#include "ggml-quants.h"
#include "ggml-impl.h"

#include <math.h>
#include <string.h>
#include <assert.h>
#include <float.h>
#include <stdlib.h> // for qsort
#include <stdio.h>  // for GGML_ASSERT

#ifdef __ARM_NEON

// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
//
//   $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
//
#include <arm_neon.h>

#else

#ifdef __wasm_simd128__
#include <wasm_simd128.h>
#else
#if defined(__POWER9_VECTOR__) || defined(__powerpc64__)
#include <altivec.h>
#undef bool
#define bool _Bool
#else
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <intrin.h>
#else
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
#if !defined(__riscv)
#include <immintrin.h>
#endif
#endif
#endif
#endif
#endif
#endif

#ifdef __riscv_v_intrinsic
#include <riscv_vector.h>
#endif

#undef MIN
#undef MAX

#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))

#define UNUSED GGML_UNUSED

#define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)

#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
// multiply int8_t, add results pairwise twice
static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
    // Get absolute values of x vectors
    const __m128i ax = _mm_sign_epi8(x, x);
    // Sign the values of the y vectors
    const __m128i sy = _mm_sign_epi8(y, x);
    // Perform multiplication and create 16-bit values
    const __m128i dot = _mm_maddubs_epi16(ax, sy);
    const __m128i ones = _mm_set1_epi16(1);
    return _mm_madd_epi16(ones, dot);
}

#if __AVX__ || __AVX2__ || __AVX512F__
// horizontally add 8 floats
static inline float hsum_float_8(const __m256 x) {
    __m128 res = _mm256_extractf128_ps(x, 1);
    res = _mm_add_ps(res, _mm256_castps256_ps128(x));
    res = _mm_add_ps(res, _mm_movehl_ps(res, res));
    res = _mm_add_ss(res, _mm_movehdup_ps(res));
    return _mm_cvtss_f32(res);
}

// horizontally add 8 int32_t
static inline int hsum_i32_8(const __m256i a) {
    const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
    const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
    const __m128i sum64 = _mm_add_epi32(hi64, sum128);
    const __m128i hi32  = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
    return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
}

// horizontally add 4 int32_t
static inline int hsum_i32_4(const __m128i a) {
    const __m128i hi64 = _mm_unpackhi_epi64(a, a);
    const __m128i sum64 = _mm_add_epi32(hi64, a);
    const __m128i hi32  = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
    return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
}

#if defined(__AVX2__) || defined(__AVX512F__)
// spread 32 bits to 32 bytes { 0x00, 0xFF }
static inline __m256i bytes_from_bits_32(const uint8_t * x) {
    uint32_t x32;
    memcpy(&x32, x, sizeof(uint32_t));
    const __m256i shuf_mask = _mm256_set_epi64x(
            0x0303030303030303, 0x0202020202020202,
            0x0101010101010101, 0x0000000000000000);
    __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
    const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
    bytes = _mm256_or_si256(bytes, bit_mask);
    return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
}

// Unpack 32 4-bit fields into 32 bytes
// The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
{
    const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
    const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
    const __m256i lowMask = _mm256_set1_epi8( 0xF );
    return _mm256_and_si256(lowMask, bytes);
}

// add int16_t pairwise and return as float vector
static inline __m256 sum_i16_pairs_float(const __m256i x) {
    const __m256i ones = _mm256_set1_epi16(1);
    const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
    return _mm256_cvtepi32_ps(summed_pairs);
}

static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
#if __AVXVNNI__
    const __m256i zero = _mm256_setzero_si256();
    const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
    return _mm256_cvtepi32_ps(summed_pairs);
#else
    // Perform multiplication and create 16-bit values
    const __m256i dot = _mm256_maddubs_epi16(ax, sy);
    return sum_i16_pairs_float(dot);
#endif
}

// multiply int8_t, add results pairwise twice and return as float vector
static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
#if __AVXVNNIINT8__
    const __m256i zero = _mm256_setzero_si256();
    const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
    return _mm256_cvtepi32_ps(summed_pairs);
#else
    // Get absolute values of x vectors
    const __m256i ax = _mm256_sign_epi8(x, x);
    // Sign the values of the y vectors
    const __m256i sy = _mm256_sign_epi8(y, x);
    return mul_sum_us8_pairs_float(ax, sy);
#endif
}

static inline __m128i packNibbles( __m256i bytes )
{
    // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
#if __AVX512F__
    const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4);   // 0000_0000_abcd_0000
    bytes = _mm256_or_si256(bytes, bytes_srli_4);               // 0000_abcd_abcd_efgh
    return _mm256_cvtepi16_epi8(bytes);                         // abcd_efgh
#else
    const __m256i lowByte = _mm256_set1_epi16( 0xFF );
    __m256i high = _mm256_andnot_si256( lowByte, bytes );
    __m256i low = _mm256_and_si256( lowByte, bytes );
    high = _mm256_srli_epi16( high, 4 );
    bytes = _mm256_or_si256( low, high );

    // Compress uint16_t lanes into bytes
    __m128i r0 = _mm256_castsi256_si128( bytes );
    __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
    return _mm_packus_epi16( r0, r1 );
#endif
}
#elif defined(__AVX__)
// spread 32 bits to 32 bytes { 0x00, 0xFF }
static inline __m256i bytes_from_bits_32(const uint8_t * x) {
    uint32_t x32;
    memcpy(&x32, x, sizeof(uint32_t));
    const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
    const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
    __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
    __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
    const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
    bytesl = _mm_or_si128(bytesl, bit_mask);
    bytesh = _mm_or_si128(bytesh, bit_mask);
    bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
    bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
    return MM256_SET_M128I(bytesh, bytesl);
}

// Unpack 32 4-bit fields into 32 bytes
// The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
{
    // Load 16 bytes from memory
    __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
    __m128i tmph = _mm_srli_epi16(tmpl, 4);
    const __m128i lowMask = _mm_set1_epi8(0xF);
    tmpl = _mm_and_si128(lowMask, tmpl);
    tmph = _mm_and_si128(lowMask, tmph);
    return MM256_SET_M128I(tmph, tmpl);
}

// add int16_t pairwise and return as float vector
static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
    const __m128i ones = _mm_set1_epi16(1);
    const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
    const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
    const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
    return _mm256_cvtepi32_ps(summed_pairs);
}

static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
    const __m128i axl = _mm256_castsi256_si128(ax);
    const __m128i axh = _mm256_extractf128_si256(ax, 1);
    const __m128i syl = _mm256_castsi256_si128(sy);
    const __m128i syh = _mm256_extractf128_si256(sy, 1);
    // Perform multiplication and create 16-bit values
    const __m128i dotl = _mm_maddubs_epi16(axl, syl);
    const __m128i doth = _mm_maddubs_epi16(axh, syh);
    return sum_i16_pairs_float(doth, dotl);
}

// multiply int8_t, add results pairwise twice and return as float vector
static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
    const __m128i xl = _mm256_castsi256_si128(x);
    const __m128i xh = _mm256_extractf128_si256(x, 1);
    const __m128i yl = _mm256_castsi256_si128(y);
    const __m128i yh = _mm256_extractf128_si256(y, 1);
    // Get absolute values of x vectors
    const __m128i axl = _mm_sign_epi8(xl, xl);
    const __m128i axh = _mm_sign_epi8(xh, xh);
    // Sign the values of the y vectors
    const __m128i syl = _mm_sign_epi8(yl, xl);
    const __m128i syh = _mm_sign_epi8(yh, xh);
    // Perform multiplication and create 16-bit values
    const __m128i dotl = _mm_maddubs_epi16(axl, syl);
    const __m128i doth = _mm_maddubs_epi16(axh, syh);
    return sum_i16_pairs_float(doth, dotl);
}

static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
{
    // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
    const __m128i lowByte = _mm_set1_epi16( 0xFF );
    __m128i high = _mm_andnot_si128( lowByte, bytes1 );
    __m128i low = _mm_and_si128( lowByte, bytes1 );
    high = _mm_srli_epi16( high, 4 );
    bytes1 = _mm_or_si128( low, high );
    high = _mm_andnot_si128( lowByte, bytes2 );
    low = _mm_and_si128( lowByte, bytes2 );
    high = _mm_srli_epi16( high, 4 );
    bytes2 = _mm_or_si128( low, high );

    return _mm_packus_epi16( bytes1, bytes2);
}
#endif
#elif defined(__SSSE3__)
// horizontally add 4x4 floats
static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
    __m128 res_0 =_mm_hadd_ps(a, b);
    __m128 res_1 =_mm_hadd_ps(c, d);
    __m128 res =_mm_hadd_ps(res_0, res_1);
    res =_mm_hadd_ps(res, res);
    res =_mm_hadd_ps(res, res);

    return _mm_cvtss_f32(res);
}
#endif // __AVX__ || __AVX2__ || __AVX512F__
#endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)

#if defined(__ARM_NEON)

#ifdef _MSC_VER

#define ggml_vld1q_u32(w,x,y,z) { ((w) + ((uint64_t)(x) << 32)), ((y) + ((uint64_t)(z) << 32)) }

#else

#define ggml_vld1q_u32(w,x,y,z) { (w), (x), (y), (z) }

#endif

#if !defined(__aarch64__)

// 64-bit compatibility

// vaddvq_s16
// vpaddq_s16
// vpaddq_s32
// vaddvq_s32
// vaddvq_f32
// vmaxvq_f32
// vcvtnq_s32_f32
// vzip1_u8
// vzip2_u8

inline static int32_t vaddvq_s16(int16x8_t v) {
    return
        (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
        (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
        (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
        (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
}

inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
    int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
    int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
    return vcombine_s16(a0, b0);
}

inline static int32x4_t vpaddq_s32(int32x4_t a, int32x4_t b) {
    int32x2_t a0 = vpadd_s32(vget_low_s32(a), vget_high_s32(a));
    int32x2_t b0 = vpadd_s32(vget_low_s32(b), vget_high_s32(b));
    return vcombine_s32(a0, b0);
}

inline static int32_t vaddvq_s32(int32x4_t v) {
    return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
}

inline static float vaddvq_f32(float32x4_t v) {
    return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
}

inline static float vmaxvq_f32(float32x4_t v) {
    return
        MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
            MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
}

inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
    int32x4_t res;

    res[0] = roundf(vgetq_lane_f32(v, 0));
    res[1] = roundf(vgetq_lane_f32(v, 1));
    res[2] = roundf(vgetq_lane_f32(v, 2));
    res[3] = roundf(vgetq_lane_f32(v, 3));

    return res;
}

inline static uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
    uint8x8_t res;

    res[0] = a[0]; res[1] = b[0];
    res[2] = a[1]; res[3] = b[1];
    res[4] = a[2]; res[5] = b[2];
    res[6] = a[3]; res[7] = b[3];

    return res;
}

inline static uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
    uint8x8_t res;

    res[0] = a[4]; res[1] = b[4];
    res[2] = a[5]; res[3] = b[5];
    res[4] = a[6]; res[5] = b[6];
    res[6] = a[7]; res[7] = b[7];

    return res;
}

// vld1q_s16_x2
// vld1q_u8_x2
// vld1q_u8_x4
// vld1q_s8_x2
// vld1q_s8_x4
// TODO: double-check these work correctly

typedef struct ggml_int16x8x2_t {
    int16x8_t val[2];
} ggml_int16x8x2_t;

inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) {
    ggml_int16x8x2_t res;

    res.val[0] = vld1q_s16(ptr + 0);
    res.val[1] = vld1q_s16(ptr + 8);

    return res;
}

typedef struct ggml_uint8x16x2_t {
    uint8x16_t val[2];
} ggml_uint8x16x2_t;

inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) {
    ggml_uint8x16x2_t res;

    res.val[0] = vld1q_u8(ptr + 0);
    res.val[1] = vld1q_u8(ptr + 16);

    return res;
}

typedef struct ggml_uint8x16x4_t {
    uint8x16_t val[4];
} ggml_uint8x16x4_t;

inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) {
    ggml_uint8x16x4_t res;

    res.val[0] = vld1q_u8(ptr + 0);
    res.val[1] = vld1q_u8(ptr + 16);
    res.val[2] = vld1q_u8(ptr + 32);
    res.val[3] = vld1q_u8(ptr + 48);

    return res;
}

typedef struct ggml_int8x16x2_t {
    int8x16_t val[2];
} ggml_int8x16x2_t;

inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) {
    ggml_int8x16x2_t res;

    res.val[0] = vld1q_s8(ptr + 0);
    res.val[1] = vld1q_s8(ptr + 16);

    return res;
}

typedef struct ggml_int8x16x4_t {
    int8x16_t val[4];
} ggml_int8x16x4_t;

inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
    ggml_int8x16x4_t res;

    res.val[0] = vld1q_s8(ptr + 0);
    res.val[1] = vld1q_s8(ptr + 16);
    res.val[2] = vld1q_s8(ptr + 32);
    res.val[3] = vld1q_s8(ptr + 48);

    return res;
}

// NOTE: not tested
inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) {
    int8x16_t res;

    res[ 0] = a[b[ 0]];
    res[ 1] = a[b[ 1]];
    res[ 2] = a[b[ 2]];
    res[ 3] = a[b[ 3]];
    res[ 4] = a[b[ 4]];
    res[ 5] = a[b[ 5]];
    res[ 6] = a[b[ 6]];
    res[ 7] = a[b[ 7]];
    res[ 8] = a[b[ 8]];
    res[ 9] = a[b[ 9]];
    res[10] = a[b[10]];
    res[11] = a[b[11]];
    res[12] = a[b[12]];
    res[13] = a[b[13]];
    res[14] = a[b[14]];
    res[15] = a[b[15]];

    return res;
}

// NOTE: not tested
inline static int8x16_t ggml_vqtbl1q_u8(uint8x16_t a, uint8x16_t b) {
    int8x16_t res;

    res[ 0] = a[b[ 0]];
    res[ 1] = a[b[ 1]];
    res[ 2] = a[b[ 2]];
    res[ 3] = a[b[ 3]];
    res[ 4] = a[b[ 4]];
    res[ 5] = a[b[ 5]];
    res[ 6] = a[b[ 6]];
    res[ 7] = a[b[ 7]];
    res[ 8] = a[b[ 8]];
    res[ 9] = a[b[ 9]];
    res[10] = a[b[10]];
    res[11] = a[b[11]];
    res[12] = a[b[12]];
    res[13] = a[b[13]];
    res[14] = a[b[14]];
    res[15] = a[b[15]];

    return res;
}

#else

#define ggml_int16x8x2_t  int16x8x2_t
#define ggml_uint8x16x2_t uint8x16x2_t
#define ggml_uint8x16x4_t uint8x16x4_t
#define ggml_int8x16x2_t  int8x16x2_t
#define ggml_int8x16x4_t  int8x16x4_t

#define ggml_vld1q_s16_x2 vld1q_s16_x2
#define ggml_vld1q_u8_x2  vld1q_u8_x2
#define ggml_vld1q_u8_x4  vld1q_u8_x4
#define ggml_vld1q_s8_x2  vld1q_s8_x2
#define ggml_vld1q_s8_x4  vld1q_s8_x4
#define ggml_vqtbl1q_s8   vqtbl1q_s8
#define ggml_vqtbl1q_u8   vqtbl1q_u8

#endif

#if !defined(__ARM_FEATURE_DOTPROD)

inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) {
    const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b));
    const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));

    return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1)));
}

#else

#define ggml_vdotq_s32(a, b, c) vdotq_s32(a, b, c)

#endif

#endif

#if defined(__ARM_NEON) || defined(__wasm_simd128__)
#define B1(c,s,n)  0x ## n ## c ,  0x ## n ## s
#define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
#define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
#define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
#define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
#define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
#define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
#define B8(c,s  ) B7(c,s,     c), B7(c,s,     s)

// precomputed tables for expanding 8bits to 8 bytes:
static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
#endif

// reference implementation for deterministic creation of model files
void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
    static const int qk = QK4_0;

    assert(k % qk == 0);

    const int nb = k / qk;

    for (int i = 0; i < nb; i++) {
        float amax = 0.0f; // absolute max
        float max  = 0.0f;

        for (int j = 0; j < qk; j++) {
            const float v = x[i*qk + j];
            if (amax < fabsf(v)) {
                amax = fabsf(v);
                max  = v;
            }
        }

        const float d  = max / -8;
        const float id = d ? 1.0f/d : 0.0f;

        y[i].d = GGML_FP32_TO_FP16(d);

        for (int j = 0; j < qk/2; ++j) {
            const float x0 = x[i*qk + 0    + j]*id;
            const float x1 = x[i*qk + qk/2 + j]*id;

            const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
            const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));

            y[i].qs[j]  = xi0;
            y[i].qs[j] |= xi1 << 4;
        }
    }
}

void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
    quantize_row_q4_0_reference(x, y, k);
}


void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
    const int qk = QK4_1;

    assert(k % qk == 0);

    const int nb = k / qk;

    for (int i = 0; i < nb; i++) {
        float min = FLT_MAX;
        float max = -FLT_MAX;

        for (int j = 0; j < qk; j++) {
            const float v = x[i*qk + j];

            if (v < min) min = v;
            if (v > max) max = v;
        }

        const float d  = (max - min) / ((1 << 4) - 1);
        const float id = d ? 1.0f/d : 0.0f;

        y[i].d = GGML_FP32_TO_FP16(d);
        y[i].m = GGML_FP32_TO_FP16(min);

        for (int j = 0; j < qk/2; ++j) {
            const float x0 = (x[i*qk + 0    + j] - min)*id;
            const float x1 = (x[i*qk + qk/2 + j] - min)*id;

            const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
            const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));

            y[i].qs[j]  = xi0;
            y[i].qs[j] |= xi1 << 4;
        }
    }
}

void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
    quantize_row_q4_1_reference(x, y, k);
}

void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
    static const int qk = QK5_0;

    assert(k % qk == 0);

    const int nb = k / qk;

    for (int i = 0; i < nb; i++) {
        float amax = 0.0f; // absolute max
        float max  = 0.0f;

        for (int j = 0; j < qk; j++) {
            const float v = x[i*qk + j];
            if (amax < fabsf(v)) {
                amax = fabsf(v);
                max  = v;
            }
        }

        const float d  = max / -16;
        const float id = d ? 1.0f/d : 0.0f;

        y[i].d = GGML_FP32_TO_FP16(d);

        uint32_t qh = 0;

        for (int j = 0; j < qk/2; ++j) {
            const float x0 = x[i*qk + 0    + j]*id;
            const float x1 = x[i*qk + qk/2 + j]*id;

            const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
            const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));

            y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);

            // get the 5-th bit and store it in qh at the right position
            qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
            qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
        }

        memcpy(&y[i].qh, &qh, sizeof(qh));
    }
}

void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
    quantize_row_q5_0_reference(x, y, k);
}

void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
    const int qk = QK5_1;

    assert(k % qk == 0);

    const int nb = k / qk;

    for (int i = 0; i < nb; i++) {
        float min = FLT_MAX;
        float max = -FLT_MAX;

        for (int j = 0; j < qk; j++) {
            const float v = x[i*qk + j];

            if (v < min) min = v;
            if (v > max) max = v;
        }

        const float d  = (max - min) / ((1 << 5) - 1);
        const float id = d ? 1.0f/d : 0.0f;

        y[i].d = GGML_FP32_TO_FP16(d);
        y[i].m = GGML_FP32_TO_FP16(min);

        uint32_t qh = 0;

        for (int j = 0; j < qk/2; ++j) {
            const float x0 = (x[i*qk + 0    + j] - min)*id;
            const float x1 = (x[i*qk + qk/2 + j] - min)*id;

            const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
            const uint8_t xi1 = (uint8_t)(x1 + 0.5f);

            y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);

            // get the 5-th bit and store it in qh at the right position
            qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
            qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
        }

        memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
    }
}

void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
    quantize_row_q5_1_reference(x, y, k);
}

