += err; if (err > 0.05f && first_err_n == -1) { first_err_b = i / (m * n); first_err_n = (i % (m * n)) / m; first_err_m = (i % (m * n)) % m; } } avg_err /= m * n; std::cerr << "TEST " << shname << " m=" << m << " n=" << n << " k=" << k << " batch=" << batch << " split_k=" << split_k << " matmul " << time / num_it << "ms avg_err=" << avg_err << std::endl; if (avg_err > 0.1) { std::cerr << "m = " << first_err_m << " n = " << first_err_n << " b = " << first_err_b << std::endl; std::cerr << "Actual result: " << std::endl << std::endl; ggml_vk_print_matrix_area(d, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b); std::cerr << "Expected result: " << std::endl << std::endl; ggml_vk_print_matrix_area(d_chk, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b); if (split_k > 1) { float * split_k_buf = (float *) malloc(sizeof(float) * d_ne * split_k); ggml_vk_buffer_read(ctx, ctx->prealloc_split_k, 0, split_k_buf, sizeof(float) * d_ne * split_k); std::cerr << "d_buf0: " << std::endl << std::endl; ggml_vk_print_matrix_area(split_k_buf, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b); std::cerr << "d_buf1: " << std::endl << std::endl; ggml_vk_print_matrix_area(split_k_buf + d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b); std::cerr << "d_buf2: " << std::endl << std::endl; ggml_vk_print_matrix_area(split_k_buf + 2 * d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b); std::cerr << "d_buf3: " << std::endl << std::endl; ggml_vk_print_matrix_area(split_k_buf + 3 * d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b); free(split_k_buf); } } free(d_chk); ggml_vk_queue_cleanup(ctx, ctx->device.lock()->transfer_queue); ggml_vk_queue_cleanup(ctx, ctx->device.lock()->compute_queue); ggml_vk_destroy_buffer(d_X); ggml_vk_destroy_buffer(d_Y); ggml_vk_destroy_buffer(d_D); ggml_pipeline_cleanup(*p); ggml_pipeline_cleanup(ctx->pipeline_matmul_split_k_reduce); free(x); free(y); free(d); } static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, int i0, int i1, int i2, int i3) { if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) { return; } i0 = std::max(i0, 5); i1 = std::max(i1, 5); i2 = std::max(i2, 0); i3 = std::max(i3, 0); fprintf(stderr, " "); for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) { fprintf(stderr, "%7d ", idx1); } fprintf(stderr, "\n"); for (int idx0 = i0 - 5; idx0 < i0 + 5; idx0++) { fprintf(stderr, "%7d: ", idx0); for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) { if (idx0 >= 0 && idx0 < tensor->ne[0] && idx1 >= 0 && idx1 < tensor->ne[1] && i2 >= 0 && i2 < tensor->ne[2] && i3 >= 0 && i3 < tensor->ne[3]) { float val; if (tensor->type == GGML_TYPE_F32) { val = *(float *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]); } else if (tensor->type == GGML_TYPE_F16) { val = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0])); } fprintf(stderr, "% 7.2f ", val); } else { fprintf(stderr, " "); } } fprintf(stderr, "\n"); } } static void ggml_vk_test_h2d_nc(ggml_backend_vk_context * ctx, size_t ne0, size_t ne1, size_t ne2, size_t ne3) { const size_t ne = ne0 * ne1 * ne2 * ne3; ggml_init_params iparams = { /*.mem_size =*/ 1024*1024*1024, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; ggml_context * ggml_ctx = ggml_init(iparams); ggml_tensor * tensor = ggml_new_tensor_4d(ggml_ctx, GGML_TYPE_F32, ne0, ne2, ne1, ne3); // NOLINT ggml_tensor * result_tensor = ggml_new_tensor_4d(ggml_ctx, GGML_TYPE_F32, ne0, ne1, ne2, ne3); float * data = (float *) ggml_vk_host_malloc(ctx, ggml_nbytes(tensor)); tensor->data = data; float * result_data = (float *) malloc(ggml_nbytes(tensor)); result_tensor->data = result_data; // Permute { size_t tmp = tensor->nb[2]; tensor->nb[2] = tensor->nb[1]; tensor->nb[1] = tmp; tensor->ne[2] = ne2; tensor->ne[1] = ne1; } for (size_t i = 0; i < ne; i++) { data[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f; } vk_context * subctx = ggml_vk_create_context(ctx, ctx->device.lock()->compute_queue); ggml_vk_ctx_begin(ctx, subctx); vk_buffer buffer = ggml_vk_create_buffer_check(ctx, ggml_nbytes(tensor), vk::MemoryPropertyFlagBits::eDeviceLocal); ggml_vk_h2d_tensor_2d(ctx, subctx, buffer, 0, tensor, 0, 0, ggml_nrows(tensor)); ggml_vk_ctx_end(subctx); ggml_vk_submit(subctx, ctx->fence); VK_CHECK(ctx->device.lock()->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_test_h2d_nc waitForFences"); ctx->device.lock()->device.resetFences({ ctx->fence }); ggml_vk_buffer_read(ctx, buffer, 0, result_data, ggml_nbytes(tensor)); double avg_err = 0.0; int first_err_i0 = -1; int first_err_i1 = -1; int first_err_i2 = -1; int first_err_i3 = -1; for (size_t i3 = 0; i3 < ne3; i3++) { for (size_t i2 = 0; i2 < ne2; i2++) { for (size_t i1 = 0; i1 < ne1; i1++) { for (size_t i0 = 0; i0 < ne0; i0++) { float correct = *(float *) ((char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]); float result = *(float *) ((char *) result_data + i3*ne2*ne1*ne0*sizeof(float) + i2*ne1*ne0*sizeof(float) + i1*ne0*sizeof(float) + i0*sizeof(float)); double err = std::fabs(result - correct); avg_err += err; if (err > 0.05f && first_err_i0 == -1) { first_err_i0 = i0; first_err_i1 = i1; first_err_i2 = i2; first_err_i3 = i3; } } } } } avg_err /= ne; std::cerr << "TEST nc copy ne0=" << ne0 << " ne1=" << ne1 << " ne2=" << ne2 << " ne3=" << ne3 << " avg_err=" << avg_err << std::endl; if (avg_err > 0.1) { std::cerr << "i0 = " << first_err_i0 << " i1 = " << first_err_i1 << " i2 = " << first_err_i2 << " i3 = " << first_err_i3 << std::endl; std::cerr << "Actual result: " << std::endl << std::endl; ggml_vk_print_tensor_area(result_tensor, first_err_i0, first_err_i1, first_err_i2, first_err_i3); std::cerr << "Expected result: " << std::endl << std::endl; ggml_vk_print_tensor_area(tensor, first_err_i0, first_err_i1, first_err_i2, first_err_i3); } ggml_free(ggml_ctx); ggml_vk_destroy_buffer(buffer); ggml_vk_host_free(ctx, data); free(result_data); } static void ggml_vk_test_transfer(ggml_backend_vk_context * ctx, size_t ne, bool pinned) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_test_transfer(" << ne << ")" << std::endl; #endif // Check transfers are correct vk_buffer buffer = ggml_vk_create_buffer_check(ctx, sizeof(float) * ne, vk::MemoryPropertyFlagBits::eDeviceLocal); float * x; float * y; if (pinned) { x = (float *) ggml_vk_host_malloc(ctx, sizeof(float) * ne); y = (float *) ggml_vk_host_malloc(ctx, sizeof(float) * ne); } else { x = (float *) malloc(sizeof(float) * ne); y = (float *) malloc(sizeof(float) * ne); } for (size_t i = 0; i < ne; i++) { x[i] = rand() / (float)RAND_MAX; } vk_context * subctx = ggml_vk_create_context(ctx, ctx->device.lock()->compute_queue); ggml_vk_ctx_begin(ctx, subctx); auto begin = std::chrono::high_resolution_clock::now(); ggml_vk_buffer_write_async(ctx, subctx, buffer, 0, x, sizeof(float) * ne); for (auto& cpy : subctx->in_memcpys) { memcpy(cpy.dst, cpy.src, cpy.n); } subctx->in_memcpys.clear(); ggml_vk_ctx_end(subctx); ggml_vk_submit(subctx, ctx->fence); VK_CHECK(ctx->device.lock()->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_test_transfer waitForFences"); ctx->device.lock()->device.resetFences({ ctx->fence }); auto end = std::chrono::high_resolution_clock::now(); double ms_to_gpu = std::chrono::duration_cast<std::chrono::microseconds>(end-begin).count() / 1000.0; ggml_vk_ctx_begin(ctx, subctx); begin = std::chrono::high_resolution_clock::now(); ggml_vk_buffer_read_async(ctx, subctx, buffer, 0, y, sizeof(float) * ne); ggml_vk_ctx_end(subctx); ggml_vk_submit(subctx, ctx->fence); VK_CHECK(ctx->device.lock()->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_test_transfer waitForFences"); ctx->device.lock()->device.resetFences({ ctx->fence }); for (auto& cpy : subctx->out_memcpys) { memcpy(cpy.dst, cpy.src, cpy.n); } subctx->out_memcpys.clear(); end = std::chrono::high_resolution_clock::now(); double ms_from_gpu = std::chrono::duration_cast<std::chrono::microseconds>(end-begin).count() / 1000.0; double avg_err = 0.0; for (size_t i = 0; i < ne; i++) { avg_err += std::fabs(x[i] - y[i]); } double kb = ne * sizeof(float) / 1024.0; std::cerr << "TEST TRANSFER " << kb << " KB to_gpu " << ms_to_gpu << "ms (" << kb / ms_to_gpu * 1000.0 / 1024.0 << " MB/s) from_gpu " << ms_from_gpu << "ms (" << kb / ms_from_gpu * 1000.0 / 1024.0 << " MB/s) avg_err=" << avg_err / ne << std::endl; ggml_vk_destroy_buffer(buffer); if (pinned) { ggml_vk_host_free(ctx, x); ggml_vk_host_free(ctx, y); } else { free(x); free(y); } } static void ggml_vk_test_dequant(ggml_backend_vk_context * ctx, size_t ne, ggml_type quant) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_test_dequant(" << ne << ")" << std::endl; #endif const size_t x_sz = sizeof(float) * ne; const size_t x_sz_f16 = sizeof(ggml_fp16_t) * ne; const size_t qx_sz = ne * ggml_type_size(quant)/ggml_blck_size(quant); float * x = (float *) malloc(x_sz); void * qx = malloc(qx_sz); vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx, qx_sz, vk::MemoryPropertyFlagBits::eDeviceLocal); vk_buffer x_buf = ggml_vk_create_buffer_check(ctx, x_sz_f16, vk::MemoryPropertyFlagBits::eDeviceLocal); ggml_fp16_t * x_chk = (ggml_fp16_t *) malloc(x_sz_f16); for (size_t i = 0; i < ne; i++) { x[i] = rand() / (float)RAND_MAX; } std::vector<int64_t> hist_cur(1 << 4, 0); vk_pipeline& p = ctx->pipeline_dequant[quant]; switch(quant) { case GGML_TYPE_Q4_0: ggml_quantize_q4_0(x, qx, ne, ne, hist_cur.data()); break; case GGML_TYPE_Q4_1: ggml_quantize_q4_1(x, qx, ne, ne, hist_cur.data()); break; case GGML_TYPE_Q5_0: ggml_quantize_q5_0(x, qx, ne, ne, hist_cur.data()); break; case GGML_TYPE_Q5_1: ggml_quantize_q4_1(x, qx, ne, ne, hist_cur.data()); break; case GGML_TYPE_Q8_0: ggml_quantize_q8_0(x, qx, ne, ne, hist_cur.data()); break; case GGML_TYPE_Q2_K: ggml_quantize_q2_K(x, qx, ne, ne, hist_cur.data()); break; case GGML_TYPE_Q3_K: ggml_quantize_q3_K(x, qx, ne, ne, hist_cur.data()); break; case GGML_TYPE_Q4_K: ggml_quantize_q4_K(x, qx, ne, ne, hist_cur.data()); break; case GGML_TYPE_Q5_K: ggml_quantize_q5_K(x, qx, ne, ne, hist_cur.data()); break; case GGML_TYPE_Q6_K: ggml_quantize_q6_K(x, qx, ne, ne, hist_cur.data()); break; default: GGML_ASSERT(false); } ggml_pipeline_allocate_descriptor_sets(ctx, p, 1); ggml_vk_buffer_write(ctx, qx_buf, 0, qx, qx_sz); vk_context * subctx = ggml_vk_create_context(ctx, ctx->device.lock()->compute_queue); ggml_vk_ctx_begin(ctx, subctx); const std::vector<int> pc = { 1, (int)ne, (int)ne, (int)ne }; ggml_vk_dispatch_pipeline(ctx, subctx, p, { { qx_buf, 0, qx_sz }, { x_buf, 0, x_sz_f16 } }, pc.size() * sizeof(int), pc.data(), { (uint32_t)ne, 1, 1}); ggml_vk_ctx_end(subctx); auto begin = std::chrono::high_resolution_clock::now(); ggml_vk_submit(subctx, ctx->fence); VK_CHECK(ctx->device.lock()->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_test_dequant waitForFences"); ctx->device.lock()->device.resetFences({ ctx->fence }); auto end = std::chrono::high_resolution_clock::now(); double ms_dequant = std::chrono::duration_cast<std::chrono::microseconds>(end-begin).count() / 1000.0; ggml_vk_buffer_read(ctx, x_buf, 0, x_chk, x_sz_f16); double avg_err = 0.0; for (size_t i = 0; i < ne; i++) { avg_err += std::fabs(x[i] - ggml_fp16_to_fp32(x_chk[i])); } std::cerr << "TEST DEQUANT " << ggml_type_name(quant) << " time=" << ms_dequant << "ms avg_err=" << avg_err / ne << std::endl; ggml_vk_destroy_buffer(x_buf); ggml_vk_destroy_buffer(qx_buf); free(x); free(qx); free(x_chk); } #endif static ggml_tensor_extra_gpu * ggml_vk_tensor_create_extra(ggml_tensor * tensor) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_create_extra(" << tensor << " (" << tensor->name << ", " << ggml_op_name(tensor->op) << "))" << std::endl; #endif ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu; extra->reset(); tensor->extra = extra; return extra; } static ggml_tensor * ggml_vk_find_last_use(const ggml_tensor * node, ggml_cgraph * graph) { GGML_ASSERT(node != nullptr); for (int i = graph->n_nodes - 1; i >= 0; i--) { for (int j = 0; j < GGML_MAX_SRC; j++) { if (graph->nodes[i]->src[j] == node) { return graph->nodes[i]; } } } return nullptr; } static void ggml_vk_preallocate_buffers_graph(ggml_backend_vk_context * ctx, ggml_tensor * node){ #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_preallocate_buffers_graph(" << node << ")" << std::endl; #endif const bool any_on_device = node->backend == GGML_BACKEND_GPU || (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_GPU || node->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) || (node->src[1] != nullptr && (node->src[1]->backend == GGML_BACKEND_GPU)); if (ctx->disable || (!any_on_device && node->op != GGML_OP_MUL_MAT)) { return; } ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) node->extra; if (extra == nullptr) { // Workaround for CPU backend BLAS matmul calls extra = ggml_vk_tensor_create_extra(node); } ggml_tensor * src0 = node->src[0]; ggml_tensor * src1 = node->src[1]; const bool use_src0 = src0 != nullptr; const int64_t ne00 = use_src0 ? src0->ne[0] : 0; const int64_t ne01 = use_src0 ? src0->ne[1] : 0; const int64_t ne02 = use_src0 ? src0->ne[2] : 0; const int64_t ne03 = use_src0 ? src0->ne[3] : 0; const bool use_src1 = src1 != nullptr && node->op != GGML_OP_CPY && node->op != GGML_OP_CONT && node->op != GGML_OP_DUP; const int64_t ne10 = use_src1 ? src1->ne[0] : 0; const int64_t ne11 = use_src1 ? src1->ne[1] : 0; const int64_t ne12 = use_src1 ? src1->ne[2] : 0; const int64_t ne13 = use_src1 ? src1->ne[3] : 0; const int64_t ne20 = node->ne[0]; const int64_t ne21 = node->ne[1]; const int64_t ne22 = node->ne[2]; const int64_t ne23 = node->ne[3]; const bool f16_f32_kernel = use_src1 && src1->type == GGML_TYPE_F32; int split_k; if (node->op == GGML_OP_MUL_MAT) { split_k = ggml_vk_guess_split_k(ne01, ne11, ne10); } else { split_k = 1; } const uint32_t x_ne = ne00 * ne01; const uint32_t y_ne = ne10 * ne11; const uint32_t d_ne = ne20 * ne21; const uint64_t qx_sz = use_src0 ? ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) * ne02 * ne03 : 0; const uint64_t qy_sz = use_src1 ? ggml_vk_align_size(ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type), ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) * ne12 * ne13 : 0; const uint64_t x_sz = use_src0 ? ggml_vk_align_size(sizeof(ggml_fp16_t) * x_ne, ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) * ne02 * ne03 : 0; const uint64_t y_sz = use_src1 ? ggml_vk_align_size(f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne, ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) * ne12 * ne13 : 0; uint64_t d_sz = ggml_vk_align_size(ggml_type_size(node->type) * d_ne, ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) * ne22 * ne23; const uint64_t split_k_size = split_k > 1 ? d_sz * 4 : 0; if (extra->buffer_gpu.expired()) { // Workaround for CPU backend BLAS matmul calls extra->buffer_gpu = ggml_vk_create_buffer_temp(ctx, d_sz); } switch (node->op) { case GGML_OP_REPEAT: case GGML_OP_GET_ROWS: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: case GGML_OP_ADD: case GGML_OP_SCALE: case GGML_OP_SQR: case GGML_OP_CLAMP: case GGML_OP_CPY: case GGML_OP_CONT: case GGML_OP_DUP: case GGML_OP_MUL: case GGML_OP_NORM: case GGML_OP_RMS_NORM: case GGML_OP_DIAG_MASK_INF: case GGML_OP_SOFT_MAX: case GGML_OP_ROPE: break; case GGML_OP_UNARY: switch (ggml_get_unary_op(node)) { case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_GELU: case GGML_UNARY_OP_RELU: break; default: return; } break; case GGML_OP_MUL_MAT: if (ctx->prealloc_size_qx < qx_sz) { ctx->prealloc_size_qx = qx_sz; } if (ctx->prealloc_size_qy < qy_sz) { ctx->prealloc_size_qy = qy_sz; } if (ctx->prealloc_size_x < x_sz) { ctx->prealloc_size_x = x_sz; } if (ctx->prealloc_size_y < y_sz) { ctx->prealloc_size_y = y_sz; } if (ctx->prealloc_size_split_k < split_k_size) { ctx->prealloc_size_split_k = split_k_size; } if (ctx->staging_size < x_sz + y_sz) { ctx->staging_size = x_sz + y_sz; } break; default: return; } } static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx) { if (ctx->disable) { return; } #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_preallocate_buffers(qx_size: " << ctx->prealloc_size_qx << " qy_size: " << ctx->prealloc_size_qy << " x_size: " << ctx->prealloc_size_x << " y_size: " << ctx->prealloc_size_y << " split_k_size: " << ctx->prealloc_size_split_k << ")" << std::endl; #endif #if defined(GGML_VULKAN_RUN_TESTS) ctx->staging = ggml_vk_create_buffer_check(ctx, 100ul * 1024ul * 1024ul, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent); ggml_vk_test_transfer(ctx, 8192 * 1000, false); ggml_vk_test_transfer(ctx, 8192 * 1000, true); ggml_vk_test_dequant(ctx, 2560 * 7680, GGML_TYPE_Q4_0); ggml_vk_test_dequant(ctx, 2560 * 7680, GGML_TYPE_Q4_1); ggml_vk_test_dequant(ctx, 2560 * 7680, GGML_TYPE_Q5_0); ggml_vk_test_dequant(ctx, 2560 * 7680, GGML_TYPE_Q5_1); ggml_vk_test_dequant(ctx, 2560 * 7680, GGML_TYPE_Q8_0); ggml_vk_test_dequant(ctx, 2560 * 7680, GGML_TYPE_Q2_K); ggml_vk_test_dequant(ctx, 2560 * 7680, GGML_TYPE_Q3_K); ggml_vk_test_dequant(ctx, 2560 * 7680, GGML_TYPE_Q4_K); ggml_vk_test_dequant(ctx, 2560 * 7680, GGML_TYPE_Q5_K); ggml_vk_test_dequant(ctx, 2560 * 7680, GGML_TYPE_Q6_K); const std::vector<size_t> vals { 8, 8, 8, 100, 46, 576, 623, 111, 128, 100, 46, 558, 512, 1, 256, 128, 110, 622, 511, 511, 127, 511, 511, 7, 511, 511, 17, 49, 49, 128, 128, 49, 49, 4096, 49, 4096, 11008, 49, 4096, 4096, 49, 11008, 32000, 49, 4096, 512, 512, 128, 128, 512, 512, 4096, 512, 4096, 11008, 512, 4096, 4096, 512, 11008, 32000, 512, 4096, }; const size_t num_it = 1; for (size_t i = 0; i < vals.size(); i += 3) { ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 0); ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 1); ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 2); ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 0); ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 1); ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 2); std::cerr << std::endl; } GGML_ASSERT(false); #endif if (ctx->prealloc_qx == nullptr || (ctx->prealloc_size_qx > 0 && ctx->prealloc_qx->size < ctx->prealloc_size_qx)) { // Resize buffer if (ctx->prealloc_qx != nullptr) { ggml_vk_destroy_buffer(ctx->prealloc_qx); } ctx->prealloc_qx = ggml_vk_create_buffer_device(ctx, ctx->prealloc_size_qx); } if (ctx->prealloc_qy == nullptr || (ctx->prealloc_size_qy > 0 && ctx->prealloc_qy->size < ctx->prealloc_size_qy)) { // Resize buffer if (ctx->prealloc_qy != nullptr) { ggml_vk_destroy_buffer(ctx->prealloc_qy); } ctx->prealloc_qy = ggml_vk_create_buffer_device(ctx, ctx->prealloc_size_qy); } if (ctx->prealloc_x == nullptr || (ctx->prealloc_size_x > 0 && ctx->prealloc_x->size < ctx->prealloc_size_x)) { // Resize buffer if (ctx->prealloc_x != nullptr) { ggml_vk_destroy_buffer(ctx->prealloc_x); } ctx->prealloc_x = ggml_vk_create_buffer_device(ctx, ctx->prealloc_size_x); } if (ctx->prealloc_y == nullptr || (ctx->prealloc_size_y > 0 && ctx->prealloc_y->size < ctx->prealloc_size_y)) { // Resize buffer if (ctx->prealloc_y != nullptr) { ggml_vk_destroy_buffer(ctx->prealloc_y); } ctx->prealloc_y = ggml_vk_create_buffer_device(ctx, ctx->prealloc_size_y); } if (ctx->prealloc_split_k == nullptr || (ctx->prealloc_size_split_k > 0 && ctx->prealloc_split_k->size < ctx->prealloc_size_split_k)) { // Resize buffer if (ctx->prealloc_split_k != nullptr) { ggml_vk_destroy_buffer(ctx->prealloc_split_k); } ctx->prealloc_split_k = ggml_vk_create_buffer_device(ctx, ctx->prealloc_size_split_k); } if (ctx->staging == nullptr || (ctx->staging_size > 0 && ctx->staging->size < ctx->staging_size)) { // Resize buffer if (ctx->staging != nullptr) { ggml_vk_destroy_buffer(ctx->staging); } ctx->staging = ggml_vk_create_buffer_check(ctx, ctx->staging_size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent); } } static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, bool last_node){ const bool any_on_device = node->backend == GGML_BACKEND_GPU || (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_GPU || node->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) || (node->src[1] != nullptr && node->src[1]->backend == GGML_BACKEND_GPU); if (ctx->disable || (!any_on_device && node->op != GGML_OP_MUL_MAT) || (node->op == GGML_OP_MUL_MAT && !any_on_device && !ggml_vk_can_mul_mat(node->src[0], node->src[1], node))) { return; } #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_build_graph(" << node << ", " << ggml_op_name(node->op) << ")" << std::endl; #endif ctx->semaphore_idx = 0; ctx->staging_offset = 0; const ggml_tensor * src0 = node->src[0]; const ggml_tensor * src1 = node->src[1]; ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) node->extra; switch (node->op) { case GGML_OP_UNARY: switch (ggml_get_unary_op(node)) { case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_GELU: case GGML_UNARY_OP_RELU: break; default: return; } break; case GGML_OP_REPEAT: // case GGML_OP_GET_ROWS: case GGML_OP_ADD: case GGML_OP_MUL: case GGML_OP_SCALE: case GGML_OP_SQR: case GGML_OP_CLAMP: case GGML_OP_CPY: case GGML_OP_CONT: case GGML_OP_DUP: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: case GGML_OP_NORM: case GGML_OP_RMS_NORM: case GGML_OP_DIAG_MASK_INF: case GGML_OP_SOFT_MAX: case GGML_OP_ROPE: case GGML_OP_MUL_MAT: case GGML_OP_NONE: break; default: if (any_on_device) { std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(node->op) << std::endl; GGML_ASSERT(false); } return; } if (ctx->compute_ctx == nullptr) { ctx->compute_ctx = ggml_vk_create_context(ctx, ctx->device.lock()->compute_queue); ggml_vk_ctx_begin(ctx, ctx->compute_ctx); } switch (node->op) { case GGML_OP_REPEAT: ggml_vk_repeat(ctx, ctx->compute_ctx, src0, src1, node); break; case GGML_OP_GET_ROWS: ggml_vk_get_rows(ctx, ctx->compute_ctx, src0, src1, node); break; case GGML_OP_ADD: ggml_vk_add(ctx, ctx->compute_ctx, src0, src1, node); break; case GGML_OP_MUL: ggml_vk_mul(ctx, ctx->compute_ctx, src0, src1, node); break; case GGML_OP_SCALE: ggml_vk_scale(ctx, ctx->compute_ctx, src0, node); break; case GGML_OP_SQR: ggml_vk_sqr(ctx, ctx->compute_ctx, src0, node); break; case GGML_OP_CLAMP: ggml_vk_clamp(ctx, ctx->compute_ctx, src0, node); break; case GGML_OP_CPY: case GGML_OP_CONT: case GGML_OP_DUP: ggml_vk_cpy(ctx, ctx->compute_ctx, src0, node); break; case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: case GGML_OP_NONE: ggml_vk_nop(ctx, ctx->compute_ctx, src0, node); break; case GGML_OP_NORM: ggml_vk_norm(ctx, ctx->compute_ctx, src0, node); break; case GGML_OP_RMS_NORM: ggml_vk_rms_norm(ctx, ctx->compute_ctx, src0, node); break; case GGML_OP_UNARY: switch (ggml_get_unary_op(node)) { case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_GELU: case GGML_UNARY_OP_RELU: ggml_vk_unary(ctx, ctx->compute_ctx, src0, node); break; default: return; } break; case GGML_OP_DIAG_MASK_INF: ggml_vk_diag_mask_inf(ctx, ctx->compute_ctx, src0, node); break; case GGML_OP_SOFT_MAX: ggml_vk_soft_max(ctx, ctx->compute_ctx, src0, src1, node); break; case GGML_OP_ROPE: ggml_vk_rope(ctx, ctx->compute_ctx, src0, src1, node); break; case GGML_OP_MUL_MAT: ggml_vk_mul_mat(ctx, ctx->compute_ctx, src0, src1, node); break; default: return; } extra->ready = true; extra->ctx_idx = ctx->compute_ctx->idx; #ifdef GGML_VULKAN_CHECK_RESULTS // Force context reset on each node so that each tensor ends up in its own context // and can be run and compared to its CPU equivalent separately last_node = true; #endif if (node->backend == GGML_BACKEND_CPU || last_node) { ggml_vk_ctx_end(ctx->compute_ctx); ctx->compute_ctx->exit_tensor = node; ctx->compute_ctx = nullptr; } } static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_compute_params * params, ggml_tensor * tensor){ const bool any_on_device = tensor->backend == GGML_BACKEND_GPU || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU); if (ctx->disable || (!any_on_device && tensor->op != GGML_OP_MUL_MAT)) { return false; } ggml_tensor_extra_gpu * extra = nullptr; switch (tensor->op) { case GGML_OP_ADD: case GGML_OP_GET_ROWS: case GGML_OP_MUL: case GGML_OP_SCALE: case GGML_OP_SQR: case GGML_OP_CLAMP: case GGML_OP_CPY: case GGML_OP_CONT: case GGML_OP_DUP: case GGML_OP_NORM: case GGML_OP_RMS_NORM: case GGML_OP_DIAG_MASK_INF: case GGML_OP_SOFT_MAX: case GGML_OP_ROPE: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: case GGML_OP_NONE: extra = (ggml_tensor_extra_gpu *) tensor->extra; break; case GGML_OP_UNARY: switch (ggml_get_unary_op(tensor)) { case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_GELU: case GGML_UNARY_OP_RELU: extra = (ggml_tensor_extra_gpu *) tensor->extra; break; default: return false; } break; case GGML_OP_MUL_MAT: if (!any_on_device && !ggml_vk_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) { return false; } extra = (ggml_tensor_extra_gpu *) tensor->extra; break; default: return false; } if (extra == nullptr) { return false; } if (params->ith != 0) { return true; } if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return true; } #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_compute_forward(" << tensor << ", name=" << tensor->name << ", op=" << ggml_op_name(tensor->op) << ", type=" << tensor->type << ", backend=" << tensor->backend << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << ", view_src=" << tensor->view_src << ", view_offs=" << tensor->view_offs << ")" << std::endl; #endif #ifdef GGML_VULKAN_CHECK_RESULTS ggml_vk_check_results_0(ctx, params, tensor); #endif GGML_ASSERT(extra->ready); vk_context& subctx = ctx->gc.contexts[extra->ctx_idx]; // Only run if ctx hasn't been submitted yet if (!subctx.seqs.empty()) { // Do staging buffer copies for (auto& cpy : subctx.in_memcpys) { memcpy(cpy.dst, cpy.src, cpy.n); } ggml_vk_submit(&subctx, ctx->fence); } if (tensor == subctx.exit_tensor) { VK_CHECK(ctx->device.lock()->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_compute_forward waitForFences"); ctx->device.lock()->device.resetFences({ ctx->fence }); // Do staging buffer copies for (auto& cpy : subctx.out_memcpys) { memcpy(cpy.dst, cpy.src, cpy.n); } subctx.in_memcpys.clear(); subctx.out_memcpys.clear(); } extra->ready = false; return true; } // Clean up after graph processing is done static void ggml_vk_graph_cleanup(ggml_backend_vk_context * ctx) { if (ctx->disable) { return; } #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_graph_cleanup()" << std::endl; #endif for (auto& buffer : ctx->gc.temp_buffers) { ggml_vk_pool_free(ctx, buffer); } ctx->gc.temp_buffers.clear(); for (auto * pipeline : ctx->gc.pipelines) { ggml_pipeline_cleanup(*pipeline); } ggml_vk_queue_cleanup(ctx, ctx->device.lock()->compute_queue); ggml_vk_queue_cleanup(ctx, ctx->device.lock()->transfer_queue); for (size_t i = 0; i < ctx->gc.semaphores.size(); i++) { ctx->device.lock()->device.destroySemaphore({ ctx->gc.semaphores[i].s }); } ctx->gc.semaphores.clear(); for (size_t i = 0; i < ctx->gc.tl_semaphores.size(); i++) { ctx->device.lock()->device.destroySemaphore({ ctx->gc.tl_semaphores[i].s }); } ctx->gc.tl_semaphores.clear(); ctx->semaphore_idx = 0; ctx->event_idx = 0; for (auto& event : ctx->gc.events) { ctx->device.lock()->device.resetEvent(event); } ctx->staging_offset = 0; ctx->compute_ctx = nullptr; ctx->transfer_ctx = nullptr; ctx->gc.contexts.clear(); } // Clean up on backend free static void ggml_vk_cleanup(ggml_backend_vk_context * ctx) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_cleanup(" << ctx->idx << ")" << std::endl; #endif ggml_vk_graph_cleanup(ctx); ggml_vk_destroy_buffer(ctx->prealloc_qx); ggml_vk_destroy_buffer(ctx->prealloc_qy); ggml_vk_destroy_buffer(ctx->prealloc_x); ggml_vk_destroy_buffer(ctx->prealloc_y); ggml_vk_destroy_buffer(ctx->prealloc_split_k); ggml_vk_destroy_buffer(ctx->staging); ggml_vk_destroy_buffer(ctx->sync_staging); for (auto& buffer : ctx->buffer_pool) { ggml_vk_destroy_buffer(buffer); } ctx->prealloc_size_qx = 0; ctx->prealloc_size_qy = 0; ctx->prealloc_size_x = 0; ctx->prealloc_size_y = 0; ctx->prealloc_size_split_k = 0; ctx->staging_size = 0; for (auto& event : ctx->gc.events) { ctx->device.lock()->device.destroyEvent(event); } ctx->gc.events.clear(); for (auto* pipeline : ctx->gc.pipelines) { ggml_vk_destroy_pipeline(ctx, pipeline); } ctx->gc.pipelines.clear(); ctx->device.lock()->device.destroyFence(ctx->fence); ctx->device.lock()->device.destroyCommandPool(ctx->device.lock()->compute_queue.pool); if (!ctx->device.lock()->single_queue) { ctx->device.lock()->device.destroyCommandPool(ctx->device.lock()->transfer_queue.pool); } } GGML_CALL int ggml_vk_get_device_count() { ggml_vk_instance_init(); return vk_instance.device_indices.size(); } GGML_CALL void ggml_vk_get_device_description(int device, char * description, size_t description_size) { ggml_vk_instance_init(); std::vector<vk::PhysicalDevice> devices = vk_instance.instance.enumeratePhysicalDevices(); vk::PhysicalDeviceProperties props; devices[device].getProperties(&props); snprintf(description, description_size, "%s", props.deviceName.data()); } // CPU assist interface void ggml_vk_init_cpu_assist() { ggml_vk_instance_init(); std::cerr << "ggml_vulkan: Found " << ggml_vk_get_device_count() << " Vulkan devices:" << std::endl; for (size_t i = 0; i < ggml_vk_get_device_count(); i++) { ggml_vk_print_gpu_info(i); } // Initialize the first backend to make sure CPU matrix multiplications can be offloaded. ggml_backend_vk_init(0); } void ggml_vk_preallocate_buffers_graph_cpu_assist(ggml_tensor * node) { ggml_backend_vk_context * ctx = &vk_instance.contexts[0]; if (!ctx->initialized) { return; } ggml_vk_preallocate_buffers_graph(ctx, node); } void ggml_vk_preallocate_buffers_cpu_assist() { ggml_backend_vk_context * ctx = &vk_instance.contexts[0]; if (!ctx->initialized) { return; } ggml_vk_preallocate_buffers(ctx); } void ggml_vk_build_graph_cpu_assist(ggml_tensor * node, bool last_node) { ggml_backend_vk_context * ctx = &vk_instance.contexts[0]; if (!ctx->initialized) { return; } ggml_vk_build_graph(ctx, node, last_node); } bool ggml_vk_compute_forward_cpu_assist(ggml_compute_params * params, ggml_tensor * tensor){ ggml_backend_vk_context * ctx = &vk_instance.contexts[0]; if (!ctx->initialized) { return false; } return ggml_vk_compute_forward(ctx, params, tensor); } void ggml_vk_graph_cleanup_cpu_assist() { ggml_backend_vk_context * ctx = &vk_instance.contexts[0]; if (!ctx->initialized) { return; } ggml_vk_graph_cleanup(ctx); } void ggml_vk_free_cpu_assist() { ggml_backend_vk_context * ctx = &vk_instance.contexts[0]; if (!ctx->initialized || vk_instance.backends[0] == nullptr) { return; } ggml_backend_vk_free(vk_instance.backends[0]); } // backend interface #define UNUSED GGML_UNUSED // device backend static void * const vk_ptr_base = (void *)(uintptr_t) 0x1000; // NOLINT struct ggml_backend_vk_buffer_context { ggml_backend_vk_context * ctx; vk_buffer dev_buffer; ggml_tensor_extra_gpu * temp_tensor_extras = nullptr; size_t temp_tensor_extra_index = 0; std::string name; ggml_backend_vk_buffer_context(ggml_backend_vk_context * ctx, vk_buffer&& dev_buffer, std::string& name) : ctx(ctx), dev_buffer(dev_buffer), name(name) { } ~ggml_backend_vk_buffer_context() { ggml_vk_destroy_buffer(dev_buffer); delete[] temp_tensor_extras; } ggml_tensor_extra_gpu * ggml_vk_alloc_temp_tensor_extra() { if (temp_tensor_extras == nullptr) { temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_VK_MAX_NODES]; } size_t alloc_index = temp_tensor_extra_index; temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_VK_MAX_NODES; ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index]; extra->reset(); return extra; } }; GGML_CALL static const char * ggml_backend_vk_buffer_get_name(ggml_backend_buffer_t buffer) { ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context; return ctx->name.c_str(); } GGML_CALL static bool ggml_backend_buffer_is_vk(ggml_backend_buffer_t buffer) { return buffer->iface.get_name == ggml_backend_vk_buffer_get_name; } GGML_CALL static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_backend_vk_buffer_free_buffer()" << std::endl; #endif ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context; ggml_vk_destroy_buffer(ctx->dev_buffer); delete ctx; } GGML_CALL static void * ggml_backend_vk_buffer_get_base(ggml_backend_buffer_t buffer) { return vk_ptr_base; UNUSED(buffer); } GGML_CALL static void ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_backend_vk_buffer_init_tensor(" << buffer << " (" << buffer->context << "), " << tensor << ")" << std::endl; #endif ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context; ggml_tensor_extra_gpu * extra = ctx->ggml_vk_alloc_temp_tensor_extra(); if (tensor->view_src != nullptr && tensor->view_src->extra != nullptr) { GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft); ggml_tensor_extra_gpu * extra_view = (ggml_tensor_extra_gpu *) tensor->view_src->extra; extra->buffer_gpu = extra_view->buffer_gpu; extra->offset = extra_view->offset + tensor->view_offs; } else { extra->buffer_gpu = ctx->dev_buffer; extra->offset = (uint8_t *) tensor->data - (uint8_t *) vk_ptr_base; } tensor->backend = GGML_BACKEND_GPU; tensor->extra = extra; } GGML_CALL static void ggml_backend_vk_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_backend_vk_buffer_set_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")" << std::endl; #endif GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context; ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; vk_buffer buf = extra->buffer_gpu.lock(); ggml_vk_buffer_write(ctx->ctx, buf, extra->offset + offset, data, size); } GGML_CALL static void ggml_backend_vk_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_backend_vk_buffer_get_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")" << std::endl; #endif GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context; ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; vk_buffer buf = extra->buffer_gpu.lock(); ggml_vk_buffer_read(ctx->ctx, buf, extra->offset + offset, data, size); } GGML_CALL static bool ggml_backend_vk_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) { if (ggml_backend_buffer_is_vk(src->buffer)) { ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context; ggml_tensor_extra_gpu * src_extra = (ggml_tensor_extra_gpu *) src->extra; ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; vk_buffer src_buf = src_extra->buffer_gpu.lock(); vk_buffer dst_buf = dst_extra->buffer_gpu.lock(); ggml_vk_buffer_copy(dst_buf, dst_extra->offset, src_buf, src_extra->offset, ggml_nbytes(src)); return true; } return false; } GGML_CALL static void ggml_backend_vk_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context; ggml_vk_buffer_memset(ctx->ctx, ctx->dev_buffer, 0, value, buffer->size); } static ggml_backend_buffer_i ggml_backend_vk_buffer_interface = { /* .get_name = */ ggml_backend_vk_buffer_get_name, /* .free_buffer = */ ggml_backend_vk_buffer_free_buffer, /* .get_base = */ ggml_backend_vk_buffer_get_base, /* .init_tensor = */ ggml_backend_vk_buffer_init_tensor, /* .set_tensor = */ ggml_backend_vk_buffer_set_tensor, /* .get_tensor = */ ggml_backend_vk_buffer_get_tensor, /* .cpy_tensor = */ ggml_backend_vk_buffer_cpy_tensor, /* .clear = */ ggml_backend_vk_buffer_clear, /* .reset = */ NULL, }; // vk buffer type struct ggml_backend_vk_buffer_type_context { std::string name; ggml_backend_vk_context * ctx; }; GGML_CALL static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft) { ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *)buft->context; return ctx->name.c_str(); } GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_backend_vk_buffer_type_alloc_buffer(" << size << ")" << std::endl; #endif ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context; vk_buffer dev_buffer = ggml_vk_create_buffer_device(ctx->ctx, size); ggml_backend_vk_buffer_context * bufctx = new ggml_backend_vk_buffer_context(ctx->ctx, std::move(dev_buffer), ctx->name); return ggml_backend_buffer_init(buft, ggml_backend_vk_buffer_interface, bufctx, size); } GGML_CALL static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context; return ctx->ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment; } GGML_CALL static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) { ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context; return ctx->ctx->device.lock()->max_memory_allocation_size; } GGML_CALL static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { return ggml_nbytes(tensor); UNUSED(buft); } GGML_CALL static bool ggml_backend_vk_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { if (!ggml_backend_is_vk(backend)) { return false; } ggml_backend_vk_buffer_type_context * buft_ctx = (ggml_backend_vk_buffer_type_context *)buft->context; ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; return buft_ctx->ctx->idx == ctx->idx; } static ggml_backend_buffer_type_i ggml_backend_vk_buffer_type_interface = { /* .get_name = */ ggml_backend_vk_buffer_type_name, /* .alloc_buffer = */ ggml_backend_vk_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_vk_buffer_type_get_alignment, /* .get_max_size = */ ggml_backend_vk_buffer_type_get_max_size, /* .get_alloc_size = */ ggml_backend_vk_buffer_type_get_alloc_size, /* .supports_backend = */ ggml_backend_vk_buffer_type_supports_backend, /* .is_host = */ NULL, }; GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t idx) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_backend_vk_buffer_type(" << idx << ")" << std::endl; #endif GGML_ASSERT(idx < vk_instance.device_indices.size()); ggml_backend_vk_init(idx); return &vk_instance.buffer_types[idx]; } // host buffer type GGML_CALL static const char * ggml_backend_vk_host_buffer_type_name(ggml_backend_buffer_type_t buft) { return GGML_VK_NAME "_Host"; UNUSED(buft); } GGML_CALL static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffer) { return GGML_VK_NAME "_Host"; UNUSED(buffer); } GGML_CALL static void ggml_backend_vk_host_buffer_free_buffer(ggml_backend_buffer_t buffer) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_backend_vk_host_buffer_free_buffer()" << std::endl; #endif ggml_vk_host_free(&vk_instance.contexts[0], buffer->context); } GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_backend_vk_host_buffer_type_alloc_buffer(" << size << ")" << std::endl; #endif void * ptr = nullptr; try { ptr = ggml_vk_host_malloc(&vk_instance.contexts[0], size); } catch (vk::SystemError& e) { std::cerr << "ggml_vulkan: Failed to allocate pinned memory." << std::endl; std::cerr << "ggml_vulkan: " << e.what() << std::endl; // fallback to cpu buffer return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size); } ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size); buffer->buft = buft; buffer->iface.get_name = ggml_backend_vk_host_buffer_name; buffer->iface.free_buffer = ggml_backend_vk_host_buffer_free_buffer; return buffer; } GGML_CALL static size_t ggml_backend_vk_host_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { return vk_instance.contexts[0].device.lock()->properties.limits.minMemoryMapAlignment; UNUSED(buft); } GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type() { static struct ggml_backend_buffer_type ggml_backend_vk_buffer_type_host = { /* .iface = */ { /* .get_name = */ ggml_backend_vk_host_buffer_type_name, /* .alloc_buffer = */ ggml_backend_vk_host_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_vk_host_buffer_type_get_alignment, /* .get_max_size = */ NULL, // defaults to SIZE_MAX /* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size, /* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend, /* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host, }, /* .context = */ nullptr, }; if (!vk_instance.contexts[0].initialized) { // Fall back to CPU return ggml_backend_cpu_buffer_type(); } return &ggml_backend_vk_buffer_type_host; } // backend GGML_CALL static const char * ggml_backend_vk_name(ggml_backend_t backend) { ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; return ctx->name.c_str(); } GGML_CALL static void ggml_backend_vk_free(ggml_backend_t backend) { ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_backend_vk_free(" << ctx->name << ")" << std::endl; #endif size_t idx = ctx->idx; ggml_vk_cleanup(ctx); // Release device vk_instance.devices[ctx->idx].reset(); ctx->initialized = false; vk_instance.initialized[idx] = false; vk_instance.backends[idx] = nullptr; memset(&vk_instance.buffer_types[idx], 0, sizeof(ggml_backend_buffer_type)); delete backend; } GGML_CALL static ggml_backend_buffer_type_t ggml_backend_vk_get_default_buffer_type(ggml_backend_t backend) { ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; GGML_ASSERT(ctx->initialized); return ggml_backend_vk_buffer_type(ctx->idx); } GGML_CALL static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_backend_vk_set_tensor_async(" << size << ")" << std::endl; #endif ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_buffer_type(ctx->idx) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type"); GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; if (ctx->transfer_ctx == nullptr) { // Initialize new transfer context ctx->transfer_ctx = ggml_vk_create_context(ctx, ctx->device.lock()->transfer_queue); ggml_vk_ctx_begin(ctx, ctx->transfer_ctx); } vk_buffer buf = extra->buffer_gpu.lock(); ggml_vk_buffer_write_async(ctx, ctx->transfer_ctx, buf, extra->offset + offset, data, size); } GGML_CALL static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_backend_vk_get_tensor_async(" << size << ")" << std::endl; #endif ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_buffer_type(ctx->idx) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type"); GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; if (ctx->transfer_ctx == nullptr) { // Initialize new transfer context ctx->transfer_ctx = ggml_vk_create_context(ctx, ctx->device.lock()->transfer_queue); ggml_vk_ctx_begin(ctx, ctx->transfer_ctx); } vk_buffer buf = extra->buffer_gpu.lock(); ggml_vk_buffer_read_async(ctx, ctx->transfer_ctx, buf, extra->offset + offset, data, size); } GGML_CALL static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_backend_vk_cpy_tensor_async()" << std::endl; #endif ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; if ((dst->buffer->buft == ggml_backend_vk_buffer_type(ctx->idx) || dst->buffer->buft == ggml_backend_vk_host_buffer_type()) && ggml_backend_buffer_is_vk(src->buffer)) { ggml_tensor_extra_gpu * src_extra = (ggml_tensor_extra_gpu *) src->extra; ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; if (ctx->transfer_ctx == nullptr) { // Initialize new transfer context ctx->transfer_ctx = ggml_vk_create_context(ctx, ctx->device.lock()->transfer_queue); ggml_vk_ctx_begin(ctx, ctx->transfer_ctx); } vk_buffer src_buf = src_extra->buffer_gpu.lock(); vk_buffer dst_buf = dst_extra->buffer_gpu.lock(); ggml_vk_buffer_copy_async(ctx->transfer_ctx, src_buf, src_extra->offset, dst_buf, dst_extra->offset, ggml_nbytes(src)); return true; } return false; } GGML_CALL static void ggml_backend_vk_synchronize(ggml_backend_t backend) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_backend_vk_synchronize()" << std::endl; #endif ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; if(ctx->transfer_ctx == nullptr) { return; } ggml_vk_ctx_end(ctx->transfer_ctx); for (auto& cpy : ctx->transfer_ctx->in_memcpys) { memcpy(cpy.dst, cpy.src, cpy.n); } ggml_vk_submit(ctx->transfer_ctx, ctx->fence); VK_CHECK(ctx->device.lock()->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_backend_vk_synchronize waitForFences"); ctx->device.lock()->device.resetFences({ ctx->fence }); for (auto& cpy : ctx->transfer_ctx->out_memcpys) { memcpy(cpy.dst, cpy.src, cpy.n); } ctx->transfer_ctx = nullptr; } GGML_CALL static bool ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; for (int i = 0; i < cgraph->n_nodes; i++) { ggml_vk_preallocate_buffers_graph(ctx, cgraph->nodes[i]); } ggml_vk_preallocate_buffers(ctx); int last_node = cgraph->n_nodes - 1; // If the last op in the cgraph isn't backend GPU, the command buffer doesn't get closed properly while (last_node > 0 && cgraph->nodes[last_node]->backend != GGML_BACKEND_GPU) { last_node -= 1; } for (int i = 0; i < cgraph->n_nodes; i++) { ggml_vk_build_graph(ctx,cgraph->nodes[i], i == last_node); } ggml_compute_params params = {}; params.type = GGML_TASK_COMPUTE; params.ith = 0; for (int i = 0; i < cgraph->n_nodes; i++) { ggml_tensor * node = cgraph->nodes[i]; if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) { continue; } bool ok = ggml_vk_compute_forward(ctx, ¶ms, node); if (!ok) { fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op)); } #ifdef GGML_VULKAN_CHECK_RESULTS else { ggml_vk_check_results_1(ctx, ¶ms, node); } #endif GGML_ASSERT(ok); } ggml_vk_graph_cleanup(ctx); return true; UNUSED(backend); } GGML_CALL static bool ggml_backend_vk_supports_op(ggml_backend_t backend, const ggml_tensor * op) { switch (op->op) { case GGML_OP_UNARY: switch (ggml_get_unary_op(op)) { case GGML_UNARY_OP_GELU: case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_RELU: return true; default: return false; } break; case GGML_OP_MUL_MAT: { struct ggml_tensor * a; struct ggml_tensor * b; if (op->op == GGML_OP_MUL_MAT) { a = op->src[0]; b = op->src[1]; } else { a = op->src[2]; b = op->src[1]; } if (a->ne[3] != b->ne[3]) { return false; } return true; } break; // case GGML_OP_GET_ROWS: // { // switch (op->src[0]->type) { // case GGML_TYPE_F16: // case GGML_TYPE_F32: // case GGML_TYPE_Q4_0: // case GGML_TYPE_Q4_1: // case GGML_TYPE_Q5_0: // case GGML_TYPE_Q5_1: // case GGML_TYPE_Q8_0: // return true; // default: // return false; // } // } break; case GGML_OP_CPY: { ggml_type src0_type = op->src[0]->type; ggml_type src1_type = op->src[1]->type; if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) { return true; } if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) { return true; } if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) { return true; } return false; } break; case GGML_OP_DUP: // case GGML_OP_REPEAT: // { // ggml_type src0_type = op->src[0]->type; // return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16; // } break; case GGML_OP_ROPE: { const int mode = ((const int32_t *) op->op_params)[2]; const bool is_glm = mode & 4; return !is_glm; } break; case GGML_OP_NONE: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: case GGML_OP_NORM: case GGML_OP_ADD: case GGML_OP_MUL: case GGML_OP_RMS_NORM: case GGML_OP_SCALE: case GGML_OP_SQR: case GGML_OP_CLAMP: case GGML_OP_CONT: case GGML_OP_DIAG_MASK_INF: case GGML_OP_SOFT_MAX: return true; default: return false; } UNUSED(backend); } // TODO: enable async and synchronize static ggml_backend_i ggml_backend_vk_interface = { /* .get_name = */ ggml_backend_vk_name, /* .free = */ ggml_backend_vk_free, /* .get_default_buffer_type = */ ggml_backend_vk_get_default_buffer_type, /* .set_tensor_async = */ NULL, // ggml_backend_vk_set_tensor_async, /* .get_tensor_async = */ NULL, // ggml_backend_vk_get_tensor_async, /* .cpy_tensor_async = */ NULL, // ggml_backend_vk_cpy_tensor_async, /* .synchronize = */ NULL, // ggml_backend_vk_synchronize, /* .graph_plan_create = */ NULL, /* .graph_plan_free = */ NULL, /* .graph_plan_compute = */ NULL, /* .graph_compute = */ ggml_backend_vk_graph_compute, /* .supports_op = */ ggml_backend_vk_supports_op, }; GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t idx) { if (vk_instance.initialized[idx]) { return vk_instance.backends[idx]; } #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_backend_vk_init(" << idx << ")" << std::endl; #endif ggml_backend_vk_context * ctx = &vk_instance.contexts[idx]; ggml_vk_init(ctx, idx); ctx->name = GGML_VK_NAME + std::to_string(idx); vk_instance.buffer_types[idx] = { /* .iface = */ ggml_backend_vk_buffer_type_interface, /* .context = */ new ggml_backend_vk_buffer_type_context{ ctx->name, ctx }, }; vk_instance.initialized[idx] = true; ggml_backend_t vk_backend = new ggml_backend { /* .interface = */ ggml_backend_vk_interface, /* .context = */ &vk_instance.contexts[ctx->idx], }; vk_instance.backends[idx] = vk_backend; return vk_backend; } GGML_CALL bool ggml_backend_is_vk(ggml_backend_t backend) { return backend && backend->iface.get_name == ggml_backend_vk_name; } GGML_CALL int ggml_backend_vk_get_device_count() { return ggml_vk_get_device_count(); } GGML_CALL void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size) { ggml_vk_get_device_description(device, description, description_size); } GGML_CALL void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total) { GGML_ASSERT(device < vk_instance.device_indices.size()); vk::PhysicalDevice vkdev = vk_instance.instance.enumeratePhysicalDevices()[vk_instance.device_indices[device]]; vk::PhysicalDeviceMemoryProperties memprops = vkdev.getMemoryProperties(); for (const vk::MemoryHeap& heap : memprops.memoryHeaps) { if (heap.flags & vk::MemoryHeapFlagBits::eDeviceLocal) { *total = heap.size; *free = heap.size; break; } } } // backend registry GGML_CALL static ggml_backend_t ggml_backend_reg_vk_init(const char * params, void * user_data) { ggml_backend_t vk_backend = ggml_backend_vk_init((int) (intptr_t) user_data); return vk_backend; UNUSED(params); } extern "C" GGML_CALL int ggml_backend_vk_reg_devices(); GGML_CALL int ggml_backend_vk_reg_devices() { for (auto idx : vk_instance.device_indices) { char name[128]; snprintf(name, sizeof(name), "%s%ld", GGML_VK_NAME, idx); ggml_backend_register(name, ggml_backend_reg_vk_init, ggml_backend_vk_buffer_type(idx), (void *) (intptr_t) idx); } return vk_instance.device_indices.size(); } // checks #ifdef GGML_VULKAN_CHECK_RESULTS static void ggml_vk_print_graph_origin(const ggml_tensor * tensor, std::vector<const ggml_tensor *>& done, int level = 0) { if (std::find(done.begin(), done.end(), tensor) != done.end() || level > 10) { return; } for (int j = 0; j < level; j++) { std::cerr << " "; } std::cerr << ggml_op_name(tensor->op) << " gpu=" << (tensor->extra != nullptr) << " backend=" << tensor->backend << std::endl; done.push_back(tensor); for (int i = 0; i < GGML_MAX_SRC; i++) { if (tensor->src[i] != nullptr) { ggml_vk_print_graph_origin(tensor->src[i], done, level + 1); } } } static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * data, int i0, int i1, int i2, int i3) { if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) { return; } i0 = std::max(i0, 5); i1 = std::max(i1, 5); i2 = std::max(i2, 0); i3 = std::max(i3, 0); fprintf(stderr, " "); for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) { fprintf(stderr, "%7d ", idx1); } fprintf(stderr, "\n"); for (int idx0 = i0 - 5; idx0 < i0 + 5; idx0++) { fprintf(stderr, "%7d: ", idx0); for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) { if (idx0 >= 0 && idx0 < tensor->ne[0] && idx1 >= 0 && idx1 < tensor->ne[1] && i2 >= 0 && i2 < tensor->ne[2] && i3 >= 0 && i3 < tensor->ne[3]) { float val; if (tensor->type == GGML_TYPE_F32) { val = *(const float *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]); } else if (tensor->type == GGML_TYPE_F16) { val = ggml_fp16_to_fp32(*(const ggml_fp16_t *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0])); } fprintf(stderr, "% 7.2f ", val); } else { fprintf(stderr, " "); } } fprintf(stderr, "\n"); } } static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tensor * tensor, const char * name) { void * tensor_data = tensor->data; if (tensor->backend == GGML_BACKEND_GPU) { const size_t tensor_size = ggml_nbytes(tensor); tensor_data = malloc(tensor_size); ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; ggml_vk_buffer_read(ctx, extra->buffer_gpu, extra->offset, tensor_data, tensor_size); } std::cerr << "TENSOR CHECK " << name << " (" << tensor->name << "): " << ggml_op_name(tensor->op) << std::endl; std::cerr << "tensor=" << tensor << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << std::endl; if (tensor->src[0] != nullptr) { std::cerr << "tensor->src[0]=" << tensor->src[0] << " name=" << tensor->src[0]->name << " op=" << ggml_op_name(tensor->src[0]->op) << " type=" << ggml_type_name(tensor->src[0]->type) << " backend=" << tensor->src[0]->backend << " ne0=" << tensor->src[0]->ne[0] << " nb0=" << tensor->src[0]->nb[0] << " ne1=" << tensor->src[0]->ne[1] << " nb1=" << tensor->src[0]->nb[1] << " ne2=" << tensor->src[0]->ne[2] << " nb2=" << tensor->src[0]->nb[2] << " ne3=" << tensor->src[0]->ne[3] << " nb3=" << tensor->src[0]->nb[3] << std::endl; } if (tensor->src[1] != nullptr) { std::cerr << "tensor->src[1]=" << tensor->src[1] << " name=" << tensor->src[1]->name << " op=" << ggml_op_name(tensor->src[1]->op) << " type=" << ggml_type_name(tensor->src[1]->type) << " backend=" << tensor->src[1]->backend << " ne0=" << tensor->src[1]->ne[0] << " nb0=" << tensor->src[1]->nb[0] << " ne1=" << tensor->src[1]->ne[1] << " nb1=" << tensor->src[1]->nb[1] << " ne2=" << tensor->src[1]->ne[2] << " nb2=" << tensor->src[1]->nb[2] << " ne3=" << tensor->src[1]->ne[3] << " nb3=" << tensor->src[1]->nb[3] << std::endl; } std::cerr << std::endl << "Result:" << std::endl; ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 0, 0); std::cerr << std::endl; std::cerr << std::endl << "Result:" << std::endl; ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 1, 0); std::cerr << std::endl; std::vector<const ggml_tensor *> done; ggml_vk_print_graph_origin(tensor, done); if (tensor->backend == GGML_BACKEND_GPU) { free(tensor_data); } } static void ggml_vk_check_tensor(const std::string& name, const ggml_tensor * tensor) { return; GGML_ASSERT(tensor->backend == GGML_BACKEND_CPU); if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) { return; } for (int i3 = 0; i3 < tensor->ne[3]; i3++) { for (int i2 = 0; i2 < tensor->ne[2]; i2++) { for (int i1 = 0; i1 < tensor->ne[1]; i1++) { for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float val = 0.0f; if (tensor->type == GGML_TYPE_F32) { val = *(float *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]); } else if (tensor->type == GGML_TYPE_F16) { val = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0])); } if (std::isnan(val)) { std::cerr << "ERROR: TENSOR CHECK " << name << ": Invalid value in " << ggml_op_name(tensor->op) << " i3=" << i3 << " i2=" << i2 << " i1=" << i1 << " i0=" << i0 << " val=" << val << std::endl; std::cerr << "tensor=" << tensor << " tensor->type=" << ggml_type_name(tensor->type) << " tensor->backend: " << tensor->backend << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << std::endl; std::cerr << std::endl; ggml_vk_print_tensor_area(tensor, tensor->data, i0, i1, i2, i3); std::cerr << std::endl; std::vector<const ggml_tensor *> done; ggml_vk_print_graph_origin(tensor, done); GGML_ASSERT(false); } } } } } } void * comp_result; size_t comp_size; size_t comp_nb[GGML_MAX_DIMS]; size_t check_counter = 0; static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_params * params, ggml_tensor * tensor) { if (params->ith != 0) { return; } if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) { return; } check_counter++; if (!(vk_output_tensor > 0 && vk_output_tensor == check_counter) && check_counter <= vk_skip_checks) { return; } ggml_tensor * src0 = tensor->src[0]; ggml_tensor * src1 = tensor->src[1]; struct ggml_init_params iparams = { /*.mem_size =*/ 1024*1024*1024, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ false, }; struct ggml_context * ggml_ctx = ggml_init(iparams); struct ggml_tensor * src0_clone = nullptr; struct ggml_tensor * src1_clone = nullptr; struct ggml_tensor * tensor_clone = nullptr; size_t src0_size; size_t src1_size; void * src0_buffer; void * src1_buffer; if (src0 != nullptr) { src0_clone = ggml_dup_tensor(ggml_ctx, src0); src0_size = ggml_nbytes(src0); src0_buffer = malloc(src0_size); src0_clone->data = src0_buffer; if (src0->backend == GGML_BACKEND_CPU) { memcpy(src0_clone->data, src0->data, src0_size); memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS); } else if (src0->backend == GGML_BACKEND_GPU) { ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src0->extra; uint64_t offset = extra->offset; if (!ggml_is_contiguous(src0) && ggml_vk_dim01_contiguous(src0)) { for (int i3 = 0; i3 < src0->ne[3]; i3++) { for (int i2 = 0; i2 < src0->ne[2]; i2++) { const int idx = i3*src0->ne[2] + i2; ggml_vk_buffer_read(ctx, extra->buffer_gpu, offset + idx * src0->nb[2], ((char *)src0_clone->data + idx * src0_clone->nb[2]), src0->ne[1] * src0->nb[1]); } } src0_clone->nb[0] = src0->nb[0]; src0_clone->nb[1] = src0->nb[1]; for (int i = 2; i < GGML_MAX_DIMS; i++) { src0_clone->nb[i] = src0_clone->nb[i - 1]*src0_clone->ne[i - 1]; } } else { if (offset + src0_size >= extra->buffer_gpu->size) { src0_size = extra->buffer_gpu->size - offset; } ggml_vk_buffer_read(ctx, extra->buffer_gpu, offset, src0_clone->data, src0_size); memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS); } } else { GGML_ASSERT(false); } if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { ggml_vk_print_tensor(ctx, src0, "src0"); } ggml_vk_check_tensor(std::string(ggml_op_name(tensor->op)) + "->src0", src0_clone); } if (src1 != nullptr) { src1_clone = ggml_dup_tensor(ggml_ctx, src1); src1_size = ggml_nbytes(src1); src1_buffer = malloc(src1_size); src1_clone->data = src1_buffer; if (src1->backend == GGML_BACKEND_CPU) { memcpy(src1_clone->data, src1->data, src1_size); memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS); } else if (src1->backend == GGML_BACKEND_GPU) { ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src1->extra; uint64_t offset = extra->offset; if (!ggml_is_contiguous(src1) && ggml_vk_dim01_contiguous(src1)) { for (int i3 = 0; i3 < src1->ne[3]; i3++) { for (int i2 = 0; i2 < src1->ne[2]; i2++) { const int idx = i3*src1->ne[2] + i2; ggml_vk_buffer_read(ctx, extra->buffer_gpu, offset + idx * src1->nb[2], ((char *)src1_clone->data + idx * src1_clone->nb[2]), src1->ne[1] * src1->nb[1]); } } src1_clone->nb[0] = src1->nb[0]; src1_clone->nb[1] = src1->nb[1]; for (int i = 2; i < GGML_MAX_DIMS; i++) { src1_clone->nb[i] = src1_clone->nb[i - 1]*src1_clone->ne[i - 1]; } } else { if (offset + src1_size >= extra->buffer_gpu->size) { src1_size = extra->buffer_gpu->size - offset; } ggml_vk_buffer_read(ctx, extra->buffer_gpu, offset, src1_clone->data, src1_size); memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS); } } else { GGML_ASSERT(false); } if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { ggml_vk_print_tensor(ctx, src1, "src1"); std::cerr << "TENSOR CHECK: " << ggml_op_name(src1_clone->op) << " (check " << check_counter << ")" << std::endl; std::cerr << "src1_clone=" << tensor << " src1_clone->backend: " << src1_clone->backend << " src1_clone->type: " << ggml_type_name(src1_clone->type) << " ne0=" << src1_clone->ne[0] << " nb0=" << src1_clone->nb[0] << " ne1=" << src1_clone->ne[1] << " nb1=" << src1_clone->nb[1] << " ne2=" << src1_clone->ne[2] << " nb2=" << src1_clone->nb[2] << " ne3=" << src1_clone->ne[3] << " nb3=" << src1_clone->nb[3] << std::endl; if (src1->src[0] != nullptr) { std::cerr << "src1->src[0]=" << src1->src[0] << " op=" << ggml_op_name(src1->src[0]->op) << " type=" << ggml_type_name(src1->src[0]->type) << " backend=" << src1->src[0]->backend << " ne0=" << src1->src[0]->ne[0] << " nb0=" << src1->src[0]->nb[0] << " ne1=" << src1->src[0]->ne[1] << " nb1=" << src1->src[0]->nb[1] << " ne2=" << src1->src[0]->ne[2] << " nb2=" << src1->src[0]->nb[2] << " ne3=" << src1->src[0]->ne[3] << " nb3=" << src1->src[0]->nb[3] << std::endl; } if (src1->src[1] != nullptr) { std::cerr << "src1->src[1]=" << src1->src[1] << " op=" << ggml_op_name(src1->src[1]->op) << " type=" << ggml_type_name(src1->src[1]->type) << " backend=" << src1->src[1]->backend << " ne0=" << src1->src[1]->ne[0] << " nb0=" << src1->src[1]->nb[0] << " ne1=" << src1->src[1]->ne[1] << " nb1=" << src1->src[1]->nb[1] << " ne2=" << src1->src[1]->ne[2] << " nb2=" << src1->src[1]->nb[2] << " ne3=" << src1->src[1]->ne[3] << " nb3=" << src1->src[1]->nb[3] << std::endl; } std::cerr << std::endl << "Result:" << std::endl; ggml_vk_print_tensor_area(src1_clone, src1_clone->data, 5, 5, 0, 0); std::cerr << std::endl; std::cerr << std::endl << "Result:" << std::endl; ggml_vk_print_tensor_area(src1_clone, src1_clone->data, 5, 5, 1, 0); std::cerr << std::endl; std::vector<const ggml_tensor *> done; ggml_vk_print_graph_origin(src1_clone, done); } ggml_vk_check_tensor(std::string(ggml_op_name(tensor->op)) + "->src1", src1_clone); } if (tensor->op == GGML_OP_MUL_MAT) { tensor_clone = ggml_mul_mat(ggml_ctx, src0_clone, src1_clone); } else if (tensor->op == GGML_OP_MUL) { tensor_clone = ggml_mul(ggml_ctx, src0_clone, src1_clone); } else if (tensor->op == GGML_OP_SCALE) { tensor_clone = ggml_scale(ggml_ctx, src0_clone, ((float *)tensor->op_params)[0]); } else if (tensor->op == GGML_OP_SQR) { tensor_clone = ggml_sqr(ggml_ctx, src0_clone); } else if (tensor->op == GGML_OP_CLAMP) { tensor_clone = ggml_clamp(ggml_ctx, src0_clone, ((float *)tensor->op_params)[0], ((float *)tensor->op_params)[1]); } else if (tensor->op == GGML_OP_ADD) { tensor_clone = ggml_add(ggml_ctx, src0_clone, src1_clone); } else if (tensor->op == GGML_OP_NORM) { tensor_clone = ggml_norm(ggml_ctx, src0_clone, *(float *)tensor->op_params); } else if (tensor->op == GGML_OP_RMS_NORM) { tensor_clone = ggml_rms_norm(ggml_ctx, src0_clone, *(float *)tensor->op_params); } else if (tensor->op == GGML_OP_SOFT_MAX) { if (src1 != nullptr) { tensor_clone = ggml_soft_max_ext(ggml_ctx, src0_clone, src1_clone, *(float *)tensor->op_params); } else { tensor_clone = ggml_soft_max(ggml_ctx, src0_clone); } } else if (tensor->op == GGML_OP_DIAG_MASK_INF) { tensor_clone = ggml_diag_mask_inf(ggml_ctx, src0_clone, *(float *)tensor->op_params); } else if (tensor->op == GGML_OP_ROPE) { const int n_dims = ((int32_t *) tensor->op_params)[1]; const int mode = ((int32_t *) tensor->op_params)[2]; const int n_ggml_ctx = ((int32_t *) tensor->op_params)[3]; const int n_orig_ggml_ctx = ((int32_t *) tensor->op_params)[4]; float freq_base = ((float *) tensor->op_params)[5]; float freq_scale = ((float *) tensor->op_params)[6]; float ext_factor = ((float *) tensor->op_params)[7]; float attn_factor = ((float *) tensor->op_params)[8]; float beta_fast = ((float *) tensor->op_params)[9]; float beta_slow = ((float *) tensor->op_params)[10]; tensor_clone = ggml_rope_custom(ggml_ctx, src0_clone, src1_clone, n_dims, mode, n_ggml_ctx, n_orig_ggml_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); } else