const paramDefaults = { stream: true, n_predict: 500, temperature: 0.2, stop: [""] }; let generation_settings = null; /** * This function completes the input text using a llama dictionary. * @param {object} params - The parameters for the completion request. * @param {object} controller - an instance of AbortController if you need one, or null. * @param {function} callback - The callback function to call when the completion is done. * @returns {string} the completed text as a string. Ideally ignored, and you get at it via the callback. */ export const llamaComplete = async (params, controller, callback) => { if (!controller) { controller = new AbortController(); } const completionParams = { ...paramDefaults, ...params }; // we use fetch directly here becasue the built in fetchEventSource does not support POST const response = await fetch("/completion", { method: 'POST', body: JSON.stringify(completionParams), headers: { 'Connection': 'keep-alive', 'Content-Type': 'application/json', 'Accept': 'text/event-stream' }, signal: controller.signal, }); const reader = response.body.getReader(); const decoder = new TextDecoder(); let content = ""; try { let cont = true; while (cont) { const result = await reader.read(); if (result.done) { break; } // sse answers in the form multiple lines of: value\n with data always present as a key. in our case we // mainly care about the data: key here, which we expect as json const text = decoder.decode(result.value); // parse all sse events and add them to result const regex = /^(\S+):\s(.*)$/gm; for (const match of text.matchAll(regex)) { result[match[1]] = match[2] } // since we know this is llama.cpp, let's just decode the json in data result.data = JSON.parse(result.data); content += result.data.content; // callack if (callback) { cont = callback(result) != false; } // if we got a stop token from server, we will break here if (result.data.stop) { if(result.data.generation_settings) { generation_settings = result.data.generation_settings; } break; } } } catch (e) { console.error("llama error: ", e); throw e; } finally { controller.abort(); } return content; } export const llamaModelInfo = async () => { if (!generation_settings) { generation_settings = await fetch("/model.json").then(r => r.json()); } return generation_settings; }