// reference implementation for deterministic creation of model files
void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
    assert(k % QK8_0 == 0);
    const int nb = k / QK8_0;

    for (int i = 0; i < nb; i++) {
        float amax = 0.0f; // absolute max

        for (int j = 0; j < QK8_0; j++) {
            const float v = x[i*QK8_0 + j];
            amax = MAX(amax, fabsf(v));
        }

        const float d = amax / ((1 << 7) - 1);
        const float id = d ? 1.0f/d : 0.0f;

        y[i].d = GGML_FP32_TO_FP16(d);

        for (int j = 0; j < QK8_0; ++j) {
            const float x0 = x[i*QK8_0 + j]*id;

            y[i].qs[j] = roundf(x0);
        }
    }
}

void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
    assert(QK8_0 == 32);
    assert(k % QK8_0 == 0);
    const int nb = k / QK8_0;

    block_q8_0 * restrict y = vy;

#if defined(__ARM_NEON)
    for (int i = 0; i < nb; i++) {
        float32x4_t srcv [8];
        float32x4_t asrcv[8];
        float32x4_t amaxv[8];

        for (int j = 0; j < 8; j++) srcv[j]  = vld1q_f32(x + i*32 + 4*j);
        for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);

        for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
        for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
        for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);

        const float amax = vmaxvq_f32(amaxv[0]);

        const float d = amax / ((1 << 7) - 1);
        const float id = d ? 1.0f/d : 0.0f;

        y[i].d = GGML_FP32_TO_FP16(d);

        for (int j = 0; j < 8; j++) {
            const float32x4_t v  = vmulq_n_f32(srcv[j], id);
            const int32x4_t   vi = vcvtnq_s32_f32(v);

            y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
            y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
            y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
            y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
        }
    }
#elif defined(__wasm_simd128__)
    for (int i = 0; i < nb; i++) {
        v128_t srcv [8];
        v128_t asrcv[8];
        v128_t amaxv[8];

        for (int j = 0; j < 8; j++) srcv[j]  = wasm_v128_load(x + i*32 + 4*j);
        for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);

        for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
        for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
        for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);

        const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
                                   wasm_f32x4_extract_lane(amaxv[0], 1)),
                               MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
                                   wasm_f32x4_extract_lane(amaxv[0], 3)));

        const float d = amax / ((1 << 7) - 1);
        const float id = d ? 1.0f/d : 0.0f;

        y[i].d = GGML_FP32_TO_FP16(d);

        for (int j = 0; j < 8; j++) {
            const v128_t v  = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
            const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);

            y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
            y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
            y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
            y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
        }
    }
#elif defined(__AVX2__) || defined(__AVX__)
    for (int i = 0; i < nb; i++) {
        // Load elements into 4 AVX vectors
        __m256 v0 = _mm256_loadu_ps( x );
        __m256 v1 = _mm256_loadu_ps( x + 8 );
        __m256 v2 = _mm256_loadu_ps( x + 16 );
        __m256 v3 = _mm256_loadu_ps( x + 24 );
        x += 32;

        // Compute max(abs(e)) for the block
        const __m256 signBit = _mm256_set1_ps( -0.0f );
        __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
        maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
        maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
        maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );

        __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
        max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
        max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
        const float maxScalar = _mm_cvtss_f32( max4 );

        // Quantize these floats
        const float d = maxScalar / 127.f;
        y[i].d = GGML_FP32_TO_FP16(d);
        const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
        const __m256 mul = _mm256_set1_ps( id );

        // Apply the multiplier
        v0 = _mm256_mul_ps( v0, mul );
        v1 = _mm256_mul_ps( v1, mul );
        v2 = _mm256_mul_ps( v2, mul );
        v3 = _mm256_mul_ps( v3, mul );

        // Round to nearest integer
        v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
        v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
        v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
        v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );

        // Convert floats to integers
        __m256i i0 = _mm256_cvtps_epi32( v0 );
        __m256i i1 = _mm256_cvtps_epi32( v1 );
        __m256i i2 = _mm256_cvtps_epi32( v2 );
        __m256i i3 = _mm256_cvtps_epi32( v3 );

#if defined(__AVX2__)
        // Convert int32 to int16
        i0 = _mm256_packs_epi32( i0, i1 );	// 0, 1, 2, 3,  8, 9, 10, 11,  4, 5, 6, 7, 12, 13, 14, 15
        i2 = _mm256_packs_epi32( i2, i3 );	// 16, 17, 18, 19,  24, 25, 26, 27,  20, 21, 22, 23, 28, 29, 30, 31
                                            // Convert int16 to int8
        i0 = _mm256_packs_epi16( i0, i2 );	// 0, 1, 2, 3,  8, 9, 10, 11,  16, 17, 18, 19,  24, 25, 26, 27,  4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31

        // We got our precious signed bytes, but the order is now wrong
        // These AVX2 pack instructions process 16-byte pieces independently
        // The following instruction is fixing the order
        const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
        i0 = _mm256_permutevar8x32_epi32( i0, perm );

        _mm256_storeu_si256((__m256i *)y[i].qs, i0);
#else
        // Since we don't have in AVX some necessary functions,
        // we split the registers in half and call AVX2 analogs from SSE
        __m128i ni0 = _mm256_castsi256_si128( i0 );
        __m128i ni1 = _mm256_extractf128_si256( i0, 1);
        __m128i ni2 = _mm256_castsi256_si128( i1 );
        __m128i ni3 = _mm256_extractf128_si256( i1, 1);
        __m128i ni4 = _mm256_castsi256_si128( i2 );
        __m128i ni5 = _mm256_extractf128_si256( i2, 1);
        __m128i ni6 = _mm256_castsi256_si128( i3 );
        __m128i ni7 = _mm256_extractf128_si256( i3, 1);

        // Convert int32 to int16
        ni0 = _mm_packs_epi32( ni0, ni1 );
        ni2 = _mm_packs_epi32( ni2, ni3 );
        ni4 = _mm_packs_epi32( ni4, ni5 );
        ni6 = _mm_packs_epi32( ni6, ni7 );
        // Convert int16 to int8
        ni0 = _mm_packs_epi16( ni0, ni2 );
        ni4 = _mm_packs_epi16( ni4, ni6 );

        _mm_storeu_si128((__m128i *)(y[i].qs +  0), ni0);
        _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
#endif
    }
#elif defined(__riscv_v_intrinsic)

    size_t vl = __riscv_vsetvl_e32m4(QK8_0);

    for (int i = 0; i < nb; i++) {
        // load elements
        vfloat32m4_t v_x   = __riscv_vle32_v_f32m4(x+i*QK8_0, vl);

        vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
        vfloat32m1_t tmp   = __riscv_vfmv_v_f_f32m1(0.0f, vl);
        vfloat32m1_t vmax  = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
        float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);

        const float d = amax / ((1 << 7) - 1);
        const float id = d ? 1.0f/d : 0.0f;

        y[i].d = GGML_FP32_TO_FP16(d);

        vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);

        // convert to integer
        vint16m2_t   vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
        vint8m1_t    vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);

        // store result
        __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
    }
#else
    GGML_UNUSED(nb);
    // scalar
    quantize_row_q8_0_reference(x, y, k);
#endif
}

// reference implementation for deterministic creation of model files
void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
    assert(QK8_1 == 32);
    assert(k % QK8_1 == 0);
    const int nb = k / QK8_1;

    for (int i = 0; i < nb; i++) {
        float amax = 0.0f; // absolute max

        for (int j = 0; j < QK8_1; j++) {
            const float v = x[i*QK8_1 + j];
            amax = MAX(amax, fabsf(v));
        }

        const float d = amax / ((1 << 7) - 1);
        const float id = d ? 1.0f/d : 0.0f;

        y[i].d = d;

        int sum = 0;

        for (int j = 0; j < QK8_1/2; ++j) {
            const float v0 = x[i*QK8_1           + j]*id;
            const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;

            y[i].qs[          j] = roundf(v0);
            y[i].qs[QK8_1/2 + j] = roundf(v1);

            sum += y[i].qs[          j];
            sum += y[i].qs[QK8_1/2 + j];
        }

        y[i].s = sum*d;
    }
}

void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
    assert(k % QK8_1 == 0);
    const int nb = k / QK8_1;

    block_q8_1 * restrict y = vy;

#if defined(__ARM_NEON)
    for (int i = 0; i < nb; i++) {
        float32x4_t srcv [8];
        float32x4_t asrcv[8];
        float32x4_t amaxv[8];

        for (int j = 0; j < 8; j++) srcv[j]  = vld1q_f32(x + i*32 + 4*j);
        for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);

        for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
        for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
        for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);

        const float amax = vmaxvq_f32(amaxv[0]);

        const float d = amax / ((1 << 7) - 1);
        const float id = d ? 1.0f/d : 0.0f;

        y[i].d = d;

        int32x4_t accv = vdupq_n_s32(0);

        for (int j = 0; j < 8; j++) {
            const float32x4_t v  = vmulq_n_f32(srcv[j], id);
            const int32x4_t   vi = vcvtnq_s32_f32(v);

            y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
            y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
            y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
            y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);

            accv = vaddq_s32(accv, vi);
        }

        y[i].s = d * vaddvq_s32(accv);
    }
#elif defined(__wasm_simd128__)
    for (int i = 0; i < nb; i++) {
        v128_t srcv [8];
        v128_t asrcv[8];
        v128_t amaxv[8];

        for (int j = 0; j < 8; j++) srcv[j]  = wasm_v128_load(x + i*32 + 4*j);
        for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);

        for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
        for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
        for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);

        const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
                                   wasm_f32x4_extract_lane(amaxv[0], 1)),
                               MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
                                   wasm_f32x4_extract_lane(amaxv[0], 3)));

        const float d = amax / ((1 << 7) - 1);
        const float id = d ? 1.0f/d : 0.0f;

        y[i].d = d;

        v128_t accv = wasm_i32x4_splat(0);

        for (int j = 0; j < 8; j++) {
            const v128_t v  = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
            const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);

            y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
            y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
            y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
            y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);

            accv = wasm_i32x4_add(accv, vi);
        }

        y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
                      wasm_i32x4_extract_lane(accv, 1) +
                      wasm_i32x4_extract_lane(accv, 2) +
                      wasm_i32x4_extract_lane(accv, 3));
    }
#elif defined(__AVX2__) || defined(__AVX__)
    for (int i = 0; i < nb; i++) {
        // Load elements into 4 AVX vectors
        __m256 v0 = _mm256_loadu_ps( x );
        __m256 v1 = _mm256_loadu_ps( x + 8 );
        __m256 v2 = _mm256_loadu_ps( x + 16 );
        __m256 v3 = _mm256_loadu_ps( x + 24 );
        x += 32;

        // Compute max(abs(e)) for the block
        const __m256 signBit = _mm256_set1_ps( -0.0f );
        __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
        maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
        maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
        maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );

        __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
        max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
        max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
        const float maxScalar = _mm_cvtss_f32( max4 );

        // Quantize these floats
        const float d = maxScalar / 127.f;
        y[i].d = d;
        const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
        const __m256 mul = _mm256_set1_ps( id );

        // Apply the multiplier
        v0 = _mm256_mul_ps( v0, mul );
        v1 = _mm256_mul_ps( v1, mul );
        v2 = _mm256_mul_ps( v2, mul );
        v3 = _mm256_mul_ps( v3, mul );

        // Round to nearest integer
        v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
        v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
        v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
        v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );

        // Convert floats to integers
        __m256i i0 = _mm256_cvtps_epi32( v0 );
        __m256i i1 = _mm256_cvtps_epi32( v1 );
        __m256i i2 = _mm256_cvtps_epi32( v2 );
        __m256i i3 = _mm256_cvtps_epi32( v3 );

#if defined(__AVX2__)
        // Compute the sum of the quants and set y[i].s
        y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));

        // Convert int32 to int16
        i0 = _mm256_packs_epi32( i0, i1 );	// 0, 1, 2, 3,  8, 9, 10, 11,  4, 5, 6, 7, 12, 13, 14, 15
        i2 = _mm256_packs_epi32( i2, i3 );	// 16, 17, 18, 19,  24, 25, 26, 27,  20, 21, 22, 23, 28, 29, 30, 31
                                            // Convert int16 to int8
        i0 = _mm256_packs_epi16( i0, i2 );	// 0, 1, 2, 3,  8, 9, 10, 11,  16, 17, 18, 19,  24, 25, 26, 27,  4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31

        // We got our precious signed bytes, but the order is now wrong
        // These AVX2 pack instructions process 16-byte pieces independently
        // The following instruction is fixing the order
        const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
        i0 = _mm256_permutevar8x32_epi32( i0, perm );

        _mm256_storeu_si256((__m256i *)y[i].qs, i0);
#else
        // Since we don't have in AVX some necessary functions,
        // we split the registers in half and call AVX2 analogs from SSE
        __m128i ni0 = _mm256_castsi256_si128( i0 );
        __m128i ni1 = _mm256_extractf128_si256( i0, 1);
        __m128i ni2 = _mm256_castsi256_si128( i1 );
        __m128i ni3 = _mm256_extractf128_si256( i1, 1);
        __m128i ni4 = _mm256_castsi256_si128( i2 );
        __m128i ni5 = _mm256_extractf128_si256( i2, 1);
        __m128i ni6 = _mm256_castsi256_si128( i3 );
        __m128i ni7 = _mm256_extractf128_si256( i3, 1);

        // Compute the sum of the quants and set y[i].s
        const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
        const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
        y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));

        // Convert int32 to int16
        ni0 = _mm_packs_epi32( ni0, ni1 );
        ni2 = _mm_packs_epi32( ni2, ni3 );
        ni4 = _mm_packs_epi32( ni4, ni5 );
        ni6 = _mm_packs_epi32( ni6, ni7 );
        // Convert int16 to int8
        ni0 = _mm_packs_epi16( ni0, ni2 );
        ni4 = _mm_packs_epi16( ni4, ni6 );

        _mm_storeu_si128((__m128i *)(y[i].qs +  0), ni0);
        _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
#endif
    }
#elif defined(__riscv_v_intrinsic)

    size_t vl = __riscv_vsetvl_e32m4(QK8_1);

    for (int i = 0; i < nb; i++) {
        // load elements
        vfloat32m4_t v_x   = __riscv_vle32_v_f32m4(x+i*QK8_1, vl);

        vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
        vfloat32m1_t tmp   = __riscv_vfmv_v_f_f32m1(0.0, vl);
        vfloat32m1_t vmax  = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
        float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);

        const float d  = amax / ((1 << 7) - 1);
        const float id = d ? 1.0f/d : 0.0f;

        y[i].d = d;

        vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);

        // convert to integer
        vint16m2_t   vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
        vint8m1_t    vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);

        // store result
        __riscv_vse8_v_i8m1(y[i].qs , vs, vl);

        // compute sum for y[i].s
        vint16m1_t tmp2 = __riscv_vmv_v_x_i16m1(0, vl);
        vint16m1_t vwrs = __riscv_vwredsum_vs_i8m1_i16m1(vs, tmp2, vl);

        // set y[i].s
        int sum = __riscv_vmv_x_s_i16m1_i16(vwrs);
        y[i].s = sum*d;
    }
#else
    GGML_UNUSED(nb);
    // scalar
    quantize_row_q8_1_reference(x, y, k);
#endif
}

void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
    static const int qk = QK4_0;

    assert(k % qk == 0);

    const int nb = k / qk;

    for (int i = 0; i < nb; i++) {
        const float d = GGML_FP16_TO_FP32(x[i].d);

        for (int j = 0; j < qk/2; ++j) {
            const int x0 = (x[i].qs[j] & 0x0F) - 8;
            const int x1 = (x[i].qs[j] >>   4) - 8;

            y[i*qk + j + 0   ] = x0*d;
            y[i*qk + j + qk/2] = x1*d;
        }
    }
}

void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
    static const int qk = QK4_1;

    assert(k % qk == 0);

    const int nb = k / qk;

    for (int i = 0; i < nb; i++) {
        const float d = GGML_FP16_TO_FP32(x[i].d);
        const float m = GGML_FP16_TO_FP32(x[i].m);

        for (int j = 0; j < qk/2; ++j) {
            const int x0 = (x[i].qs[j] & 0x0F);
            const int x1 = (x[i].qs[j] >>   4);

            y[i*qk + j + 0   ] = x0*d + m;
            y[i*qk + j + qk/2] = x1*d + m;
        }
    }
}

void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
    static const int qk = QK5_0;

    assert(k % qk == 0);

    const int nb = k / qk;

    for (int i = 0; i < nb; i++) {
        const float d = GGML_FP16_TO_FP32(x[i].d);

        uint32_t qh;
        memcpy(&qh, x[i].qh, sizeof(qh));

        for (int j = 0; j < qk/2; ++j) {
            const uint8_t xh_0 = ((qh >> (j +  0)) << 4) & 0x10;
            const uint8_t xh_1 = ((qh >> (j + 12))     ) & 0x10;

            const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
            const int32_t x1 = ((x[i].qs[j] >>   4) | xh_1) - 16;

            y[i*qk + j + 0   ] = x0*d;
            y[i*qk + j + qk/2] = x1*d;
        }
    }
}

void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
    static const int qk = QK5_1;

    assert(k % qk == 0);

    const int nb = k / qk;

    for (int i = 0; i < nb; i++) {
        const float d = GGML_FP16_TO_FP32(x[i].d);
        const float m = GGML_FP16_TO_FP32(x[i].m);

        uint32_t qh;
        memcpy(&qh, x[i].qh, sizeof(qh));

        for (int j = 0; j < qk/2; ++j) {
            const uint8_t xh_0 = ((qh >> (j +  0)) << 4) & 0x10;
            const uint8_t xh_1 = ((qh >> (j + 12))     ) & 0x10;

            const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
            const int x1 = (x[i].qs[j] >>   4) | xh_1;

            y[i*qk + j + 0   ] = x0*d + m;
            y[i*qk + j + qk/2] = x1*d + m;
        }
    }
}

void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int k) {
    static const int qk = QK8_0;

    assert(k % qk == 0);

    const int nb = k / qk;

    for (int i = 0; i < nb; i++) {
        const float d = GGML_FP16_TO_FP32(x[i].d);

        for (int j = 0; j < qk; ++j) {
            y[i*qk + j] = x[i].qs[j]*d;
        }
    }
}