if (tensor->op == GGML_OP_UNARY) { switch (ggml_get_unary_op(tensor)) { case GGML_UNARY_OP_SILU: tensor_clone = ggml_silu(ggml_ctx, src0_clone); break; case GGML_UNARY_OP_GELU: tensor_clone = ggml_gelu(ggml_ctx, src0_clone); break; case GGML_UNARY_OP_RELU: tensor_clone = ggml_relu(ggml_ctx, src0_clone); break; default: std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl; GGML_ASSERT(false); } } else if (tensor->op == GGML_OP_CPY || tensor->op == GGML_OP_DUP) { if (src1 == nullptr) { tensor_clone = ggml_dup(ggml_ctx, src0_clone); tensor_clone->type = tensor->type; } else { tensor_clone = ggml_cpy(ggml_ctx, src0_clone, src1_clone); } } else if (tensor->op == GGML_OP_CONT) { tensor_clone = ggml_cont_4d(ggml_ctx, src0_clone, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]); } else if (tensor->op == GGML_OP_RESHAPE) { tensor_clone = ggml_reshape_4d(ggml_ctx, src0_clone, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]); } else if (tensor->op == GGML_OP_VIEW) { tensor_clone = ggml_view_4d(ggml_ctx, src0_clone, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], tensor->nb[1], tensor->nb[2], tensor->nb[3], ((int32_t *) tensor->op_params)[0]); } else if (tensor->op == GGML_OP_PERMUTE) { int32_t * params = (int32_t *)tensor->op_params; tensor_clone = ggml_permute(ggml_ctx, src0_clone, params[0], params[1], params[2], params[3]); } else if (tensor->op == GGML_OP_TRANSPOSE) { tensor_clone = ggml_transpose(ggml_ctx, src0_clone); } else { std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl; GGML_ASSERT(false); } // Disable vulkan here to avoid the hooks in ggml.c ctx->disable = true; ggml_cgraph * cgraph = ggml_new_graph(ggml_ctx); ggml_build_forward_expand(cgraph, tensor_clone); ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 8); ctx->disable = false; ggml_vk_check_tensor(ggml_op_name(tensor->op), tensor_clone); if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { ggml_vk_print_tensor(ctx, tensor_clone, "tensor_clone"); } comp_size = ggml_nbytes(tensor_clone); comp_result = malloc(comp_size); memcpy(comp_result, tensor_clone->data, comp_size); memcpy(comp_nb, tensor_clone->nb, sizeof(size_t) * GGML_MAX_DIMS); if (src0 != nullptr) { free(src0_buffer); } if (src1 != nullptr) { free(src1_buffer); } ggml_free(ggml_ctx); } static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_params * params, ggml_tensor * tensor) { if (params->ith != 0) { return; } if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) { return; } if (!(vk_output_tensor > 0 && vk_output_tensor == check_counter) && check_counter <= vk_skip_checks) { return; } ggml_tensor * src0 = tensor->src[0]; ggml_tensor * src1 = tensor->src[1]; void * tensor_data = tensor->data; if (tensor->backend == GGML_BACKEND_GPU) { size_t tensor_size = ggml_nbytes(tensor); tensor_data = malloc(tensor_size); ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; if (extra->offset + tensor_size >= extra->buffer_gpu->size) { tensor_size = extra->buffer_gpu->size - (extra->offset); } ggml_vk_buffer_read(ctx, extra->buffer_gpu, extra->offset, tensor_data, tensor_size); } float first_error_result = -1.0f; float first_error_correct = -1.0f; std::array<int, 4> first_error = { -1, -1, -1, -1 }; double avg_err = 0.0; size_t counter = 0; for (int i3 = 0; i3 < tensor->ne[3]; i3++) { for (int i2 = 0; i2 < tensor->ne[2]; i2++) { for (int i1 = 0; i1 < tensor->ne[1]; i1++) { for (int i0 = 0; i0 < tensor->ne[0]; i0++) { const bool buffer_size_fit = i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0] < comp_size; float correct = 0.0f; float result = 0.0f; if (buffer_size_fit) { if (tensor->type == GGML_TYPE_F32) { correct = *(float *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]); result = *(float *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]); } else if (tensor->type == GGML_TYPE_F16) { correct = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0])); result = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0])); } else { std::cerr << "comp_size=" << comp_size << " but required is " << (i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]) << std::endl; } } else { std::cerr << "Missing debug code for type " << ggml_type_name(tensor->type) << std::endl; GGML_ASSERT(false); } if ((std::isnan(correct) != std::isnan(result)) || (std::isinf(correct) != std::isinf(result)) || !buffer_size_fit) { std::cerr << "ERROR: Invalid value in " << ggml_op_name(tensor->op) << " i3=" << i3 << " i2=" << i2 << " i1=" << i1 << " i0=" << i0 << " result=" << result << " correct=" << correct << " avg_err=" << (avg_err / counter) << std::endl; std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl; if (src0 != nullptr) { std::cerr << "src0=" << src0 << " src0->name=" << src0->name << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " backend=" << src0->backend << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl; } if (src1 != nullptr) { std::cerr << "src1=" << src1 << " src1->name=" << src1->name << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " backend=" << src1->backend << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl; } std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl; std::cerr << std::endl << "Result:" << std::endl; ggml_vk_print_tensor_area(tensor, tensor_data, i0, i1, i2, i3); std::cerr << std::endl << "Correct:" << std::endl; ggml_vk_print_tensor_area(tensor, comp_result, i0, i1, i2, i3); std::cerr << std::endl; std::vector<const ggml_tensor *> done; ggml_vk_print_graph_origin(tensor, done); GGML_ASSERT(false); } if (first_error[0] == -1 && std::fabs(correct - result) > 0.1f) { first_error[0] = i0; first_error[1] = i1; first_error[2] = i2; first_error[3] = i3; first_error_result = result; first_error_correct = correct; } // Special case, value is infinite, avoid NaN result in avg_err // NaN also appears in results, if both are nan error is 0 if (!std::isinf(correct) && !std::isinf(result) && !std::isnan(correct) && !std::isnan(result)) { avg_err += std::fabs(correct - result); } counter++; } } } } avg_err /= counter; if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { std::cerr << "TENSOR CHECK: avg_err=" << avg_err << " in " << ggml_op_name(tensor->op) << " (check " << check_counter << ")" << std::endl; std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl; if (src0 != nullptr) { std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " backend=" << src0->backend << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl; } if (src1 != nullptr) { std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " backend=" << src1->backend << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl; } std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl; std::cerr << std::endl << "Result:" << std::endl; ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 0, 0); std::cerr << std::endl << "Correct:" << std::endl; ggml_vk_print_tensor_area(tensor, comp_result, 5, 5, 0, 0); std::cerr << std::endl; std::cerr << std::endl << "Result:" << std::endl; ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 1, 0); std::cerr << std::endl << "Correct:" << std::endl; ggml_vk_print_tensor_area(tensor, comp_result, 5, 5, 1, 0); std::cerr << std::endl; std::vector<const ggml_tensor *> done; ggml_vk_print_graph_origin(tensor, done); } if (avg_err > 0.05 || std::isnan(avg_err)) { std::cerr << "ERROR: avg_err=" << avg_err << " in " << ggml_op_name(tensor->op) << " (check " << check_counter << ")" << std::endl; std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl; if (src0 != nullptr) { std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " backend=" << src0->backend << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl; } if (src1 != nullptr) { std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " backend=" << src1->backend << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl; } std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl; std::cerr << std::endl << "Result:" << std::endl; ggml_vk_print_tensor_area(tensor, tensor_data, first_error[0], first_error[1], first_error[2], first_error[3]); std::cerr << std::endl << "Correct:" << std::endl; ggml_vk_print_tensor_area(tensor, comp_result, first_error[0], first_error[1], first_error[2], first_error[3]); std::cerr << std::endl; std::vector<const ggml_tensor *> done; ggml_vk_print_graph_origin(tensor, done); GGML_ASSERT(false); } else { std::cerr << check_counter << " " << tensor->name << " op=" << ggml_op_name(tensor->op) << " backend=" << tensor->backend << " avg_err=" << avg_err << std::endl; } free(comp_result); comp_result = nullptr; comp_size = 0; if (tensor->backend == GGML_BACKEND_GPU) { free(tensor_data); } } void ggml_vk_check_results_1_cpu_assist(struct ggml_compute_params * params, struct ggml_tensor * tensor) { ggml_backend_vk_context * ctx = &vk_instance.contexts[0]; ggml_vk_check_results_0(ctx, params, tensor); } #endif