//
// 2-6 bit quantization in super-blocks
//

//
// ===================== Helper functions
//
static inline int nearest_int(float fval) {
    assert(fval <= 4194303.f);
    float val = fval + 12582912.f;
    int i; memcpy(&i, &val, sizeof(int));
    return (i & 0x007fffff) - 0x00400000;
}

static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type,
        const float * restrict qw) {
    float max = 0;
    float amax = 0;
    for (int i = 0; i < n; ++i) {
        float ax = fabsf(x[i]);
        if (ax > amax) { amax = ax; max = x[i]; }
    }
    if (amax < 1e-30f) { // all zero
        for (int i = 0; i < n; ++i) {
            L[i] = 0;
        }
        return 0.f;
    }
    float iscale = -nmax / max;
    if (rmse_type == 0) {
        for (int i = 0; i < n; ++i) {
            int l = nearest_int(iscale * x[i]);
            L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
        }
        return 1/iscale;
    }
    bool return_early = false;
    if (rmse_type < 0) {
        rmse_type = -rmse_type;
        return_early = true;
    }
    float sumlx = 0;
    float suml2 = 0;
#ifdef HAVE_BUGGY_APPLE_LINKER
    // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
    for (volatile int i = 0; i < n; ++i) {
#else
    for (int i = 0; i < n; ++i) {
#endif
        int l = nearest_int(iscale * x[i]);
        l = MAX(-nmax, MIN(nmax-1, l));
        L[i] = l + nmax;
        float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
        sumlx += w*x[i]*l;
        suml2 += w*l*l;
    }
    float scale = sumlx/suml2;
    if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
    float best = scale * sumlx;
    for (int is = -9; is <= 9; ++is) {
        if (is == 0) {
            continue;
        }
        iscale = -(nmax + 0.1f*is) / max;
        sumlx = suml2 = 0;
        for (int i = 0; i < n; ++i) {
            int l = nearest_int(iscale * x[i]);
            l = MAX(-nmax, MIN(nmax-1, l));
            float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
            sumlx += w*x[i]*l;
            suml2 += w*l*l;
        }
        if (suml2 > 0 && sumlx*sumlx > best*suml2) {
            for (int i = 0; i < n; ++i) {
                int l = nearest_int(iscale * x[i]);
                L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
            }
            scale = sumlx/suml2; best = scale*sumlx;
        }
    }
    return scale;
}

static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
    float max = 0;
    float amax = 0;
    for (int i = 0; i < n; ++i) {
        float ax = fabsf(x[i]);
        if (ax > amax) { amax = ax; max = x[i]; }
    }
    if (!amax) { // all zero
        for (int i = 0; i < n; ++i) { L[i] = 0; }
        return 0.f;
    }
    float iscale = -nmax / max;
    if (do_rmse) {
        float sumlx = 0;
        float suml2 = 0;
        for (int i = 0; i < n; ++i) {
            int l = nearest_int(iscale * x[i]);
            l = MAX(-nmax, MIN(nmax-1, l));
            L[i] = l;
            float w = x[i]*x[i];
            sumlx += w*x[i]*l;
            suml2 += w*l*l;
        }
        for (int itry = 0; itry < 5; ++itry) {
            int n_changed = 0;
            for (int i = 0; i < n; ++i) {
                float w = x[i]*x[i];
                float slx = sumlx - w*x[i]*L[i];
                if (slx > 0) {
                    float sl2 = suml2 - w*L[i]*L[i];
                    int new_l = nearest_int(x[i] * sl2 / slx);
                    new_l = MAX(-nmax, MIN(nmax-1, new_l));
                    if (new_l != L[i]) {
                        slx += w*x[i]*new_l;
                        sl2 += w*new_l*new_l;
                        if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
                            L[i] = new_l; sumlx = slx; suml2 = sl2;
                            ++n_changed;
                        }
                    }
                }
            }
            if (!n_changed) {
                break;
            }
        }
        for (int i = 0; i < n; ++i) {
            L[i] += nmax;
        }
        return sumlx / suml2;
    }
    for (int i = 0; i < n; ++i) {
        int l = nearest_int(iscale * x[i]);
        l = MAX(-nmax, MIN(nmax-1, l));
        L[i] = l + nmax;
    }
    return 1/iscale;
}

static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
        int ntry, float alpha) {
    float min = x[0];
    float max = x[0];
    for (int i = 1; i < n; ++i) {
        if (x[i] < min) min = x[i];
        if (x[i] > max) max = x[i];
    }
    if (max == min) {
        for (int i = 0; i < n; ++i) L[i] = 0;
        *the_min = 0;
        return 0.f;
    }
    if (min > 0) min = 0;
    float iscale = nmax/(max - min);
    float scale = 1/iscale;
    for (int itry = 0; itry < ntry; ++itry) {
        float sumlx = 0; int suml2 = 0;
        bool did_change = false;
        for (int i = 0; i < n; ++i) {
            int l = nearest_int(iscale*(x[i] - min));
            l = MAX(0, MIN(nmax, l));
            if (l != L[i]) {
                L[i] = l;
                did_change = true;
            }
            sumlx += (x[i] - min)*l;
            suml2 += l*l;
        }
        scale = sumlx/suml2;
        float sum = 0;
        for (int i = 0; i < n; ++i) {
            sum += x[i] - scale*L[i];
        }
        min = alpha*min + (1 - alpha)*sum/n;
        if (min > 0) min = 0;
        iscale = 1/scale;
        if (!did_change) break;
    }
    *the_min = -min;
    return scale;
}

static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
        uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
        float rmin, float rdelta, int nstep, bool use_mad) {
    float min = x[0];
    float max = x[0];
    float sum_w = weights[0];
    float sum_x = sum_w * x[0];
#ifdef HAVE_BUGGY_APPLE_LINKER
    // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
    for (volatile int i = 1; i < n; ++i) {
#else
    for (int i = 1; i < n; ++i) {
#endif
        if (x[i] < min) min = x[i];
        if (x[i] > max) max = x[i];
        float w = weights[i];
        sum_w += w;
        sum_x += w * x[i];
    }
    if (min > 0) min = 0;
    if (max == min) {
        for (int i = 0; i < n; ++i) L[i] = 0;
        *the_min = -min;
        return 0.f;
    }
    float iscale = nmax/(max - min);
    float scale = 1/iscale;
    float best_mad = 0;
    for (int i = 0; i < n; ++i) {
        int l = nearest_int(iscale*(x[i] - min));
        L[i] = MAX(0, MIN(nmax, l));
        float diff = scale * L[i] + min - x[i];
        diff = use_mad ? fabsf(diff) : diff * diff;
        float w = weights[i];
        best_mad += w * diff;
    }
    if (nstep < 1) {
        *the_min = -min;
        return scale;
    }
    for (int is = 0; is <= nstep; ++is) {
        iscale = (rmin + rdelta*is + nmax)/(max - min);
        float sum_l = 0, sum_l2 = 0, sum_xl = 0;
        for (int i = 0; i < n; ++i) {
            int l = nearest_int(iscale*(x[i] - min));
            l = MAX(0, MIN(nmax, l));
            Laux[i] = l;
            float w = weights[i];
            sum_l += w*l;
            sum_l2 += w*l*l;
            sum_xl += w*l*x[i];
        }
        float D = sum_w * sum_l2 - sum_l * sum_l;
        if (D > 0) {
            float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
            float this_min   = (sum_l2 * sum_x - sum_l * sum_xl)/D;
            if (this_min > 0) {
                this_min = 0;
                this_scale = sum_xl / sum_l2;
            }
            float mad = 0;
            for (int i = 0; i < n; ++i) {
                float diff = this_scale * Laux[i] + this_min - x[i];
                diff = use_mad ? fabsf(diff) : diff * diff;
                float w = weights[i];
                mad += w * diff;
            }
            if (mad < best_mad) {
                for (int i = 0; i < n; ++i) {
                    L[i] = Laux[i];
                }
                best_mad = mad;
                scale = this_scale;
                min = this_min;
            }
        }
    }
    *the_min = -min;
    return scale;
}

#if QK_K == 256
static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
    if (j < 4) {
        *d = q[j] & 63; *m = q[j + 4] & 63;
    } else {
        *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
        *m = (q[j+4] >>  4) | ((q[j-0] >> 6) << 4);
    }
}
#endif

//========================- 2-bit (de)-quantization

void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k) {
    assert(k % QK_K == 0);
    const int nb = k / QK_K;

    uint8_t L[QK_K];
    uint8_t Laux[16];
    float   weights[16];
    float mins[QK_K/16];
    float scales[QK_K/16];

    const float q4scale = 15.f;

    for (int i = 0; i < nb; i++) {
        float max_scale = 0; // as we are deducting the min, scales are always positive
        float max_min = 0;
        for (int j = 0; j < QK_K/16; ++j) {
            for (int l = 0; l < 16; ++l) weights[l] = fabsf(x[16*j + l]);
            scales[j] = make_qkx2_quants(16, 3, x + 16*j, weights, L + 16*j, &mins[j], Laux, -0.5f, 0.1f, 15, true);
            float scale = scales[j];
            if (scale > max_scale) {
                max_scale = scale;
            }
            float min = mins[j];
            if (min > max_min) {
                max_min = min;
            }
        }

        if (max_scale > 0) {
            float iscale = q4scale/max_scale;
            for (int j = 0; j < QK_K/16; ++j) {
                int l = nearest_int(iscale*scales[j]);
                y[i].scales[j] = l;
            }
            y[i].d = GGML_FP32_TO_FP16(max_scale/q4scale);
        } else {
            for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
            y[i].d = GGML_FP32_TO_FP16(0.f);
        }
        if (max_min > 0) {
            float iscale = q4scale/max_min;
            for (int j = 0; j < QK_K/16; ++j) {
                int l = nearest_int(iscale*mins[j]);
                y[i].scales[j] |= (l << 4);
            }
            y[i].dmin = GGML_FP32_TO_FP16(max_min/q4scale);
        } else {
            y[i].dmin = GGML_FP32_TO_FP16(0.f);
        }
        for (int j = 0; j < QK_K/16; ++j) {
            const float d = GGML_FP16_TO_FP32(y[i].d) * (y[i].scales[j] & 0xF);
            if (!d) continue;
            const float dm = GGML_FP16_TO_FP32(y[i].dmin) * (y[i].scales[j] >> 4);
            for (int ii = 0; ii < 16; ++ii) {
                int l = nearest_int((x[16*j + ii] + dm)/d);
                l = MAX(0, MIN(3, l));
                L[16*j + ii] = l;
            }
        }

#if QK_K == 256
        for (int j = 0; j < QK_K; j += 128) {
            for (int l = 0; l < 32; ++l) {
                y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
            }
        }
#else
        for (int l = 0; l < 16; ++l) {
            y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
        }
#endif

        x += QK_K;

    }
}

void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k) {
    assert(k % QK_K == 0);
    const int nb = k / QK_K;

    for (int i = 0; i < nb; i++) {

        const float d = GGML_FP16_TO_FP32(x[i].d);
        const float min = GGML_FP16_TO_FP32(x[i].dmin);

        const uint8_t * q = x[i].qs;

#if QK_K == 256
        int is = 0;
        float dl, ml;
        for (int n = 0; n < QK_K; n += 128) {
            int shift = 0;
            for (int j = 0; j < 4; ++j) {

                uint8_t sc = x[i].scales[is++];
                dl = d * (sc & 0xF); ml = min * (sc >> 4);
                for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;

                sc = x[i].scales[is++];
                dl = d * (sc & 0xF); ml = min * (sc >> 4);
                for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;

                shift += 2;
            }
            q += 32;
        }
#else
        float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4);
        float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4);
        float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4);
        float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4);
        for (int l = 0; l < 16; ++l) {
            y[l+ 0] = dl1 * ((int8_t)((q[l] >> 0) & 3)) - ml1;
            y[l+16] = dl2 * ((int8_t)((q[l] >> 2) & 3)) - ml2;
            y[l+32] = dl3 * ((int8_t)((q[l] >> 4) & 3)) - ml3;
            y[l+48] = dl4 * ((int8_t)((q[l] >> 6) & 3)) - ml4;
        }
        y += QK_K;
#endif
    }
}

void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) {
    quantize_row_q2_K_reference(x, vy, k);
}

size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
    (void)hist; // TODO: collect histograms

    for (int j = 0; j < n; j += k) {
        block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K;
        quantize_row_q2_K_reference(src + j, y, k);
    }
    return (n/QK_K*sizeof(block_q2_K));
}

static float make_qkx3_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
        uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
        float rmin, float rdelta, int nstep, bool use_mad) {
    float min = x[0];
    float max = x[0];
    float sum_w = weights ? weights[0] : x[0]*x[0];
    float sum_x = sum_w * x[0];
#ifdef HAVE_BUGGY_APPLE_LINKER
    // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
    for (volatile int i = 1; i < n; ++i) {
#else
    for (int i = 1; i < n; ++i) {
#endif
        if (x[i] < min) min = x[i];
        if (x[i] > max) max = x[i];
        float w = weights ? weights[i] : x[i]*x[i];
        sum_w += w;
        sum_x += w * x[i];
    }
    if (min > 0) {
        min = 0;
    }
    if (max <= min) {
        memset(L, 0, n);
        *the_min = -min;
        return 0.f;
    }
    float iscale = nmax/(max - min);
    float scale = 1/iscale;
    float best_mad = 0;
    for (int i = 0; i < n; ++i) {
        int l = nearest_int(iscale*(x[i] - min));
        L[i] = MAX(0, MIN(nmax, l));
        float diff = scale * L[i] + min - x[i];
        diff = use_mad ? fabsf(diff) : diff*diff;
        float w = weights ? weights[i] : x[i]*x[i];
        best_mad += w * diff;
    }
    if (nstep < 1) {
        *the_min = -min;
        return scale;
    }
    for (int is = 0; is <= nstep; ++is) {
        iscale = (rmin + rdelta*is + nmax)/(max - min);
        float sum_l = 0, sum_l2 = 0, sum_xl = 0;
        for (int i = 0; i < n; ++i) {
            int l = nearest_int(iscale*(x[i] - min));
            l = MAX(0, MIN(nmax, l));
            Laux[i] = l;
            float w = weights ? weights[i] : x[i]*x[i];
            sum_l  += w*l;
            sum_l2 += w*l*l;
            sum_xl += w*l*x[i];
        }
        float D = sum_w * sum_l2 - sum_l * sum_l;
        if (D > 0) {
            float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
            float this_min   = (sum_l2 * sum_x - sum_l * sum_xl)/D;
            if (this_min > 0) {
                this_min = 0;
                this_scale = sum_xl / sum_l2;
            }
            float mad = 0;
            for (int i = 0; i < n; ++i) {
                float diff = this_scale * Laux[i] + this_min - x[i];
                diff = use_mad ? fabsf(diff) : diff*diff;
                float w = weights ? weights[i] : x[i]*x[i];
                mad += w * diff;
            }
            if (mad < best_mad) {
                for (int i = 0; i < n; ++i) {
                    L[i] = Laux[i];
                }
                best_mad = mad;
                scale = this_scale;
                min = this_min;
            }
        }
    }
    *the_min = -min;
    return scale;
}

static float make_qp_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, const float * quant_weights) {
    float max = 0;
    for (int i = 0; i < n; ++i) {
        max = MAX(max, x[i]);
    }
    if (!max) { // all zero
        for (int i = 0; i < n; ++i) { L[i] = 0; }
        return 0.f;
    }
    float iscale = nmax / max;
    for (int i = 0; i < n; ++i) {
        L[i] = nearest_int(iscale * x[i]);
    }
    float scale = 1/iscale;
    float best_mse = 0;
    for (int i = 0; i < n; ++i) {
        float diff = x[i] - scale*L[i];
        float w = quant_weights[i];
        best_mse += w*diff*diff;
    }
    for (int is = -4; is <= 4; ++is) {
        if (is == 0) continue;
        float iscale_is = (0.1f*is + nmax)/max;
        float scale_is = 1/iscale_is;
        float mse = 0;
        for (int i = 0; i < n; ++i) {
            int l = nearest_int(iscale_is*x[i]);
            l = MIN(nmax, l);
            float diff = x[i] - scale_is*l;
            float w = quant_weights[i];
            mse += w*diff*diff;
        }
        if (mse < best_mse) {
            best_mse = mse;
            iscale = iscale_is;
        }
    }
    float sumlx = 0;
    float suml2 = 0;
    for (int i = 0; i < n; ++i) {
        int l = nearest_int(iscale * x[i]);
        l = MIN(nmax, l);
        L[i] = l;
        float w = quant_weights[i];
        sumlx += w*x[i]*l;
        suml2 += w*l*l;
    }
    for (int itry = 0; itry < 5; ++itry) {
        int n_changed = 0;
        for (int i = 0; i < n; ++i) {
            float w = quant_weights[i];
            float slx = sumlx - w*x[i]*L[i];
            float sl2 = suml2 - w*L[i]*L[i];
            if (slx > 0 && sl2 > 0) {
                int new_l = nearest_int(x[i] * sl2 / slx);
                new_l = MIN(nmax, new_l);
                if (new_l != L[i]) {
                    slx += w*x[i]*new_l;
                    sl2 += w*new_l*new_l;
                    if (slx*slx*suml2 > sumlx*sumlx*sl2) {
                        L[i] = new_l; sumlx = slx; suml2 = sl2;
                        ++n_changed;
                    }
                }
            }
        }
        if (!n_changed) {
            break;
        }
    }
    return sumlx / suml2;
}

static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restrict y, int k, const float * restrict quant_weights) {
    GGML_ASSERT(quant_weights);
    assert(k % QK_K == 0);
    const int nb = k / QK_K;
    const bool requantize = true;

    uint8_t L[QK_K];
    uint8_t Laux[16];
    float mins[QK_K/16];
    float scales[QK_K/16];
    float sw[QK_K/16];
    float weight[16];
    uint8_t Ls[QK_K/16], Lm[QK_K/16];

    for (int i = 0; i < nb; i++) {
        memset(sw, 0, QK_K/16*sizeof(float));
        float sumx2 = 0;
        for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
        float sigma2 = sumx2/QK_K;
        for (int j = 0; j < QK_K/16; ++j) {
            const float * restrict qw = quant_weights + QK_K * i + 16*j;
            for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j + l]*x[16*j + l]);
            for (int l = 0; l < QK_K/16; ++l) sw[j] += weight[l];
            scales[j] = make_qkx3_quants(16, 3, x + 16*j, weight, L + 16*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
        }

        float dm, mm;
#if QK_K == 64
        float max_scale = 0, max_min = 0;
        for (int j = 0; j < QK_K/16; ++j) {
            max_scale = MAX(max_scale, scales[j]);
            max_min   = MAX(max_min,   mins[j]);
        }
        dm = max_scale/15;
        mm = max_min/15;
        if (max_scale) {
            float id = 1/dm;
            for (int j = 0; j < QK_K/16; ++j) {
                int l = nearest_int(id*scales[j]);
                Ls[j] = MAX(0, MIN(15, l));
            }
        } else {
            memset(Ls, 0, QK_K/16);
        }
        if (max_min) {
            float id = 1/mm;
            for (int j = 0; j < QK_K/16; ++j) {
                int l = nearest_int(id*mins[j]);
                Lm[j] = MAX(0, MIN(15, l));
            }
        } else {
            memset(Lm, 0, QK_K/16);
        }
#else
        dm  = make_qp_quants(QK_K/16, 15, scales, Ls, sw);
        mm  = make_qp_quants(QK_K/16, 15, mins,   Lm, sw);
#endif
        y[i].d    = GGML_FP32_TO_FP16(dm);
        y[i].dmin = GGML_FP32_TO_FP16(mm);
        dm        = GGML_FP16_TO_FP32(y[i].d);
        mm        = GGML_FP16_TO_FP32(y[i].dmin);

        for (int j = 0; j < QK_K/16; ++j) {
            y[i].scales[j] = Ls[j] | (Lm[j] << 4);
        }

        if (requantize) {
            for (int j = 0; j < QK_K/16; ++j) {
                const float d = dm * (y[i].scales[j] & 0xF);
                if (!d) continue;
                const float m = mm * (y[i].scales[j] >> 4);
                for (int ii = 0; ii < 16; ++ii) {
                    int l = nearest_int((x[16*j + ii] + m)/d);
                    l = MAX(0, MIN(3, l));
                    L[16*j + ii] = l;
                }
            }
        }

#if QK_K == 256
        for (int j = 0; j < QK_K; j += 128) {
            for (int l = 0; l < 32; ++l) {
                y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
            }
        }
#else
        for (int l = 0; l < 16; ++l) {
            y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
        }
#endif

        x += QK_K;

    }
}

size_t quantize_q2_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
    (void)hist;
    size_t row_size = ggml_row_size(GGML_TYPE_Q2_K, n_per_row);
    if (!quant_weights) {
        quantize_row_q2_K_reference(src, dst, nrow*n_per_row);
    }
    else {
        char * qrow = (char *)dst;
        for (int row = 0; row < nrow; ++row) {
            quantize_row_q2_K_impl(src, (block_q2_K*)qrow, n_per_row, quant_weights);
            src += n_per_row;
            qrow += row_size;
        }
    }
    return nrow * row_size;
}

//========================= 3-bit (de)-quantization

void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k) {
    assert(k % QK_K == 0);
    const int nb = k / QK_K;

    int8_t L[QK_K];
    float scales[QK_K / 16];

    for (int i = 0; i < nb; i++) {

        float max_scale = 0;
        float amax = 0;
        for (int j = 0; j < QK_K/16; ++j) {
            scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
            float scale = fabsf(scales[j]);
            if (scale > amax) {
                amax = scale; max_scale = scales[j];
            }
        }

#if QK_K == 256
        memset(y[i].scales, 0, 12);
        if (max_scale) {
            float iscale = -32.f/max_scale;
            for (int j = 0; j < QK_K/16; ++j) {
                int8_t l = nearest_int(iscale*scales[j]);
                l = MAX(-32, MIN(31, l)) + 32;
                if (j < 8) {
                    y[i].scales[j] = l & 0xF;
                } else {
                    y[i].scales[j-8] |= ((l & 0xF) << 4);
                }
                l >>= 4;
                y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
            }
            y[i].d = GGML_FP32_TO_FP16(1/iscale);
        } else {
            y[i].d = GGML_FP32_TO_FP16(0.f);
        }

        int8_t sc;
        for (int j = 0; j < QK_K/16; ++j) {
            sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
            sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
            float d = GGML_FP16_TO_FP32(y[i].d) * sc;
            if (!d) {
                continue;
            }
            for (int ii = 0; ii < 16; ++ii) {
                int l = nearest_int(x[16*j + ii]/d);
                l = MAX(-4, MIN(3, l));
                L[16*j + ii] = l + 4;
            }
        }
#else
        if (max_scale) {
            float iscale = -8.f/max_scale;
            for (int j = 0; j < QK_K/16; j+=2) {
                int l1 = nearest_int(iscale*scales[j]);
                l1 = 8 + MAX(-8, MIN(7, l1));
                int l2 = nearest_int(iscale*scales[j+1]);
                l2 = 8 + MAX(-8, MIN(7, l2));
                y[i].scales[j/2] = l1 | (l2 << 4);
            }
            y[i].d = GGML_FP32_TO_FP16(1/iscale);
        } else {
            for (int j = 0; j < QK_K/16; j+=2) {
                y[i].scales[j/2] = 0;
            }
            y[i].d = GGML_FP32_TO_FP16(0.f);
        }
        for (int j = 0; j < QK_K/16; ++j) {
            int s = j%2 == 0 ? y[i].scales[j/2] & 0xF : y[i].scales[j/2] >> 4;
            float d = GGML_FP16_TO_FP32(y[i].d) * (s - 8);
            if (!d) {
                continue;
            }
            for (int ii = 0; ii < 16; ++ii) {
                int l = nearest_int(x[16*j + ii]/d);
                l = MAX(-4, MIN(3, l));
                L[16*j + ii] = l + 4;
            }
        }
#endif

        memset(y[i].hmask, 0, QK_K/8);
        // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
        int m = 0;
        uint8_t hm = 1;
        for (int j = 0; j < QK_K; ++j) {
            if (L[j] > 3) {
                y[i].hmask[m] |= hm;
                L[j] -= 4;
            }
            if (++m == QK_K/8) {
                m = 0; hm <<= 1;
            }
        }
#if QK_K == 256
        for (int j = 0; j < QK_K; j += 128) {
            for (int l = 0; l < 32; ++l) {
                y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
            }
        }
#else
        for (int l = 0; l < 16; ++l) {
            y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
        }
#endif

        x += QK_K;
    }
}

#if QK_K == 256
void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
    assert(k % QK_K == 0);
    const int nb = k / QK_K;

    const uint32_t kmask1 = 0x03030303;
    const uint32_t kmask2 = 0x0f0f0f0f;

    uint32_t aux[4];
    const int8_t * scales = (const int8_t*)aux;

    for (int i = 0; i < nb; i++) {

        const float d_all = GGML_FP16_TO_FP32(x[i].d);

        const uint8_t * restrict q = x[i].qs;
        const uint8_t * restrict hm = x[i].hmask;
        uint8_t m = 1;

        memcpy(aux, x[i].scales, 12);
        uint32_t tmp = aux[2];
        aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
        aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
        aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
        aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);

        int is = 0;
        float dl;
        for (int n = 0; n < QK_K; n += 128) {
            int shift = 0;
            for (int j = 0; j < 4; ++j) {

                dl = d_all * (scales[is++] - 32);
                for (int l = 0; l < 16; ++l) {
                    *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
                }

                dl = d_all * (scales[is++] - 32);
                for (int l = 0; l < 16; ++l) {
                    *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
                }

                shift += 2;
                m <<= 1;
            }
            q += 32;
        }

    }
}
#else
void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
    assert(k % QK_K == 0);
    assert(QK_K == 64);
    const int nb = k / QK_K;

    for (int i = 0; i < nb; i++) {

        const float d_all = GGML_FP16_TO_FP32(x[i].d);

        const uint8_t * restrict q = x[i].qs;
        const uint8_t * restrict hm = x[i].hmask;

        const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
        const float d2 = d_all * ((x[i].scales[0] >>  4) - 8);
        const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
        const float d4 = d_all * ((x[i].scales[1] >>  4) - 8);

        for (int l=0; l<8; ++l) {
            uint8_t h = hm[l];
            y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4));
            y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4));
            y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4));
            y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4));
            y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4));
            y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4));
            y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4));
            y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4));
        }
        y += QK_K;
    }
}
#endif

void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) {
    quantize_row_q3_K_reference(x, vy, k);
}

size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
    (void)hist; // TODO: collect histograms

    for (int j = 0; j < n; j += k) {
        block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K;
        quantize_row_q3_K_reference(src + j, y, k);
    }
    return (n/QK_K*sizeof(block_q3_K));
}

static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restrict y, int n_per_row, const float * restrict quant_weights) {
#if QK_K != 256
    (void)quant_weights;
    quantize_row_q3_K_reference(x, y, n_per_row);
#else
    assert(n_per_row % QK_K == 0);
    const int nb = n_per_row / QK_K;

    int8_t L[QK_K];
    float scales[QK_K / 16];
    float weight[16];
    float sw[QK_K / 16];
    int8_t Ls[QK_K / 16];

    for (int i = 0; i < nb; i++) {

        float sumx2 = 0;
        for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
        float sigma2 = 2*sumx2/QK_K;

        for (int j = 0; j < QK_K/16; ++j) {
            if (quant_weights) {
                const float * qw = quant_weights ? quant_weights + QK_K * i + 16*j : NULL;
                for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j+l]*x[16*j+l]);
            } else {
                for (int l = 0; l < 16; ++l) weight[l] = x[16*j+l]*x[16*j+l];
            }
            float sumw = 0;
            for (int l = 0; l < 16; ++l) sumw += weight[l];
            sw[j] = sumw;

            scales[j] = make_qx_quants(16, 4, x + 16*j, L + 16*j, 1, weight);

        }

        memset(y[i].scales, 0, 12);

        float d_block = make_qx_quants(QK_K/16, 32, scales, Ls, 1, sw);
        for (int j = 0; j < QK_K/16; ++j) {
            int l = Ls[j];
            if (j < 8) {
                y[i].scales[j] = l & 0xF;
            } else {
                y[i].scales[j-8] |= ((l & 0xF) << 4);
            }
            l >>= 4;
            y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
        }
        y[i].d = GGML_FP32_TO_FP16(d_block);

        int8_t sc;
        for (int j = 0; j < QK_K/16; ++j) {
            sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
            sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
            float d = GGML_FP16_TO_FP32(y[i].d) * sc;
            if (!d) {
                continue;
            }
            for (int ii = 0; ii < 16; ++ii) {
                int l = nearest_int(x[16*j + ii]/d);
                l = MAX(-4, MIN(3, l));
                L[16*j + ii] = l + 4;
            }
        }

        memset(y[i].hmask, 0, QK_K/8);
        // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
        int m = 0;
        uint8_t hm = 1;
        for (int j = 0; j < QK_K; ++j) {
            if (L[j] > 3) {
                y[i].hmask[m] |= hm;
                L[j] -= 4;
            }
            if (++m == QK_K/8) {
                m = 0; hm <<= 1;
            }
        }
        for (int j = 0; j < QK_K; j += 128) {
            for (int l = 0; l < 32; ++l) {
                y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
            }
        }

        x += QK_K;
    }
#endif
}

size_t quantize_q3_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
    (void)hist;
    size_t row_size = ggml_row_size(GGML_TYPE_Q3_K, n_per_row);
    if (!quant_weights) {
        quantize_row_q3_K_reference(src, dst, nrow*n_per_row);
    }
    else {
        char * qrow = (char *)dst;
        for (int row = 0; row < nrow; ++row) {
            quantize_row_q3_K_impl(src, (block_q3_K*)qrow, n_per_row, quant_weights);
            src += n_per_row;
            qrow += row_size;
        }
    }
    return nrow * row_size;
}

// ====================== 4-bit (de)-quantization

void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k) {
    assert(k % QK_K == 0);
    const int nb = k / QK_K;

    uint8_t L[QK_K];
    uint8_t Laux[32];
    float   weights[32];
    float mins[QK_K/32];
    float scales[QK_K/32];

    for (int i = 0; i < nb; i++) {

        float max_scale = 0; // as we are deducting the min, scales are always positive
        float max_min = 0;
        for (int j = 0; j < QK_K/32; ++j) {
            //scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
            float sum_x2 = 0;
            for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
            float av_x = sqrtf(sum_x2/32);
            for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
            scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false);
            float scale = scales[j];
            if (scale > max_scale) {
                max_scale = scale;
            }
            float min = mins[j];
            if (min > max_min) {
                max_min = min;
            }
        }

#if QK_K == 256
        float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
        float inv_min   = max_min   > 0 ? 63.f/max_min   : 0.f;
        for (int j = 0; j < QK_K/32; ++j) {
            uint8_t ls = nearest_int(inv_scale*scales[j]);
            uint8_t lm = nearest_int(inv_min*mins[j]);
            ls = MIN(63, ls);
            lm = MIN(63, lm);
            if (j < 4) {
                y[i].scales[j] = ls;
                y[i].scales[j+4] = lm;
            } else {
                y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
                y[i].scales[j-4] |= ((ls >> 4) << 6);
                y[i].scales[j-0] |= ((lm >> 4) << 6);
            }
        }
        y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
        y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);

        uint8_t sc, m;
        for (int j = 0; j < QK_K/32; ++j) {
            get_scale_min_k4(j, y[i].scales, &sc, &m);
            const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
            if (!d) continue;
            const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
            for (int ii = 0; ii < 32; ++ii) {
                int l = nearest_int((x[32*j + ii] + dm)/d);
                l = MAX(0, MIN(15, l));
                L[32*j + ii] = l;
            }
        }
#else
        const float s_factor = 15.f;
        float inv_scale = max_scale > 0 ? s_factor/max_scale : 0.f;
        float inv_min   = max_min   > 0 ? s_factor/max_min   : 0.f;
        int d1 = nearest_int(inv_scale*scales[0]);
        int m1 = nearest_int(inv_min*mins[0]);
        int d2 = nearest_int(inv_scale*scales[1]);
        int m2 = nearest_int(inv_min*mins[1]);
        y[i].scales[0] = d1 | (m1 << 4);
        y[i].scales[1] = d2 | (m2 << 4);
        y[i].d[0] = GGML_FP32_TO_FP16(max_scale/s_factor);
        y[i].d[1] = GGML_FP32_TO_FP16(max_min/s_factor);

        float sumlx = 0;
        int   suml2 = 0;
        for (int j = 0; j < QK_K/32; ++j) {
            const uint8_t sd = y[i].scales[j] & 0xF;
            const uint8_t sm = y[i].scales[j] >>  4;
            const float d = GGML_FP16_TO_FP32(y[i].d[0]) * sd;
            if (!d) continue;
            const float m = GGML_FP16_TO_FP32(y[i].d[1]) * sm;
            for (int ii = 0; ii < 32; ++ii) {
                int l = nearest_int((x[32*j + ii] + m)/d);
                l = MAX(0, MIN(15, l));
                L[32*j + ii] = l;
                sumlx += (x[32*j + ii] + m)*l*sd;
                suml2 += l*l*sd*sd;
            }
        }
        if (suml2) {
            y[i].d[0] = GGML_FP32_TO_FP16(sumlx/suml2);
        }
#endif
        uint8_t * q = y[i].qs;
        for (int j = 0; j < QK_K; j += 64) {
            for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
            q += 32;
        }

        x += QK_K;

    }
}

void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k) {
    assert(k % QK_K == 0);
    const int nb = k / QK_K;

    for (int i = 0; i < nb; i++) {

        const uint8_t * q = x[i].qs;

#if QK_K == 256

        const float d   = GGML_FP16_TO_FP32(x[i].d);
        const float min = GGML_FP16_TO_FP32(x[i].dmin);

        int is = 0;
        uint8_t sc, m;
        for (int j = 0; j < QK_K; j += 64) {
            get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
            const float d1 = d * sc; const float m1 = min * m;
            get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
            const float d2 = d * sc; const float m2 = min * m;
            for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
            for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l]  >> 4) - m2;
            q += 32; is += 2;
        }
#else
        const float dall = GGML_FP16_TO_FP32(x[i].d[0]);
        const float mall = GGML_FP16_TO_FP32(x[i].d[1]);
        const float d1 = dall * (x[i].scales[0] & 0xF), m1 = mall * (x[i].scales[0] >> 4);
        const float d2 = dall * (x[i].scales[1] & 0xF), m2 = mall * (x[i].scales[1] >> 4);
        for (int l = 0; l < 32; ++l) {
            y[l+ 0] = d1 * (q[l] & 0xF) - m1;
            y[l+32] = d2 * (q[l] >>  4) - m2;
        }
        y += QK_K;
#endif

    }
}

void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) {
    assert(k % QK_K == 0);
    block_q4_K * restrict y = vy;
    quantize_row_q4_K_reference(x, y, k);
}

size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
    assert(k % QK_K == 0);
    (void)hist; // TODO: collect histograms

    for (int j = 0; j < n; j += k) {
        block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K;
        quantize_row_q4_K_reference(src + j, y, k);
    }
    return (n/QK_K*sizeof(block_q4_K));
}

static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restrict y, int n_per_row, const float * quant_weights) {
#if QK_K != 256
    (void)quant_weights;
    quantize_row_q4_K_reference(x, y, n_per_row);
#else
    assert(n_per_row % QK_K == 0);
    const int nb = n_per_row / QK_K;

    uint8_t L[QK_K];
    uint8_t Laux[32];
    uint8_t Ls[QK_K/32];
    uint8_t Lm[QK_K/32];
    float   weights[32];
    float   sw[QK_K/32];
    float   mins[QK_K/32];
    float   scales[QK_K/32];

    for (int i = 0; i < nb; i++) {

        float sum_x2 = 0;
        for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
        float sigma2 = 2*sum_x2/QK_K;
        float av_x = sqrtf(sigma2);

        for (int j = 0; j < QK_K/32; ++j) {
            if (quant_weights) {
                const float * qw = quant_weights + QK_K*i + 32*j;
                for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
            } else {
                for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
            }
            float sumw = 0;
            for (int l = 0; l < 32; ++l) sumw += weights[l];
            sw[j] = sumw;
            scales[j] = make_qkx3_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
        }

        float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
        float m_block = make_qp_quants(QK_K/32, 63, mins,   Lm, sw);
        for (int j = 0; j < QK_K/32; ++j) {
            uint8_t ls = Ls[j];
            uint8_t lm = Lm[j];
            if (j < 4) {
                y[i].scales[j] = ls;
                y[i].scales[j+4] = lm;
            } else {
                y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
                y[i].scales[j-4] |= ((ls >> 4) << 6);
                y[i].scales[j-0] |= ((lm >> 4) << 6);
            }
        }
        y[i].d = GGML_FP32_TO_FP16(d_block);
        y[i].dmin = GGML_FP32_TO_FP16(m_block);

        uint8_t sc, m;
        for (int j = 0; j < QK_K/32; ++j) {
            get_scale_min_k4(j, y[i].scales, &sc, &m);
            const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
            if (!d) continue;
            const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
            for (int ii = 0; ii < 32; ++ii) {
                int l = nearest_int((x[32*j + ii] + dm)/d);
                l = MAX(0, MIN(15, l));
                L[32*j + ii] = l;
            }
        }
        uint8_t * q = y[i].qs;
        for (int j = 0; j < QK_K; j += 64) {
            for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
            q += 32;
        }

        x += QK_K;

    }
#endif
}

size_t quantize_q4_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
    (void)hist;
    size_t row_size = ggml_row_size(GGML_TYPE_Q4_K, n_per_row);
    if (!quant_weights) {
        quantize_row_q4_K_reference(src, dst, nrow*n_per_row);
    }
    else {
        char * qrow = (char *)dst;
        for (int row = 0; row < nrow; ++row) {
            quantize_row_q4_K_impl(src, (block_q4_K*)qrow, n_per_row, quant_weights);
            src += n_per_row;
            qrow += row_size;
        }
    }
    return nrow * row_size;
}

// ====================== 5-bit (de)-quantization

void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k) {
    assert(k % QK_K == 0);
    const int nb = k / QK_K;

#if QK_K == 256
    uint8_t L[QK_K];
    float mins[QK_K/32];
    float scales[QK_K/32];
    float weights[32];
    uint8_t Laux[32];
#else
    int8_t L[QK_K];
    float scales[QK_K/16];
#endif

    for (int i = 0; i < nb; i++) {

#if QK_K == 256

        float max_scale = 0; // as we are deducting the min, scales are always positive
        float max_min = 0;
        for (int j = 0; j < QK_K/32; ++j) {
            //scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
            float sum_x2 = 0;
            for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
            float av_x = sqrtf(sum_x2/32);
            for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
            scales[j] = make_qkx2_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.5f, 0.1f, 15, false);
            float scale = scales[j];
            if (scale > max_scale) {
                max_scale = scale;
            }
            float min = mins[j];
            if (min > max_min) {
                max_min = min;
            }
        }

        float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
        float inv_min   = max_min   > 0 ? 63.f/max_min   : 0.f;
        for (int j = 0; j < QK_K/32; ++j) {
            uint8_t ls = nearest_int(inv_scale*scales[j]);
            uint8_t lm = nearest_int(inv_min*mins[j]);
            ls = MIN(63, ls);
            lm = MIN(63, lm);
            if (j < 4) {
                y[i].scales[j] = ls;
                y[i].scales[j+4] = lm;
            } else {
                y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
                y[i].scales[j-4] |= ((ls >> 4) << 6);
                y[i].scales[j-0] |= ((lm >> 4) << 6);
            }
        }
        y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
        y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);

        uint8_t sc, m;
        for (int j = 0; j < QK_K/32; ++j) {
            get_scale_min_k4(j, y[i].scales, &sc, &m);
            const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
            if (!d) continue;
            const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
            for (int ii = 0; ii < 32; ++ii) {
                int l = nearest_int((x[32*j + ii] + dm)/d);
                l = MAX(0, MIN(31, l));
                L[32*j + ii] = l;
            }
        }

        uint8_t * restrict qh = y[i].qh;
        uint8_t * restrict ql = y[i].qs;
        memset(qh, 0, QK_K/8);

        uint8_t m1 = 1, m2 = 2;
        for (int n = 0; n < QK_K; n += 64) {
            for (int j = 0; j < 32; ++j) {
                int l1 = L[n + j];
                if (l1 > 15) {
                    l1 -= 16; qh[j] |= m1;
                }
                int l2 = L[n + j + 32];
                if (l2 > 15) {
                    l2 -= 16; qh[j] |= m2;
                }
                ql[j] = l1 | (l2 << 4);
            }
            m1 <<= 2; m2 <<= 2;
            ql += 32;
        }
#else
        float max_scale = 0, amax = 0;
        for (int j = 0; j < QK_K/16; ++j) {
            scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1, NULL);
            float abs_scale = fabsf(scales[j]);
            if (abs_scale > amax) {
                amax = abs_scale;
                max_scale = scales[j];
            }
        }

        float iscale = -128.f/max_scale;
        for (int j = 0; j < QK_K/16; ++j) {
            int l = nearest_int(iscale*scales[j]);
            y[i].scales[j] = MAX(-128, MIN(127, l));
        }
        y[i].d = GGML_FP32_TO_FP16(1/iscale);

        for (int j = 0; j < QK_K/16; ++j) {
            const float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
            if (!d) continue;
            for (int ii = 0; ii < 16; ++ii) {
                int l = nearest_int(x[16*j + ii]/d);
                l = MAX(-16, MIN(15, l));
                L[16*j + ii] = l + 16;
            }
        }

        uint8_t * restrict qh = y[i].qh;
        uint8_t * restrict ql = y[i].qs;
        memset(qh, 0, QK_K/8);

        for (int j = 0; j < 32; ++j) {
            int jm = j%8;
            int is = j/8;
            int l1 = L[j];
            if (l1 > 15) {
                l1 -= 16; qh[jm] |= (1 << is);
            }
            int l2 = L[j + 32];
            if (l2 > 15) {
                l2 -= 16; qh[jm] |= (1 << (4 + is));
            }
            ql[j] = l1 | (l2 << 4);
        }
#endif

        x += QK_K;

    }
}

void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k) {
    assert(k % QK_K == 0);
    const int nb = k / QK_K;

    for (int i = 0; i < nb; i++) {

        const uint8_t * ql = x[i].qs;
        const uint8_t * qh = x[i].qh;

#if QK_K == 256

        const float d = GGML_FP16_TO_FP32(x[i].d);
        const float min = GGML_FP16_TO_FP32(x[i].dmin);

        int is = 0;
        uint8_t sc, m;
        uint8_t u1 = 1, u2 = 2;
        for (int j = 0; j < QK_K; j += 64) {
            get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
            const float d1 = d * sc; const float m1 = min * m;
            get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
            const float d2 = d * sc; const float m2 = min * m;
            for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
            for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l]  >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
            ql += 32; is += 2;
            u1 <<= 2; u2 <<= 2;
        }
#else
        float d = GGML_FP16_TO_FP32(x[i].d);
        const int8_t * restrict s = x[i].scales;
        for (int l = 0; l < 8; ++l) {
            y[l+ 0] = d * s[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16));
            y[l+ 8] = d * s[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16));
            y[l+16] = d * s[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16));
            y[l+24] = d * s[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16));
            y[l+32] = d * s[2] * ((ql[l+ 0] >>  4) - (qh[l] & 0x10 ? 0 : 16));
            y[l+40] = d * s[2] * ((ql[l+ 8] >>  4) - (qh[l] & 0x20 ? 0 : 16));
            y[l+48] = d * s[3] * ((ql[l+16] >>  4) - (qh[l] & 0x40 ? 0 : 16));
            y[l+56] = d * s[3] * ((ql[l+24] >>  4) - (qh[l] & 0x80 ? 0 : 16));
        }
        y += QK_K;
#endif
    }
}

void quantize_row_q5_K(const float * restrict x, void * restrict vy, int k) {
    assert(k % QK_K == 0);
    block_q5_K * restrict y = vy;
    quantize_row_q5_K_reference(x, y, k);
}

size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
    assert(k % QK_K == 0);
    (void)hist; // TODO: collect histograms

    for (int j = 0; j < n; j += k) {
        block_q5_K * restrict y = (block_q5_K *)dst + j/QK_K;
        quantize_row_q5_K_reference(src + j, y, k);
    }
    return (n/QK_K*sizeof(block_q5_K));
}

static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restrict y, int n_per_row, const float * quant_weights) {
#if QK_K != 256
    (void)quant_weights;
    quantize_row_q5_K_reference(x, y, n_per_row);
#else
    assert(n_per_row % QK_K == 0);
    const int nb = n_per_row / QK_K;

    uint8_t L[QK_K];
    uint8_t Laux[32];
    uint8_t Ls[QK_K/32];
    uint8_t Lm[QK_K/32];
    float   mins[QK_K/32];
    float   scales[QK_K/32];
    float   sw[QK_K/32];
    float   weights[32];

    for (int i = 0; i < nb; i++) {

        float sum_x2 = 0;
        for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
        float sigma2 = 2*sum_x2/QK_K;
        float av_x = sqrtf(sigma2);

        for (int j = 0; j < QK_K/32; ++j) {
            if (quant_weights) {
                const float * qw = quant_weights + QK_K*i + 32*j;
                for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
            } else {
                for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
            }
            float sumw = 0;
            for (int l = 0; l < 32; ++l) sumw += weights[l];
            sw[j] = sumw;

            scales[j] = make_qkx3_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
        }

        float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
        float m_block = make_qp_quants(QK_K/32, 63, mins,   Lm, sw);

        for (int j = 0; j < QK_K/32; ++j) {
            uint8_t ls = Ls[j];
            uint8_t lm = Lm[j];
            ls = MIN(63, ls);
            lm = MIN(63, lm);
            if (j < 4) {
                y[i].scales[j] = ls;
                y[i].scales[j+4] = lm;
            } else {
                y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
                y[i].scales[j-4] |= ((ls >> 4) << 6);
                y[i].scales[j-0] |= ((lm >> 4) << 6);
            }
        }
        y[i].d = GGML_FP32_TO_FP16(d_block);
        y[i].dmin = GGML_FP32_TO_FP16(m_block);

        uint8_t sc, m;
        for (int j = 0; j < QK_K/32; ++j) {
            get_scale_min_k4(j, y[i].scales, &sc, &m);
            const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
            if (!d) continue;
            const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
            for (int ii = 0; ii < 32; ++ii) {
                int l = nearest_int((x[32*j + ii] + dm)/d);
                l = MAX(0, MIN(31, l));
                L[32*j + ii] = l;
            }
        }

        uint8_t * restrict qh = y[i].qh;
        uint8_t * restrict ql = y[i].qs;
        memset(qh, 0, QK_K/8);

        uint8_t m1 = 1, m2 = 2;
        for (int n = 0; n < QK_K; n += 64) {
            for (int j = 0; j < 32; ++j) {
                int l1 = L[n + j];
                if (l1 > 15) {
                    l1 -= 16; qh[j] |= m1;
                }
                int l2 = L[n + j + 32];
                if (l2 > 15) {
                    l2 -= 16; qh[j] |= m2;
                }
                ql[j] = l1 | (l2 << 4);
            }
            m1 <<= 2; m2 <<= 2;
            ql += 32;
        }

        x += QK_K;

    }
#endif
}

size_t quantize_q5_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
    (void)hist;
    size_t row_size = ggml_row_size(GGML_TYPE_Q5_K, n_per_row);
    if (!quant_weights) {
        quantize_row_q5_K_reference(src, dst, nrow*n_per_row);
    }
    else {
        char * qrow = (char *)dst;
        for (int row = 0; row < nrow; ++row) {
            quantize_row_q5_K_impl(src, (block_q5_K*)qrow, n_per_row, quant_weights);
            src += n_per_row;
            qrow += row_size;
        }
    }
    return nrow * row_size;
}

// ====================== 6-bit (de)-quantization

void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k) {
    assert(k % QK_K == 0);
    const int nb = k / QK_K;

    int8_t L[QK_K];
    float   scales[QK_K/16];

    for (int i = 0; i < nb; i++) {

        float max_scale = 0;
        float max_abs_scale = 0;

        for (int ib = 0; ib < QK_K/16; ++ib) {

            const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
            scales[ib] = scale;

            const float abs_scale = fabsf(scale);
            if (abs_scale > max_abs_scale) {
                max_abs_scale = abs_scale;
                max_scale = scale;
            }

        }

        if (!max_abs_scale) {
            memset(&y[i], 0, sizeof(block_q6_K));
            y[i].d = GGML_FP32_TO_FP16(0.f);
            x += QK_K;
            continue;
        }

        float iscale = -128.f/max_scale;
        y[i].d = GGML_FP32_TO_FP16(1/iscale);
        for (int ib = 0; ib < QK_K/16; ++ib) {
            y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
        }

        for (int j = 0; j < QK_K/16; ++j) {
            float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
            if (!d) {
                continue;
            }
            for (int ii = 0; ii < 16; ++ii) {
                int l = nearest_int(x[16*j + ii]/d);
                l = MAX(-32, MIN(31, l));
                L[16*j + ii] = l + 32;
            }
        }

        uint8_t * restrict ql = y[i].ql;
        uint8_t * restrict qh = y[i].qh;
#if QK_K == 256
        for (int j = 0; j < QK_K; j += 128) {
            for (int l = 0; l < 32; ++l) {
                const uint8_t q1 = L[j + l +  0] & 0xF;
                const uint8_t q2 = L[j + l + 32] & 0xF;
                const uint8_t q3 = L[j + l + 64] & 0xF;
                const uint8_t q4 = L[j + l + 96] & 0xF;
                ql[l+ 0] = q1 | (q3 << 4);
                ql[l+32] = q2 | (q4 << 4);
                qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
            }
            ql += 64;
            qh += 32;
        }
#else
        for (int l = 0; l < 32; ++l) {
            const uint8_t q1 = L[l +  0] & 0xF;
            const uint8_t q2 = L[l + 32] & 0xF;
            ql[l] = q1 | (q2 << 4);
        }
        for (int l = 0; l < 16; ++l) {
            qh[l] = (L[l] >> 4) | ((L[l + 16] >> 4) << 2) | ((L[l + 32] >> 4) << 4) | ((L[l + 48] >> 4) << 6);
        }
#endif

        x += QK_K;

    }
}

void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k) {
    assert(k % QK_K == 0);
    const int nb = k / QK_K;

    for (int i = 0; i < nb; i++) {

        const float d = GGML_FP16_TO_FP32(x[i].d);

        const uint8_t * restrict ql = x[i].ql;
        const uint8_t * restrict qh = x[i].qh;
        const int8_t  * restrict sc = x[i].scales;

#if QK_K == 256
        for (int n = 0; n < QK_K; n += 128) {
            for (int l = 0; l < 32; ++l) {
                int is = l/16;
                const int8_t q1 = (int8_t)((ql[l +  0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
                const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
                const int8_t q3 = (int8_t)((ql[l +  0]  >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
                const int8_t q4 = (int8_t)((ql[l + 32]  >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
                y[l +  0] = d * sc[is + 0] * q1;
                y[l + 32] = d * sc[is + 2] * q2;
                y[l + 64] = d * sc[is + 4] * q3;
                y[l + 96] = d * sc[is + 6] * q4;
            }
            y  += 128;
            ql += 64;
            qh += 32;
            sc += 8;
        }
#else
        for (int l = 0; l < 16; ++l) {
            const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
            const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
            const int8_t q3 = (int8_t)((ql[l+ 0]  >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
            const int8_t q4 = (int8_t)((ql[l+16]  >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
            y[l+ 0] = d * sc[0] * q1;
            y[l+16] = d * sc[1] * q2;
            y[l+32] = d * sc[2] * q3;
            y[l+48] = d * sc[3] * q4;
        }
        y  += 64;
#endif

    }
}

void quantize_row_q6_K(const float * restrict x, void * restrict vy, int k) {
    assert(k % QK_K == 0);
    block_q6_K * restrict y = vy;
    quantize_row_q6_K_reference(x, y, k);
}

size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist) {
    assert(k % QK_K == 0);
    (void)hist; // TODO: collect histograms

    for (int j = 0; j < n; j += k) {
        block_q6_K * restrict y = (block_q6_K *)dst + j/QK_K;
        quantize_row_q6_K_reference(src + j, y, k);
    }
    return (n/QK_K*sizeof(block_q6_K));
}

static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restrict y, int n_per_row, const float * quant_weights) {
#if QK_K != 256
    (void)quant_weights;
    quantize_row_q6_K_reference(x, y, n_per_row);
#else
    assert(n_per_row % QK_K == 0);
    const int nb = n_per_row / QK_K;

    int8_t L[QK_K];
    float   scales[QK_K/16];
    //float   weights[16];

    for (int i = 0; i < nb; i++) {

        //float sum_x2 = 0;
        //for (int j = 0; j < QK_K; ++j) sum_x2 += x[j]*x[j];
        //float sigma2 = sum_x2/QK_K;

        float max_scale = 0;
        float max_abs_scale = 0;

        for (int ib = 0; ib < QK_K/16; ++ib) {

            float scale;
            if (quant_weights) {
                const float * qw = quant_weights + QK_K*i + 16*ib;
                //for (int j = 0; j < 16; ++j) weights[j] = qw[j] * sqrtf(sigma2 + x[16*ib + j]*x[16*ib + j]);
                //scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, weights);
                scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, qw);
            } else {
                scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
            }
            scales[ib] = scale;

            const float abs_scale = fabsf(scale);
            if (abs_scale > max_abs_scale) {
                max_abs_scale = abs_scale;
                max_scale = scale;
            }

        }

        if (!max_abs_scale) {
            memset(&y[i], 0, sizeof(block_q6_K));
            y[i].d = GGML_FP32_TO_FP16(0.f);
            x += QK_K;
            continue;
        }

        float iscale = -128.f/max_scale;
        y[i].d = GGML_FP32_TO_FP16(1/iscale);
        for (int ib = 0; ib < QK_K/16; ++ib) {
            y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
        }

        for (int j = 0; j < QK_K/16; ++j) {
            float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
            if (!d) {
                continue;
            }
            for (int ii = 0; ii < 16; ++ii) {
                int l = nearest_int(x[16*j + ii]/d);
                l = MAX(-32, MIN(31, l));
                L[16*j + ii] = l + 32;
            }
        }

        uint8_t * restrict ql = y[i].ql;
        uint8_t * restrict qh = y[i].qh;
        for (int j = 0; j < QK_K; j += 128) {
            for (int l = 0; l < 32; ++l) {
                const uint8_t q1 = L[j + l +  0] & 0xF;
                const uint8_t q2 = L[j + l + 32] & 0xF;
                const uint8_t q3 = L[j + l + 64] & 0xF;
                const uint8_t q4 = L[j + l + 96] & 0xF;
                ql[l+ 0] = q1 | (q3 << 4);
                ql[l+32] = q2 | (q4 << 4);
                qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
            }
            ql += 64;
            qh += 32;
        }

        x += QK_K;

    }
#endif
}

size_t quantize_q6_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
    (void)hist;
    size_t row_size = ggml_row_size(GGML_TYPE_Q6_K, n_per_row);
    if (!quant_weights) {
        quantize_row_q6_K_reference(src, dst, nrow*n_per_row);
    }
    else {
        char * qrow = (char *)dst;
        for (int row = 0; row < nrow; ++row) {
            quantize_row_q6_K_impl(src, (block_q6_K*)qrow, n_per_row, quant_weights);
            src += n_per_row;
            qrow += row_size;
        }
    }
    return nrow * row_size;
}

static void quantize_row_q4_0_impl(const float * restrict x, block_q4_0 * restrict y, int n_per_row, const float * quant_weights) {
    static_assert(QK4_0 == 32, "QK4_0 must be 32");

    if (!quant_weights) {
        quantize_row_q4_0_reference(x, y, n_per_row);
        return;
    }

    float weight[QK4_0];
    int8_t L[QK4_0];

    float sum_x2 = 0;
    for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
    float sigma2 = sum_x2/n_per_row;

    const int nb = n_per_row/QK4_0;
    for (int ib = 0; ib < nb; ++ib) {
        const float * xb = x + QK4_0 * ib;
        const float * qw = quant_weights + QK4_0 * ib;
        for (int j = 0; j < QK4_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
        float d = make_qx_quants(QK4_0, 8, xb, L, 1, weight);
        y[ib].d = GGML_FP32_TO_FP16(d);
        for (int j = 0; j < 16; ++j) {
            y[ib].qs[j] = L[j] | (L[j+16] << 4);
        }
    }
}

size_t quantize_q4_0(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
    if (!quant_weights) {
        return ggml_quantize_q4_0(src, dst, nrow*n_per_row, n_per_row, hist);
    }
    size_t row_size = ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
    char * qrow = (char *)dst;
    for (int row = 0; row < nrow; ++row) {
        quantize_row_q4_0_impl(src, (block_q4_0*)qrow, n_per_row, quant_weights);
        src += n_per_row;
        qrow += row_size;
    }
    return nrow * row_size;
}

static void quantize_row_q4_1_impl(const float * restrict x, block_q4_1 * restrict y, int n_per_row, const float * quant_weights) {
    static_assert(QK4_1 == 32, "QK4_1 must be 32");

    if (!quant_weights) {
        quantize_row_q4_1_reference(x, y, n_per_row);
        return;
    }

    float weight[QK4_1];
    uint8_t L[QK4_1], Laux[QK4_1];

    float sum_x2 = 0;
    for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
    float sigma2 = sum_x2/n_per_row;

    const int nb = n_per_row/QK4_1;
    for (int ib = 0; ib < nb; ++ib) {
        const float * xb = x + QK4_1 * ib;
        const float * qw = quant_weights + QK4_1 * ib;
        for (int j = 0; j < QK4_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
        float min;
        float d = make_qkx3_quants(QK4_1, 15, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
        y[ib].d = GGML_FP32_TO_FP16(d);
        y[ib].m = GGML_FP32_TO_FP16(-min);
        for (int j = 0; j < 16; ++j) {
            y[ib].qs[j] = L[j] | (L[j+16] << 4);
        }
    }
}

size_t quantize_q4_1(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
    if (!quant_weights) {
        return ggml_quantize_q4_1(src, dst, nrow*n_per_row, n_per_row, hist);
    }
    size_t row_size = ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
    char * qrow = (char *)dst;
    for (int row = 0; row < nrow; ++row) {
        quantize_row_q4_1_impl(src, (block_q4_1*)qrow, n_per_row, quant_weights);
        src += n_per_row;
        qrow += row_size;
    }
    return nrow * row_size;
}

static void quantize_row_q5_0_impl(const float * restrict x, block_q5_0 * restrict y, int n_per_row, const float * quant_weights) {
    static_assert(QK5_0 == 32, "QK5_0 must be 32");

    if (!quant_weights) {
        quantize_row_q5_0_reference(x, y, n_per_row);
        return;
    }

    float weight[QK5_0];
    int8_t L[QK5_0];

    float sum_x2 = 0;
    for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
    float sigma2 = sum_x2/n_per_row;

    const int nb = n_per_row/QK5_0;
    for (int ib = 0; ib < nb; ++ib) {
        const float * xb = x + QK5_0 * ib;
        const float * qw = quant_weights + QK5_0 * ib;
        for (int j = 0; j < QK5_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
        float d = make_qx_quants(QK5_0, 16, xb, L, 1, weight);
        y[ib].d = GGML_FP32_TO_FP16(d);

        uint32_t qh = 0;

        for (int j = 0; j < 16; ++j) {
            const uint8_t xi0 = L[j];
            const uint8_t xi1 = L[j+16];
            y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);

            // get the 5-th bit and store it in qh at the right position
            qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
            qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
        }

        memcpy(&y[ib].qh, &qh, sizeof(qh));
    }
}

size_t quantize_q5_0(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
    if (!quant_weights) {
        return ggml_quantize_q5_0(src, dst, nrow*n_per_row, n_per_row, hist);
    }
    size_t row_size = ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
    char * qrow = (char *)dst;
    for (int row = 0; row < nrow; ++row) {
        quantize_row_q5_0_impl(src, (block_q5_0*)qrow, n_per_row, quant_weights);
        src += n_per_row;
        qrow += row_size;
    }
    return nrow * row_size;
}

static void quantize_row_q5_1_impl(const float * restrict x, block_q5_1 * restrict y, int n_per_row, const float * quant_weights) {
    static_assert(QK5_1 == 32, "QK5_1 must be 32");

    if (!quant_weights) {
        quantize_row_q5_1_reference(x, y, n_per_row);
        return;
    }

    float weight[QK5_1];
    uint8_t L[QK5_1], Laux[QK5_1];

    float sum_x2 = 0;
    for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
    float sigma2 = sum_x2/n_per_row;

    const int nb = n_per_row/QK5_1;
    for (int ib = 0; ib < nb; ++ib) {
        const float * xb = x + QK5_1 * ib;
        const float * qw = quant_weights + QK5_1 * ib;
        for (int j = 0; j < QK5_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
        float min;
        float d = make_qkx3_quants(QK5_1, 31, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
        y[ib].d = GGML_FP32_TO_FP16(d);
        y[ib].m = GGML_FP32_TO_FP16(-min);

        uint32_t qh = 0;
        for (int j = 0; j < 16; ++j) {
            const uint8_t xi0 = L[j];
            const uint8_t xi1 = L[j+16];
            y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
            // get the 5-th bit and store it in qh at the right position
            qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
            qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
        }
        memcpy(&y[ib].qh, &qh, sizeof(qh));
    }
}

size_t quantize_q5_1(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
    if (!quant_weights) {
        return ggml_quantize_q5_1(src, dst, nrow*n_per_row, n_per_row, hist);
    }
    size_t row_size = ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
    char * qrow = (char *)dst;
    for (int row = 0; row < nrow; ++row) {
        quantize_row_q5_1_impl(src, (block_q5_1*)qrow, n_per_row, quant_weights);
        src += n_per_row;
        qrow += row_size;
    }
    return nrow * row_size;
}

// ====================== "True" 2-bit (de)-quantization

static const  uint64_t iq2xxs_grid[256] = {
    0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08,
    0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x08080808082b0808,
    0x08080808082b082b, 0x08080808082b2b08, 0x08080808082b2b2b, 0x0808080819080819,
    0x0808080819081908, 0x0808080819190808, 0x0808080819192b08, 0x08080808192b0819,
    0x08080808192b1908, 0x080808082b080808, 0x080808082b08082b, 0x080808082b082b2b,
    0x080808082b2b082b, 0x0808081908080819, 0x0808081908081908, 0x0808081908190808,
    0x0808081908191919, 0x0808081919080808, 0x080808192b081908, 0x080808192b192b08,
    0x0808082b08080808, 0x0808082b0808082b, 0x0808082b082b082b, 0x0808082b2b08082b,
    0x0808190808080819, 0x0808190808081908, 0x0808190808190808, 0x08081908082b0819,
    0x08081908082b1908, 0x0808190819080808, 0x080819081908082b, 0x0808190819082b08,
    0x08081908192b0808, 0x080819082b080819, 0x080819082b081908, 0x080819082b190808,
    0x080819082b2b1908, 0x0808191908080808, 0x080819190808082b, 0x0808191908082b08,
    0x08081919082b0808, 0x080819191908192b, 0x08081919192b2b19, 0x080819192b080808,
    0x080819192b190819, 0x0808192b08082b19, 0x0808192b08190808, 0x0808192b19080808,
    0x0808192b2b081908, 0x0808192b2b2b1908, 0x08082b0808080808, 0x08082b0808081919,
    0x08082b0808082b08, 0x08082b0808191908, 0x08082b08082b2b08, 0x08082b0819080819,
    0x08082b0819081908, 0x08082b0819190808, 0x08082b081919082b, 0x08082b082b082b08,
    0x08082b1908081908, 0x08082b1919080808, 0x08082b2b0808082b, 0x08082b2b08191908,
    0x0819080808080819, 0x0819080808081908, 0x0819080808190808, 0x08190808082b0819,
    0x0819080819080808, 0x08190808192b0808, 0x081908082b081908, 0x081908082b190808,
    0x081908082b191919, 0x0819081908080808, 0x0819081908082b08, 0x08190819082b0808,
    0x0819081919190808, 0x0819081919192b2b, 0x081908192b080808, 0x0819082b082b1908,
    0x0819082b19081919, 0x0819190808080808, 0x0819190808082b08, 0x08191908082b0808,
    0x08191908082b1919, 0x0819190819082b19, 0x081919082b080808, 0x0819191908192b08,
    0x08191919192b082b, 0x0819192b08080808, 0x0819192b0819192b, 0x08192b0808080819,
    0x08192b0808081908, 0x08192b0808190808, 0x08192b0819080808, 0x08192b082b080819,
    0x08192b1908080808, 0x08192b1908081919, 0x08192b192b2b0808, 0x08192b2b19190819,
    0x082b080808080808, 0x082b08080808082b, 0x082b080808082b2b, 0x082b080819081908,
    0x082b0808192b0819, 0x082b08082b080808, 0x082b08082b08082b, 0x082b0819082b2b19,
    0x082b081919082b08, 0x082b082b08080808, 0x082b082b0808082b, 0x082b190808080819,
    0x082b190808081908, 0x082b190808190808, 0x082b190819080808, 0x082b19081919192b,
    0x082b191908080808, 0x082b191919080819, 0x082b1919192b1908, 0x082b192b2b190808,
    0x082b2b0808082b08, 0x082b2b08082b0808, 0x082b2b082b191908, 0x082b2b2b19081908,
    0x1908080808080819, 0x1908080808081908, 0x1908080808190808, 0x1908080808192b08,
    0x19080808082b0819, 0x19080808082b1908, 0x1908080819080808, 0x1908080819082b08,
    0x190808081919192b, 0x19080808192b0808, 0x190808082b080819, 0x190808082b081908,
    0x190808082b190808, 0x1908081908080808, 0x19080819082b0808, 0x19080819192b0819,
    0x190808192b080808, 0x190808192b081919, 0x1908082b08080819, 0x1908082b08190808,
    0x1908082b19082b08, 0x1908082b1919192b, 0x1908082b192b2b08, 0x1908190808080808,
    0x1908190808082b08, 0x19081908082b0808, 0x190819082b080808, 0x190819082b192b19,
    0x190819190819082b, 0x19081919082b1908, 0x1908192b08080808, 0x19082b0808080819,
    0x19082b0808081908, 0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919,
    0x19082b1908080808, 0x19082b1919192b08, 0x19082b19192b0819, 0x19082b192b08082b,
    0x19082b2b19081919, 0x19082b2b2b190808, 0x1919080808080808, 0x1919080808082b08,
    0x1919080808190819, 0x1919080808192b19, 0x19190808082b0808, 0x191908082b080808,
    0x191908082b082b08, 0x1919081908081908, 0x191908191908082b, 0x191908192b2b1908,
    0x1919082b2b190819, 0x191919082b190808, 0x191919082b19082b, 0x1919191908082b2b,
    0x1919192b08080819, 0x1919192b19191908, 0x19192b0808080808, 0x19192b0808190819,
    0x19192b0808192b19, 0x19192b08192b1908, 0x19192b1919080808, 0x19192b2b08082b08,
    0x192b080808081908, 0x192b080808190808, 0x192b080819080808, 0x192b0808192b2b08,
    0x192b081908080808, 0x192b081919191919, 0x192b082b08192b08, 0x192b082b192b0808,
    0x192b190808080808, 0x192b190808081919, 0x192b191908190808, 0x192b19190819082b,
    0x192b19192b081908, 0x192b2b081908082b, 0x2b08080808080808, 0x2b0808080808082b,
    0x2b08080808082b2b, 0x2b08080819080819, 0x2b0808082b08082b, 0x2b08081908081908,
    0x2b08081908192b08, 0x2b08081919080808, 0x2b08082b08190819, 0x2b08190808080819,
    0x2b08190808081908, 0x2b08190808190808, 0x2b08190808191919, 0x2b08190819080808,
    0x2b081908192b0808, 0x2b08191908080808, 0x2b0819191908192b, 0x2b0819192b191908,
    0x2b08192b08082b19, 0x2b08192b19080808, 0x2b08192b192b0808, 0x2b082b080808082b,
    0x2b082b1908081908, 0x2b082b2b08190819, 0x2b19080808081908, 0x2b19080808190808,
    0x2b190808082b1908, 0x2b19080819080808, 0x2b1908082b2b0819, 0x2b1908190819192b,
    0x2b1908192b080808, 0x2b19082b19081919, 0x2b19190808080808, 0x2b191908082b082b,
    0x2b19190819081908, 0x2b19191919190819, 0x2b192b082b080819, 0x2b192b19082b0808,
    0x2b2b08080808082b, 0x2b2b080819190808, 0x2b2b08082b081919, 0x2b2b081908082b19,
    0x2b2b082b08080808, 0x2b2b190808192b08, 0x2b2b2b0819190808, 0x2b2b2b1908081908,
};

static const uint64_t iq2xs_grid[512] = {
    0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08,
    0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x080808080819192b,
    0x0808080808192b19, 0x08080808082b0808, 0x08080808082b082b, 0x08080808082b1919,
    0x08080808082b2b08, 0x0808080819080819, 0x0808080819081908, 0x080808081908192b,
    0x0808080819082b19, 0x0808080819190808, 0x080808081919082b, 0x0808080819191919,
    0x0808080819192b08, 0x08080808192b0819, 0x08080808192b1908, 0x080808082b080808,
    0x080808082b08082b, 0x080808082b081919, 0x080808082b082b08, 0x080808082b190819,
    0x080808082b191908, 0x080808082b192b19, 0x080808082b2b0808, 0x0808081908080819,
    0x0808081908081908, 0x080808190808192b, 0x0808081908082b19, 0x0808081908190808,
    0x080808190819082b, 0x0808081908191919, 0x0808081908192b08, 0x0808081908192b2b,
    0x08080819082b0819, 0x08080819082b1908, 0x0808081919080808, 0x080808191908082b,
    0x0808081919081919, 0x0808081919082b08, 0x0808081919190819, 0x0808081919191908,
    0x08080819192b0808, 0x08080819192b2b08, 0x080808192b080819, 0x080808192b081908,
    0x080808192b190808, 0x0808082b08080808, 0x0808082b0808082b, 0x0808082b08081919,
    0x0808082b08082b08, 0x0808082b08190819, 0x0808082b08191908, 0x0808082b082b0808,
    0x0808082b19080819, 0x0808082b19081908, 0x0808082b19190808, 0x0808082b19191919,
    0x0808082b2b080808, 0x0808082b2b082b2b, 0x0808190808080819, 0x0808190808081908,
    0x080819080808192b, 0x0808190808082b19, 0x0808190808190808, 0x080819080819082b,
    0x0808190808191919, 0x0808190808192b08, 0x08081908082b0819, 0x08081908082b1908,
    0x0808190819080808, 0x080819081908082b, 0x0808190819081919, 0x0808190819082b08,
    0x0808190819190819, 0x0808190819191908, 0x080819081919192b, 0x08081908192b0808,
    0x080819082b080819, 0x080819082b081908, 0x080819082b190808, 0x0808191908080808,
    0x080819190808082b, 0x0808191908081919, 0x0808191908082b08, 0x0808191908190819,
    0x0808191908191908, 0x08081919082b0808, 0x0808191919080819, 0x0808191919081908,
    0x0808191919190808, 0x08081919192b0819, 0x080819192b080808, 0x0808192b08080819,
    0x0808192b08081908, 0x0808192b08190808, 0x0808192b082b192b, 0x0808192b19080808,
    0x0808192b1908082b, 0x0808192b2b081908, 0x08082b0808080808, 0x08082b080808082b,
    0x08082b0808081919, 0x08082b0808082b08, 0x08082b0808082b2b, 0x08082b0808190819,
    0x08082b0808191908, 0x08082b08082b0808, 0x08082b08082b1919, 0x08082b0819080819,
    0x08082b0819081908, 0x08082b0819190808, 0x08082b0819192b08, 0x08082b082b080808,
    0x08082b082b2b0808, 0x08082b082b2b2b2b, 0x08082b1908080819, 0x08082b1908081908,
    0x08082b1908190808, 0x08082b1919080808, 0x08082b192b080819, 0x08082b192b082b19,
    0x08082b2b08080808, 0x08082b2b082b0808, 0x08082b2b082b2b08, 0x08082b2b2b19192b,
    0x08082b2b2b2b0808, 0x0819080808080819, 0x0819080808081908, 0x081908080808192b,
    0x0819080808082b19, 0x0819080808190808, 0x081908080819082b, 0x0819080808191919,
    0x0819080808192b08, 0x08190808082b0819, 0x08190808082b1908, 0x0819080819080808,
    0x081908081908082b, 0x0819080819081919, 0x0819080819082b08, 0x0819080819190819,
    0x0819080819191908, 0x08190808192b0808, 0x08190808192b2b2b, 0x081908082b080819,
    0x081908082b081908, 0x081908082b190808, 0x0819081908080808, 0x081908190808082b,
    0x0819081908081919, 0x0819081908082b08, 0x0819081908190819, 0x0819081908191908,
    0x08190819082b0808, 0x0819081919080819, 0x0819081919081908, 0x0819081919190808,
    0x081908192b080808, 0x081908192b191908, 0x081908192b19192b, 0x0819082b08080819,
    0x0819082b08081908, 0x0819082b0808192b, 0x0819082b08190808, 0x0819082b19080808,
    0x0819082b192b0808, 0x0819190808080808, 0x081919080808082b, 0x0819190808081919,
    0x0819190808082b08, 0x0819190808190819, 0x0819190808191908, 0x08191908082b0808,
    0x0819190819080819, 0x0819190819081908, 0x0819190819082b19, 0x0819190819190808,
    0x08191908192b1908, 0x081919082b080808, 0x0819191908080819, 0x0819191908081908,
    0x0819191908190808, 0x0819191919080808, 0x0819192b08080808, 0x0819192b08191908,
    0x0819192b19082b19, 0x08192b0808080819, 0x08192b0808081908, 0x08192b0808190808,
    0x08192b080819082b, 0x08192b0819080808, 0x08192b0819191908, 0x08192b082b08192b,
    0x08192b1908080808, 0x08192b1908081919, 0x08192b19192b192b, 0x08192b2b19190819,
    0x08192b2b2b2b2b19, 0x082b080808080808, 0x082b08080808082b, 0x082b080808081919,
    0x082b080808082b08, 0x082b080808082b2b, 0x082b080808190819, 0x082b080808191908,
    0x082b0808082b0808, 0x082b080819080819, 0x082b080819081908, 0x082b080819190808,
    0x082b08082b080808, 0x082b08082b2b0808, 0x082b081908080819, 0x082b081908081908,
    0x082b081908190808, 0x082b081919080808, 0x082b081919082b08, 0x082b0819192b1919,
    0x082b082b08080808, 0x082b082b082b082b, 0x082b082b2b080808, 0x082b082b2b2b2b08,
    0x082b190808080819, 0x082b190808081908, 0x082b190808190808, 0x082b1908082b2b19,
    0x082b190819080808, 0x082b191908080808, 0x082b191919080819, 0x082b19191919082b,
    0x082b19192b192b19, 0x082b192b08080819, 0x082b192b08192b2b, 0x082b192b2b2b192b,
    0x082b2b0808080808, 0x082b2b0808082b08, 0x082b2b0808082b2b, 0x082b2b08082b0808,
    0x082b2b0819191919, 0x082b2b082b082b08, 0x082b2b082b2b082b, 0x082b2b19192b2b08,
    0x082b2b192b190808, 0x082b2b2b08082b08, 0x082b2b2b082b0808, 0x082b2b2b2b08082b,
    0x082b2b2b2b082b08, 0x082b2b2b2b082b2b, 0x1908080808080819, 0x1908080808081908,
    0x190808080808192b, 0x1908080808082b19, 0x1908080808190808, 0x190808080819082b,
    0x1908080808191919, 0x1908080808192b08, 0x19080808082b0819, 0x19080808082b1908,
    0x1908080819080808, 0x190808081908082b, 0x1908080819081919, 0x1908080819082b08,
    0x1908080819082b2b, 0x1908080819190819, 0x1908080819191908, 0x19080808192b0808,
    0x19080808192b1919, 0x190808082b080819, 0x190808082b081908, 0x190808082b190808,
    0x1908081908080808, 0x190808190808082b, 0x1908081908081919, 0x1908081908082b08,
    0x1908081908190819, 0x1908081908191908, 0x19080819082b0808, 0x1908081919080819,
    0x1908081919081908, 0x1908081919190808, 0x190808192b080808, 0x190808192b081919,
    0x190808192b2b082b, 0x1908082b08080819, 0x1908082b08081908, 0x1908082b08190808,
    0x1908082b0819082b, 0x1908082b082b2b19, 0x1908082b19080808, 0x1908190808080808,
    0x190819080808082b, 0x1908190808081919, 0x1908190808082b08, 0x1908190808190819,
    0x1908190808191908, 0x1908190808192b19, 0x19081908082b0808, 0x1908190819080819,
    0x1908190819081908, 0x1908190819190808, 0x190819082b080808, 0x190819082b191908,
    0x1908191908080819, 0x1908191908081908, 0x1908191908190808, 0x19081919082b1908,
    0x1908191919080808, 0x190819192b192b2b, 0x1908192b08080808, 0x1908192b08082b2b,
    0x1908192b19081908, 0x1908192b19190808, 0x19082b0808080819, 0x19082b0808081908,
    0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919, 0x19082b0819191908,
    0x19082b08192b082b, 0x19082b1908080808, 0x19082b1908190819, 0x19082b1919081908,
    0x19082b1919190808, 0x19082b19192b2b19, 0x19082b2b08081908, 0x1919080808080808,
    0x191908080808082b, 0x1919080808081919, 0x1919080808082b08, 0x1919080808190819,
    0x1919080808191908, 0x19190808082b0808, 0x19190808082b2b08, 0x1919080819080819,
    0x1919080819081908, 0x1919080819190808, 0x191908082b080808, 0x1919081908080819,
    0x1919081908081908, 0x1919081908190808, 0x1919081908191919, 0x1919081919080808,
    0x191908191908082b, 0x1919082b08080808, 0x1919082b19081908, 0x1919082b2b2b2b2b,
    0x1919190808080819, 0x1919190808081908, 0x1919190808190808, 0x19191908082b0819,
    0x1919190819080808, 0x19191908192b0808, 0x191919082b080819, 0x191919082b2b0819,
    0x1919191908080808, 0x1919191908082b08, 0x191919192b080808, 0x191919192b082b08,
    0x1919192b082b0819, 0x1919192b192b2b08, 0x1919192b2b2b0819, 0x19192b0808080808,
    0x19192b0808191908, 0x19192b0819080819, 0x19192b0819190808, 0x19192b082b192b19,
    0x19192b1908192b2b, 0x19192b1919080808, 0x19192b191908082b, 0x19192b2b2b081919,
    0x192b080808080819, 0x192b080808081908, 0x192b080808190808, 0x192b080819080808,
    0x192b080819191908, 0x192b0808192b082b, 0x192b08082b08192b, 0x192b08082b2b2b19,
    0x192b081908080808, 0x192b082b082b1908, 0x192b082b19082b2b, 0x192b082b2b19082b,
    0x192b190808080808, 0x192b19080819192b, 0x192b191908190808, 0x192b191919080808,
    0x192b191919081919, 0x192b19192b2b1908, 0x192b2b0808080819, 0x192b2b08192b2b2b,
    0x192b2b19082b1919, 0x192b2b2b0808192b, 0x192b2b2b19191908, 0x192b2b2b192b082b,
    0x2b08080808080808, 0x2b0808080808082b, 0x2b08080808081919, 0x2b08080808082b08,
    0x2b08080808190819, 0x2b08080808191908, 0x2b080808082b0808, 0x2b080808082b2b2b,
    0x2b08080819080819, 0x2b08080819081908, 0x2b08080819190808, 0x2b0808082b080808,
    0x2b0808082b08082b, 0x2b0808082b2b2b08, 0x2b0808082b2b2b2b, 0x2b08081908080819,
    0x2b08081908081908, 0x2b0808190808192b, 0x2b08081908190808, 0x2b08081919080808,
    0x2b08081919190819, 0x2b08081919192b19, 0x2b08082b08080808, 0x2b08082b082b0808,
    0x2b08082b2b080808, 0x2b08082b2b08082b, 0x2b08082b2b2b0808, 0x2b08082b2b2b2b08,
    0x2b08190808080819, 0x2b08190808081908, 0x2b08190808190808, 0x2b0819080819082b,
    0x2b08190808191919, 0x2b08190819080808, 0x2b081908192b0808, 0x2b0819082b082b19,
    0x2b08191908080808, 0x2b08191919081908, 0x2b0819192b2b1919, 0x2b08192b08192b08,
    0x2b08192b192b2b2b, 0x2b082b0808080808, 0x2b082b0808082b08, 0x2b082b08082b1919,
    0x2b082b0819192b2b, 0x2b082b082b080808, 0x2b082b082b08082b, 0x2b082b082b2b2b08,
    0x2b082b190808192b, 0x2b082b2b082b082b, 0x2b082b2b2b080808, 0x2b082b2b2b082b08,
    0x2b082b2b2b19192b, 0x2b082b2b2b2b2b08, 0x2b19080808080819, 0x2b19080808081908,
    0x2b19080808190808, 0x2b19080819080808, 0x2b1908081919192b, 0x2b1908082b081908,
    0x2b19081908080808, 0x2b190819082b082b, 0x2b190819192b1908, 0x2b19082b1919192b,
    0x2b19082b2b082b19, 0x2b19190808080808, 0x2b19190808081919, 0x2b19190819081908,
    0x2b19190819190808, 0x2b19190819192b08, 0x2b191919082b2b19, 0x2b1919192b190808,
    0x2b1919192b19082b, 0x2b19192b19080819, 0x2b192b0819190819, 0x2b192b082b2b192b,
    0x2b192b1919082b19, 0x2b192b2b08191919, 0x2b192b2b192b0808, 0x2b2b080808080808,
    0x2b2b08080808082b, 0x2b2b080808082b08, 0x2b2b080808082b2b, 0x2b2b0808082b0808,
    0x2b2b0808082b2b2b, 0x2b2b08082b2b0808, 0x2b2b081919190819, 0x2b2b081919192b19,
    0x2b2b08192b2b192b, 0x2b2b082b08080808, 0x2b2b082b0808082b, 0x2b2b082b08082b08,
    0x2b2b082b082b2b2b, 0x2b2b082b2b080808, 0x2b2b082b2b2b0808, 0x2b2b190819080808,
    0x2b2b19082b191919, 0x2b2b192b192b1919, 0x2b2b192b2b192b08, 0x2b2b2b0808082b2b,
    0x2b2b2b08082b0808, 0x2b2b2b08082b082b, 0x2b2b2b08082b2b08, 0x2b2b2b082b2b0808,
    0x2b2b2b082b2b2b08, 0x2b2b2b1908081908, 0x2b2b2b192b081908, 0x2b2b2b192b08192b,
    0x2b2b2b2b082b2b08, 0x2b2b2b2b082b2b2b, 0x2b2b2b2b2b190819, 0x2b2b2b2b2b2b2b2b,
};

static const uint64_t iq2s_grid[1024] = {
    0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08,
    0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x080808080819192b,
    0x0808080808192b19, 0x08080808082b0808, 0x08080808082b082b, 0x08080808082b1919,
    0x08080808082b2b08, 0x0808080819080819, 0x0808080819081908, 0x080808081908192b,
    0x0808080819082b19, 0x0808080819190808, 0x080808081919082b, 0x0808080819191919,
    0x0808080819192b08, 0x08080808192b0819, 0x08080808192b1908, 0x08080808192b192b,
    0x08080808192b2b19, 0x080808082b080808, 0x080808082b08082b, 0x080808082b081919,
    0x080808082b082b08, 0x080808082b190819, 0x080808082b191908, 0x080808082b2b0808,
    0x080808082b2b1919, 0x080808082b2b2b2b, 0x0808081908080819, 0x0808081908081908,
    0x080808190808192b, 0x0808081908082b19, 0x0808081908190808, 0x080808190819082b,
    0x0808081908191919, 0x0808081908192b08, 0x08080819082b0819, 0x08080819082b1908,
    0x0808081919080808, 0x080808191908082b, 0x0808081919081919, 0x0808081919082b08,
    0x0808081919190819, 0x0808081919191908, 0x080808191919192b, 0x0808081919192b19,
    0x08080819192b0808, 0x08080819192b1919, 0x08080819192b2b08, 0x080808192b080819,
    0x080808192b081908, 0x080808192b190808, 0x080808192b19082b, 0x080808192b191919,
    0x080808192b2b0819, 0x080808192b2b1908, 0x0808082b08080808, 0x0808082b0808082b,
    0x0808082b08081919, 0x0808082b08082b08, 0x0808082b08190819, 0x0808082b08191908,
    0x0808082b082b0808, 0x0808082b082b2b2b, 0x0808082b19080819, 0x0808082b19081908,
    0x0808082b1908192b, 0x0808082b19082b19, 0x0808082b19190808, 0x0808082b19191919,
    0x0808082b2b080808, 0x0808082b2b081919, 0x0808082b2b082b2b, 0x0808082b2b191908,
    0x0808082b2b2b082b, 0x0808190808080819, 0x0808190808081908, 0x080819080808192b,
    0x0808190808082b19, 0x0808190808190808, 0x080819080819082b, 0x0808190808191919,
    0x0808190808192b08, 0x08081908082b0819, 0x08081908082b1908, 0x08081908082b192b,
    0x08081908082b2b19, 0x0808190819080808, 0x080819081908082b, 0x0808190819081919,
    0x0808190819082b08, 0x0808190819082b2b, 0x0808190819190819, 0x0808190819191908,
    0x080819081919192b, 0x0808190819192b19, 0x08081908192b0808, 0x08081908192b082b,
    0x08081908192b1919, 0x080819082b080819, 0x080819082b081908, 0x080819082b08192b,
    0x080819082b082b19, 0x080819082b190808, 0x080819082b191919, 0x080819082b192b08,
    0x080819082b2b0819, 0x080819082b2b1908, 0x0808191908080808, 0x080819190808082b,
    0x0808191908081919, 0x0808191908082b08, 0x0808191908082b2b, 0x0808191908190819,
    0x0808191908191908, 0x080819190819192b, 0x0808191908192b19, 0x08081919082b0808,
    0x08081919082b1919, 0x08081919082b2b08, 0x0808191919080819, 0x0808191919081908,
    0x080819191908192b, 0x0808191919082b19, 0x0808191919190808, 0x080819191919082b,
    0x0808191919191919, 0x0808191919192b08, 0x08081919192b0819, 0x08081919192b1908,
    0x080819192b080808, 0x080819192b08082b, 0x080819192b081919, 0x080819192b082b08,
    0x080819192b190819, 0x080819192b191908, 0x080819192b2b0808, 0x0808192b08080819,
    0x0808192b08081908, 0x0808192b0808192b, 0x0808192b08082b19, 0x0808192b08190808,
    0x0808192b08191919, 0x0808192b19080808, 0x0808192b19081919, 0x0808192b19082b08,
    0x0808192b19190819, 0x0808192b19191908, 0x0808192b192b0808, 0x0808192b2b080819,
    0x0808192b2b081908, 0x0808192b2b190808, 0x08082b0808080808, 0x08082b080808082b,
    0x08082b0808081919, 0x08082b0808082b08, 0x08082b0808190819, 0x08082b0808191908,
    0x08082b080819192b, 0x08082b0808192b19, 0x08082b08082b0808, 0x08082b08082b1919,
    0x08082b08082b2b2b, 0x08082b0819080819, 0x08082b0819081908, 0x08082b081908192b,
    0x08082b0819082b19, 0x08082b0819190808, 0x08082b081919082b, 0x08082b0819191919,
    0x08082b0819192b08, 0x08082b08192b0819, 0x08082b08192b1908, 0x08082b082b080808,
    0x08082b082b081919, 0x08082b082b191908, 0x08082b082b2b2b2b, 0x08082b1908080819,
    0x08082b1908081908, 0x08082b1908190808, 0x08082b190819082b, 0x08082b1908191919,
    0x08082b1908192b08, 0x08082b19082b0819, 0x08082b1919080808, 0x08082b1919081919,
    0x08082b1919082b08, 0x08082b1919190819, 0x08082b1919191908, 0x08082b19192b0808,
    0x08082b192b080819, 0x08082b192b190808, 0x08082b2b08080808, 0x08082b2b08190819,
    0x08082b2b08191908, 0x08082b2b082b082b, 0x08082b2b082b2b08, 0x08082b2b082b2b2b,
    0x08082b2b19190808, 0x08082b2b2b192b19, 0x0819080808080819, 0x0819080808081908,
    0x081908080808192b, 0x0819080808082b19, 0x0819080808190808, 0x081908080819082b,
    0x0819080808191919, 0x0819080808192b08, 0x08190808082b0819, 0x08190808082b1908,
    0x08190808082b192b, 0x0819080819080808, 0x081908081908082b, 0x0819080819081919,
    0x0819080819082b08, 0x0819080819190819, 0x0819080819191908, 0x081908081919192b,
    0x0819080819192b19, 0x08190808192b0808, 0x08190808192b082b, 0x08190808192b1919,
    0x08190808192b2b08, 0x081908082b080819, 0x081908082b081908, 0x081908082b08192b,
    0x081908082b190808, 0x081908082b191919, 0x081908082b192b08, 0x081908082b2b0819,
    0x081908082b2b1908, 0x0819081908080808, 0x081908190808082b, 0x0819081908081919,
    0x0819081908082b08, 0x0819081908082b2b, 0x0819081908190819, 0x0819081908191908,
    0x081908190819192b, 0x0819081908192b19, 0x08190819082b0808, 0x08190819082b082b,
    0x08190819082b1919, 0x08190819082b2b08, 0x0819081919080819, 0x0819081919081908,
    0x081908191908192b, 0x0819081919082b19, 0x0819081919190808, 0x081908191919082b,
    0x0819081919191919, 0x0819081919192b08, 0x08190819192b0819, 0x08190819192b1908,
    0x081908192b080808, 0x081908192b08082b, 0x081908192b081919, 0x081908192b082b08,
    0x081908192b190819, 0x081908192b191908, 0x0819082b08080819, 0x0819082b08081908,
    0x0819082b08082b19, 0x0819082b08190808, 0x0819082b08191919, 0x0819082b082b0819,
    0x0819082b082b1908, 0x0819082b19080808, 0x0819082b19081919, 0x0819082b19190819,
    0x0819082b19191908, 0x0819082b2b080819, 0x0819082b2b081908, 0x0819082b2b190808,
    0x0819190808080808, 0x081919080808082b, 0x0819190808081919, 0x0819190808082b08,
    0x0819190808190819, 0x0819190808191908, 0x081919080819192b, 0x0819190808192b19,
    0x08191908082b0808, 0x08191908082b1919, 0x08191908082b2b08, 0x0819190819080819,
    0x0819190819081908, 0x081919081908192b, 0x0819190819082b19, 0x0819190819190808,
    0x081919081919082b, 0x0819190819191919, 0x0819190819192b08, 0x08191908192b0819,
    0x08191908192b1908, 0x081919082b080808, 0x081919082b08082b, 0x081919082b081919,
    0x081919082b082b08, 0x081919082b190819, 0x081919082b191908, 0x081919082b2b0808,
    0x0819191908080819, 0x0819191908081908, 0x081919190808192b, 0x0819191908082b19,
    0x0819191908190808, 0x081919190819082b, 0x0819191908191919, 0x0819191908192b08,
    0x08191919082b0819, 0x08191919082b1908, 0x0819191919080808, 0x081919191908082b,
    0x0819191919081919, 0x0819191919082b08, 0x0819191919190819, 0x0819191919191908,
    0x08191919192b0808, 0x081919192b080819, 0x081919192b081908, 0x081919192b190808,
    0x0819192b08080808, 0x0819192b08081919, 0x0819192b08082b08, 0x0819192b08190819,
    0x0819192b08191908, 0x0819192b082b0808, 0x0819192b19080819, 0x0819192b19081908,
    0x0819192b19190808, 0x0819192b2b080808, 0x0819192b2b2b2b2b, 0x08192b0808080819,
    0x08192b0808081908, 0x08192b080808192b, 0x08192b0808082b19, 0x08192b0808190808,
    0x08192b0808191919, 0x08192b0808192b08, 0x08192b08082b0819, 0x08192b0819080808,
    0x08192b081908082b, 0x08192b0819081919, 0x08192b0819082b08, 0x08192b0819190819,
    0x08192b0819191908, 0x08192b08192b0808, 0x08192b082b080819, 0x08192b082b081908,
    0x08192b1908080808, 0x08192b190808082b, 0x08192b1908081919, 0x08192b1908082b08,
    0x08192b1908190819, 0x08192b1908191908, 0x08192b19082b0808, 0x08192b1919080819,
    0x08192b1919081908, 0x08192b1919190808, 0x08192b19192b2b19, 0x08192b192b2b082b,
    0x08192b2b08081908, 0x08192b2b08190808, 0x08192b2b19080808, 0x08192b2b1919192b,
    0x082b080808080808, 0x082b08080808082b, 0x082b080808081919, 0x082b080808082b08,
    0x082b080808190819, 0x082b080808191908, 0x082b08080819192b, 0x082b080808192b19,
    0x082b0808082b0808, 0x082b0808082b1919, 0x082b0808082b2b2b, 0x082b080819080819,
    0x082b080819081908, 0x082b080819190808, 0x082b08081919082b, 0x082b080819191919,
    0x082b0808192b1908, 0x082b08082b080808, 0x082b08082b082b2b, 0x082b08082b191908,
    0x082b08082b2b2b2b, 0x082b081908080819, 0x082b081908081908, 0x082b081908190808,
    0x082b08190819082b, 0x082b081908191919, 0x082b0819082b0819, 0x082b081919080808,
    0x082b08191908082b, 0x082b081919081919, 0x082b081919190819, 0x082b081919191908,
    0x082b0819192b0808, 0x082b08192b080819, 0x082b08192b081908, 0x082b08192b190808,
    0x082b082b08080808, 0x082b082b08082b2b, 0x082b082b082b082b, 0x082b082b082b2b08,
    0x082b082b082b2b2b, 0x082b082b19081908, 0x082b082b19190808, 0x082b082b2b082b08,
    0x082b082b2b082b2b, 0x082b082b2b2b2b08, 0x082b190808080819, 0x082b190808081908,
    0x082b19080808192b, 0x082b190808082b19, 0x082b190808190808, 0x082b190808191919,
    0x082b190808192b08, 0x082b1908082b0819, 0x082b1908082b1908, 0x082b190819080808,
    0x082b19081908082b, 0x082b190819081919, 0x082b190819082b08, 0x082b190819190819,
    0x082b190819191908, 0x082b1908192b0808, 0x082b19082b080819, 0x082b19082b081908,
    0x082b19082b190808, 0x082b191908080808, 0x082b191908081919, 0x082b191908082b08,
    0x082b191908190819, 0x082b191908191908, 0x082b1919082b0808, 0x082b191919080819,
    0x082b191919081908, 0x082b191919190808, 0x082b1919192b192b, 0x082b19192b080808,
    0x082b192b08080819, 0x082b192b08081908, 0x082b192b08190808, 0x082b192b19080808,
    0x082b192b19192b19, 0x082b2b0808080808, 0x082b2b0808081919, 0x082b2b0808190819,
    0x082b2b0808191908, 0x082b2b0819080819, 0x082b2b0819081908, 0x082b2b0819190808,
    0x082b2b082b082b2b, 0x082b2b082b2b2b2b, 0x082b2b1908080819, 0x082b2b1908081908,
    0x082b2b1908190808, 0x082b2b192b191919, 0x082b2b2b08082b2b, 0x082b2b2b082b082b,
    0x082b2b2b192b1908, 0x082b2b2b2b082b08, 0x082b2b2b2b082b2b, 0x1908080808080819,
    0x1908080808081908, 0x190808080808192b, 0x1908080808082b19, 0x1908080808190808,
    0x190808080819082b, 0x1908080808191919, 0x1908080808192b08, 0x1908080808192b2b,
    0x19080808082b0819, 0x19080808082b1908, 0x19080808082b192b, 0x1908080819080808,
    0x190808081908082b, 0x1908080819081919, 0x1908080819082b08, 0x1908080819082b2b,
    0x1908080819190819, 0x1908080819191908, 0x190808081919192b, 0x1908080819192b19,
    0x19080808192b0808, 0x19080808192b082b, 0x19080808192b1919, 0x190808082b080819,
    0x190808082b081908, 0x190808082b190808, 0x190808082b191919, 0x190808082b192b08,
    0x190808082b2b0819, 0x190808082b2b1908, 0x1908081908080808, 0x190808190808082b,
    0x1908081908081919, 0x1908081908082b08, 0x1908081908190819, 0x1908081908191908,
    0x190808190819192b, 0x1908081908192b19, 0x19080819082b0808, 0x19080819082b082b,
    0x19080819082b1919, 0x1908081919080819, 0x1908081919081908, 0x190808191908192b,
    0x1908081919082b19, 0x1908081919190808, 0x190808191919082b, 0x1908081919191919,
    0x1908081919192b08, 0x19080819192b0819, 0x19080819192b1908, 0x190808192b080808,
    0x190808192b08082b, 0x190808192b081919, 0x190808192b082b08, 0x190808192b190819,
    0x190808192b191908, 0x190808192b2b0808, 0x1908082b08080819, 0x1908082b08081908,
    0x1908082b08190808, 0x1908082b0819082b, 0x1908082b08191919, 0x1908082b08192b08,
    0x1908082b082b1908, 0x1908082b19080808, 0x1908082b19081919, 0x1908082b19082b08,
    0x1908082b19190819, 0x1908082b19191908, 0x1908082b192b0808, 0x1908082b2b080819,
    0x1908082b2b081908, 0x1908190808080808, 0x190819080808082b, 0x1908190808081919,
    0x1908190808082b08, 0x1908190808082b2b, 0x1908190808190819, 0x1908190808191908,
    0x190819080819192b, 0x1908190808192b19, 0x19081908082b0808, 0x19081908082b082b,
    0x19081908082b1919, 0x19081908082b2b08, 0x1908190819080819, 0x1908190819081908,
    0x190819081908192b, 0x1908190819082b19, 0x1908190819190808, 0x190819081919082b,
    0x1908190819191919, 0x1908190819192b08, 0x19081908192b0819, 0x19081908192b1908,
    0x190819082b080808, 0x190819082b08082b, 0x190819082b081919, 0x190819082b082b08,
    0x190819082b190819, 0x190819082b191908, 0x190819082b2b0808, 0x1908191908080819,
    0x1908191908081908, 0x190819190808192b, 0x1908191908082b19, 0x1908191908190808,
    0x190819190819082b, 0x1908191908191919, 0x1908191908192b08, 0x19081919082b0819,
    0x19081919082b1908, 0x1908191919080808, 0x190819191908082b, 0x1908191919081919,
    0x1908191919082b08, 0x1908191919190819, 0x1908191919191908, 0x19081919192b0808,
    0x19081919192b2b2b, 0x190819192b080819, 0x190819192b081908, 0x190819192b190808,
    0x1908192b08080808, 0x1908192b0808082b, 0x1908192b08081919, 0x1908192b08082b08,
    0x1908192b08190819, 0x1908192b08191908, 0x1908192b082b0808, 0x1908192b19080819,
    0x1908192b19081908, 0x1908192b19190808, 0x1908192b2b080808, 0x1908192b2b2b1919,
    0x19082b0808080819, 0x19082b0808081908, 0x19082b0808082b19, 0x19082b0808190808,
    0x19082b080819082b, 0x19082b0808191919, 0x19082b0808192b08, 0x19082b08082b0819,
    0x19082b08082b1908, 0x19082b0819080808, 0x19082b081908082b, 0x19082b0819081919,
    0x19082b0819082b08, 0x19082b0819190819, 0x19082b0819191908, 0x19082b08192b0808,
    0x19082b082b081908, 0x19082b082b190808, 0x19082b1908080808, 0x19082b190808082b,
    0x19082b1908081919, 0x19082b1908082b08, 0x19082b1908190819, 0x19082b1908191908,
    0x19082b19082b0808, 0x19082b1919080819, 0x19082b1919081908, 0x19082b1919190808,
    0x19082b192b080808, 0x19082b192b19192b, 0x19082b2b08080819, 0x19082b2b08081908,
    0x19082b2b08190808, 0x19082b2b19080808, 0x1919080808080808, 0x191908080808082b,
    0x1919080808081919, 0x1919080808082b08, 0x1919080808190819, 0x1919080808191908,
    0x191908080819192b, 0x1919080808192b19, 0x19190808082b0808, 0x19190808082b082b,
    0x19190808082b1919, 0x19190808082b2b08, 0x1919080819080819, 0x1919080819081908,
    0x191908081908192b, 0x1919080819082b19, 0x1919080819190808, 0x191908081919082b,
    0x1919080819191919, 0x1919080819192b08, 0x19190808192b0819, 0x19190808192b1908,
    0x191908082b080808, 0x191908082b08082b, 0x191908082b081919, 0x191908082b082b08,
    0x191908082b190819, 0x191908082b191908, 0x1919081908080819, 0x1919081908081908,
    0x191908190808192b, 0x1919081908082b19, 0x1919081908190808, 0x191908190819082b,
    0x1919081908191919, 0x1919081908192b08, 0x19190819082b0819, 0x19190819082b1908,
    0x1919081919080808, 0x191908191908082b, 0x1919081919081919, 0x1919081919082b08,
    0x1919081919190819, 0x1919081919191908, 0x19190819192b0808, 0x191908192b080819,
    0x191908192b081908, 0x191908192b190808, 0x1919082b08080808, 0x1919082b08081919,
    0x1919082b08082b08, 0x1919082b08190819, 0x1919082b08191908, 0x1919082b082b0808,
    0x1919082b19080819, 0x1919082b19081908, 0x1919082b19190808, 0x1919082b192b2b19,
    0x1919082b2b080808, 0x1919190808080819, 0x1919190808081908, 0x191919080808192b,
    0x1919190808082b19, 0x1919190808190808, 0x191919080819082b, 0x1919190808191919,
    0x1919190808192b08, 0x19191908082b0819, 0x19191908082b1908, 0x1919190819080808,
    0x191919081908082b, 0x1919190819081919, 0x1919190819082b08, 0x1919190819190819,
    0x1919190819191908, 0x19191908192b0808, 0x191919082b080819, 0x191919082b081908,
    0x191919082b190808, 0x1919191908080808, 0x191919190808082b, 0x1919191908081919,
    0x1919191908082b08, 0x1919191908190819, 0x1919191908191908, 0x19191919082b0808,
    0x1919191919080819, 0x1919191919081908, 0x1919191919190808, 0x191919192b080808,
    0x1919192b08080819, 0x1919192b08081908, 0x1919192b08190808, 0x1919192b082b192b,
    0x1919192b19080808, 0x19192b0808080808, 0x19192b080808082b, 0x19192b0808081919,
    0x19192b0808082b08, 0x19192b0808190819, 0x19192b0808191908, 0x19192b08082b0808,
    0x19192b0819080819, 0x19192b0819081908, 0x19192b0819190808, 0x19192b0819192b2b,
    0x19192b082b080808, 0x19192b1908080819, 0x19192b1908081908, 0x19192b1908190808,
    0x19192b1919080808, 0x19192b2b08080808, 0x19192b2b08192b19, 0x19192b2b2b081919,
    0x19192b2b2b2b2b08, 0x192b080808080819, 0x192b080808081908, 0x192b08080808192b,
    0x192b080808190808, 0x192b08080819082b, 0x192b080808191919, 0x192b080808192b08,
    0x192b0808082b0819, 0x192b0808082b1908, 0x192b080819080808, 0x192b080819081919,
    0x192b080819082b08, 0x192b080819190819, 0x192b080819191908, 0x192b0808192b0808,
    0x192b08082b081908, 0x192b08082b190808, 0x192b081908080808, 0x192b08190808082b,
    0x192b081908081919, 0x192b081908082b08, 0x192b081908190819, 0x192b081908191908,
    0x192b0819082b0808, 0x192b081919080819, 0x192b081919081908, 0x192b081919190808,
    0x192b08192b080808, 0x192b08192b192b19, 0x192b082b08081908, 0x192b082b08190808,
    0x192b082b19080808, 0x192b082b1919192b, 0x192b082b2b2b0819, 0x192b190808080808,
    0x192b190808081919, 0x192b190808082b08, 0x192b190808190819, 0x192b190808191908,
    0x192b1908082b0808, 0x192b190819080819, 0x192b190819081908, 0x192b190819190808,
    0x192b19082b080808, 0x192b191908080819, 0x192b191908081908, 0x192b191908190808,
    0x192b191919080808, 0x192b191919082b2b, 0x192b1919192b2b08, 0x192b19192b19082b,
    0x192b192b08080808, 0x192b192b2b191908, 0x192b2b0808080819, 0x192b2b0808081908,
    0x192b2b0808190808, 0x192b2b08192b1919, 0x192b2b082b192b08, 0x192b2b1908080808,
    0x192b2b19082b2b2b, 0x192b2b2b1908082b, 0x192b2b2b2b2b0819, 0x2b08080808080808,
    0x2b0808080808082b, 0x2b08080808081919, 0x2b08080808082b08, 0x2b08080808190819,
    0x2b08080808191908, 0x2b08080808192b19, 0x2b080808082b0808, 0x2b080808082b1919,
    0x2b08080819080819, 0x2b08080819081908, 0x2b08080819190808, 0x2b0808081919082b,
    0x2b08080819191919, 0x2b08080819192b08, 0x2b080808192b0819, 0x2b0808082b080808,
    0x2b0808082b081919, 0x2b0808082b190819, 0x2b0808082b191908, 0x2b08081908080819,
    0x2b08081908081908, 0x2b08081908082b19, 0x2b08081908190808, 0x2b0808190819082b,
    0x2b08081908191919, 0x2b08081908192b08, 0x2b080819082b0819, 0x2b080819082b1908,
    0x2b08081919080808, 0x2b0808191908082b, 0x2b08081919081919, 0x2b08081919082b08,
    0x2b08081919190819, 0x2b08081919191908, 0x2b0808192b080819, 0x2b0808192b081908,
    0x2b0808192b190808, 0x2b0808192b2b2b19, 0x2b08082b08080808, 0x2b08082b08081919,
    0x2b08082b08082b2b, 0x2b08082b08190819, 0x2b08082b08191908, 0x2b08082b19080819,
    0x2b08082b19081908, 0x2b08082b19190808, 0x2b08190808080819, 0x2b08190808081908,
    0x2b0819080808192b, 0x2b08190808082b19, 0x2b08190808190808, 0x2b0819080819082b,
    0x2b08190808191919, 0x2b08190808192b08, 0x2b081908082b0819, 0x2b08190819080808,
    0x2b0819081908082b, 0x2b08190819081919, 0x2b08190819082b08, 0x2b08190819190819,
    0x2b08190819191908, 0x2b081908192b0808, 0x2b0819082b080819, 0x2b0819082b081908,
    0x2b0819082b190808, 0x2b08191908080808, 0x2b0819190808082b, 0x2b08191908081919,
    0x2b08191908082b08, 0x2b08191908190819, 0x2b08191908191908, 0x2b081919082b0808,
    0x2b08191919080819, 0x2b08191919081908, 0x2b08191919190808, 0x2b0819192b080808,
    0x2b0819192b082b2b, 0x2b08192b08080819, 0x2b08192b08081908, 0x2b08192b08190808,
    0x2b08192b082b2b19, 0x2b08192b19080808, 0x2b082b0808080808, 0x2b082b0808081919,
    0x2b082b0808190819, 0x2b082b0808191908, 0x2b082b0819080819, 0x2b082b0819081908,
    0x2b082b0819190808, 0x2b082b082b2b082b, 0x2b082b1908080819, 0x2b082b1908081908,
    0x2b082b1919080808, 0x2b082b19192b1919, 0x2b082b2b082b082b, 0x2b082b2b19192b08,
    0x2b082b2b19192b2b, 0x2b082b2b2b08082b, 0x2b082b2b2b2b082b, 0x2b19080808080819,
    0x2b19080808081908, 0x2b19080808082b19, 0x2b19080808190808, 0x2b1908080819082b,
    0x2b19080808191919, 0x2b19080808192b08, 0x2b190808082b1908, 0x2b19080819080808,
    0x2b1908081908082b, 0x2b19080819081919, 0x2b19080819082b08, 0x2b19080819190819,
    0x2b19080819191908, 0x2b190808192b0808, 0x2b1908082b080819, 0x2b1908082b081908,
    0x2b1908082b190808, 0x2b19081908080808, 0x2b19081908081919, 0x2b19081908190819,
    0x2b19081908191908, 0x2b19081919080819, 0x2b19081919081908, 0x2b19081919190808,
    0x2b19081919192b2b, 0x2b19082b08080819, 0x2b19082b08081908, 0x2b19082b08190808,
    0x2b19082b19080808, 0x2b19082b2b2b192b, 0x2b19190808080808, 0x2b1919080808082b,
    0x2b19190808081919, 0x2b19190808082b08, 0x2b19190808190819, 0x2b19190808191908,
    0x2b191908082b0808, 0x2b19190819080819, 0x2b19190819081908, 0x2b19190819190808,
    0x2b1919082b080808, 0x2b1919082b19192b, 0x2b19191908080819, 0x2b19191908081908,
    0x2b19191908190808, 0x2b19191919080808, 0x2b1919192b192b08, 0x2b1919192b2b0819,
    0x2b19192b08080808, 0x2b19192b1908192b, 0x2b19192b192b1908, 0x2b192b0808080819,
    0x2b192b0808081908, 0x2b192b0808190808, 0x2b192b08082b192b, 0x2b192b0819080808,
    0x2b192b082b2b2b19, 0x2b192b1908080808, 0x2b192b1919082b19, 0x2b192b191919082b,
    0x2b192b2b2b190808, 0x2b2b080808080808, 0x2b2b080808081919, 0x2b2b080808082b2b,
    0x2b2b080808191908, 0x2b2b0808082b082b, 0x2b2b0808082b2b2b, 0x2b2b080819080819,
    0x2b2b080819081908, 0x2b2b080819190808, 0x2b2b08082b2b082b, 0x2b2b08082b2b2b2b,
    0x2b2b081919080808, 0x2b2b0819192b1919, 0x2b2b082b0808082b, 0x2b2b082b08082b2b,
    0x2b2b082b082b082b, 0x2b2b082b082b2b08, 0x2b2b082b082b2b2b, 0x2b2b082b2b08082b,
    0x2b2b082b2b082b08, 0x2b2b082b2b082b2b, 0x2b2b082b2b2b2b08, 0x2b2b190808080819,
    0x2b2b190808081908, 0x2b2b190808190808, 0x2b2b190819080808, 0x2b2b19082b082b19,
    0x2b2b19082b2b1908, 0x2b2b191908080808, 0x2b2b191908192b19, 0x2b2b192b19190819,
    0x2b2b2b0808082b2b, 0x2b2b2b08082b2b08, 0x2b2b2b082b2b082b, 0x2b2b2b1919191908,
    0x2b2b2b192b08192b, 0x2b2b2b2b08082b08, 0x2b2b2b2b08082b2b, 0x2b2b2b2b082b0808,
    0x2b2b2b2b082b082b, 0x2b2b2b2b082b2b08, 0x2b2b2b2b2b082b08, 0x2b2b2b2b2b2b2b2b,
};

static const uint32_t iq3xxs_grid[256] = {
    0x04040404, 0x04040414, 0x04040424, 0x04040c0c, 0x04040c1c, 0x04040c3e, 0x04041404, 0x04041414,
    0x04041c0c, 0x04042414, 0x04043e1c, 0x04043e2c, 0x040c040c, 0x040c041c, 0x040c0c04, 0x040c0c14,
    0x040c140c, 0x040c142c, 0x040c1c04, 0x040c1c14, 0x040c240c, 0x040c2c24, 0x040c3e04, 0x04140404,
    0x04140414, 0x04140424, 0x04140c0c, 0x04141404, 0x04141414, 0x04141c0c, 0x04141c1c, 0x04141c3e,
    0x04142c0c, 0x04142c3e, 0x04143e2c, 0x041c040c, 0x041c043e, 0x041c0c04, 0x041c0c14, 0x041c142c,
    0x041c3e04, 0x04240c1c, 0x04241c3e, 0x04242424, 0x04242c3e, 0x04243e1c, 0x04243e2c, 0x042c040c,
    0x042c043e, 0x042c1c14, 0x042c2c14, 0x04341c2c, 0x04343424, 0x043e0c04, 0x043e0c24, 0x043e0c34,
    0x043e241c, 0x043e340c, 0x0c04040c, 0x0c04041c, 0x0c040c04, 0x0c040c14, 0x0c04140c, 0x0c04141c,
    0x0c041c04, 0x0c041c14, 0x0c041c24, 0x0c04243e, 0x0c042c04, 0x0c0c0404, 0x0c0c0414, 0x0c0c0c0c,
    0x0c0c1404, 0x0c0c1414, 0x0c14040c, 0x0c14041c, 0x0c140c04, 0x0c140c14, 0x0c14140c, 0x0c141c04,
    0x0c143e14, 0x0c1c0404, 0x0c1c0414, 0x0c1c1404, 0x0c1c1c0c, 0x0c1c2434, 0x0c1c3434, 0x0c24040c,
    0x0c24042c, 0x0c242c04, 0x0c2c1404, 0x0c2c1424, 0x0c2c2434, 0x0c2c3e0c, 0x0c34042c, 0x0c3e1414,
    0x0c3e2404, 0x14040404, 0x14040414, 0x14040c0c, 0x14040c1c, 0x14041404, 0x14041414, 0x14041434,
    0x14041c0c, 0x14042414, 0x140c040c, 0x140c041c, 0x140c042c, 0x140c0c04, 0x140c0c14, 0x140c140c,
    0x140c1c04, 0x140c341c, 0x140c343e, 0x140c3e04, 0x14140404, 0x14140414, 0x14140c0c, 0x14140c3e,
    0x14141404, 0x14141414, 0x14141c3e, 0x14142404, 0x14142c2c, 0x141c040c, 0x141c0c04, 0x141c0c24,
    0x141c3e04, 0x141c3e24, 0x14241c2c, 0x14242c1c, 0x142c041c, 0x142c143e, 0x142c240c, 0x142c3e24,
    0x143e040c, 0x143e041c, 0x143e0c34, 0x143e242c, 0x1c04040c, 0x1c040c04, 0x1c040c14, 0x1c04140c,
    0x1c04141c, 0x1c042c04, 0x1c04342c, 0x1c043e14, 0x1c0c0404, 0x1c0c0414, 0x1c0c1404, 0x1c0c1c0c,
    0x1c0c2424, 0x1c0c2434, 0x1c14040c, 0x1c14041c, 0x1c140c04, 0x1c14142c, 0x1c142c14, 0x1c143e14,
    0x1c1c0c0c, 0x1c1c1c1c, 0x1c241c04, 0x1c24243e, 0x1c243e14, 0x1c2c0404, 0x1c2c0434, 0x1c2c1414,
    0x1c2c2c2c, 0x1c340c24, 0x1c341c34, 0x1c34341c, 0x1c3e1c1c, 0x1c3e3404, 0x24040424, 0x24040c3e,
    0x24041c2c, 0x24041c3e, 0x24042c1c, 0x24042c3e, 0x240c3e24, 0x24141404, 0x24141c3e, 0x24142404,
    0x24143404, 0x24143434, 0x241c043e, 0x241c242c, 0x24240424, 0x24242c0c, 0x24243424, 0x242c142c,
    0x242c241c, 0x242c3e04, 0x243e042c, 0x243e0c04, 0x243e0c14, 0x243e1c04, 0x2c040c14, 0x2c04240c,
    0x2c043e04, 0x2c0c0404, 0x2c0c0434, 0x2c0c1434, 0x2c0c2c2c, 0x2c140c24, 0x2c141c14, 0x2c143e14,
    0x2c1c0414, 0x2c1c2c1c, 0x2c240c04, 0x2c24141c, 0x2c24143e, 0x2c243e14, 0x2c2c0414, 0x2c2c1c0c,
    0x2c342c04, 0x2c3e1424, 0x2c3e2414, 0x34041424, 0x34042424, 0x34042434, 0x34043424, 0x340c140c,
    0x340c340c, 0x34140c3e, 0x34143424, 0x341c1c04, 0x341c1c34, 0x34242424, 0x342c042c, 0x342c2c14,
    0x34341c1c, 0x343e041c, 0x343e140c, 0x3e04041c, 0x3e04042c, 0x3e04043e, 0x3e040c04, 0x3e041c14,
    0x3e042c14, 0x3e0c1434, 0x3e0c2404, 0x3e140c14, 0x3e14242c, 0x3e142c14, 0x3e1c0404, 0x3e1c0c2c,
    0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04,
};

static const uint32_t iq3xs_grid[512] = {
    0x04040404, 0x0404040c, 0x04040414, 0x0404042c, 0x0404043e, 0x04040c04, 0x04040c0c, 0x04040c14,
    0x04040c24, 0x04040c34, 0x04041404, 0x0404140c, 0x0404142c, 0x04041c1c, 0x04042404, 0x04042414,
    0x0404242c, 0x0404243e, 0x04042c0c, 0x04042c1c, 0x04043404, 0x04043414, 0x04043e0c, 0x04043e24,
    0x04043e3e, 0x040c0404, 0x040c040c, 0x040c0414, 0x040c0424, 0x040c0c04, 0x040c0c0c, 0x040c0c2c,
    0x040c1404, 0x040c141c, 0x040c143e, 0x040c1c0c, 0x040c1c2c, 0x040c2424, 0x040c340c, 0x040c342c,
    0x040c3e14, 0x04140404, 0x0414040c, 0x0414042c, 0x0414043e, 0x04140c04, 0x04140c1c, 0x04140c34,
    0x0414140c, 0x0414142c, 0x04141c04, 0x04141c24, 0x04142414, 0x0414242c, 0x0414243e, 0x04142c0c,
    0x04142c1c, 0x04143e04, 0x04143e1c, 0x041c041c, 0x041c0c0c, 0x041c0c2c, 0x041c1404, 0x041c1414,
    0x041c1c0c, 0x041c1c1c, 0x041c1c34, 0x041c2424, 0x041c2c04, 0x041c2c14, 0x041c343e, 0x041c3e0c,
    0x041c3e2c, 0x04240404, 0x04240c1c, 0x04240c3e, 0x0424140c, 0x04241424, 0x04241c14, 0x04242404,
    0x0424241c, 0x04242c0c, 0x04243e04, 0x042c0414, 0x042c0424, 0x042c1404, 0x042c1414, 0x042c1434,
    0x042c1c1c, 0x042c240c, 0x042c242c, 0x042c243e, 0x042c3434, 0x042c3e1c, 0x04340434, 0x04340c0c,
    0x04340c1c, 0x04341c0c, 0x04342c14, 0x04343e0c, 0x043e0404, 0x043e0414, 0x043e0424, 0x043e1404,
    0x043e1414, 0x043e1434, 0x043e1c1c, 0x043e2c04, 0x043e2c24, 0x0c040404, 0x0c04040c, 0x0c040414,
    0x0c040424, 0x0c040c04, 0x0c040c0c, 0x0c040c1c, 0x0c040c2c, 0x0c040c3e, 0x0c041404, 0x0c041414,
    0x0c041c0c, 0x0c041c24, 0x0c041c34, 0x0c042c24, 0x0c042c34, 0x0c04340c, 0x0c043e14, 0x0c0c0404,
    0x0c0c040c, 0x0c0c041c, 0x0c0c0434, 0x0c0c0c04, 0x0c0c0c24, 0x0c0c140c, 0x0c0c1c04, 0x0c0c1c1c,
    0x0c0c240c, 0x0c0c2c04, 0x0c0c2c14, 0x0c0c3e04, 0x0c0c3e34, 0x0c140404, 0x0c140c14, 0x0c140c2c,
    0x0c140c3e, 0x0c141404, 0x0c141424, 0x0c141c14, 0x0c142404, 0x0c14241c, 0x0c142c2c, 0x0c143404,
    0x0c143e14, 0x0c1c040c, 0x0c1c0424, 0x0c1c043e, 0x0c1c0c04, 0x0c1c0c1c, 0x0c1c140c, 0x0c1c143e,
    0x0c1c1c04, 0x0c1c1c24, 0x0c1c240c, 0x0c1c3414, 0x0c1c3e04, 0x0c24041c, 0x0c24042c, 0x0c240c14,
    0x0c240c24, 0x0c241c0c, 0x0c241c1c, 0x0c242414, 0x0c242434, 0x0c242c04, 0x0c242c24, 0x0c2c040c,
    0x0c2c0c04, 0x0c2c0c1c, 0x0c2c140c, 0x0c2c1c04, 0x0c2c1c14, 0x0c2c2c0c, 0x0c341404, 0x0c341424,
    0x0c34143e, 0x0c342424, 0x0c342434, 0x0c3e040c, 0x0c3e041c, 0x0c3e0c04, 0x0c3e0c14, 0x0c3e140c,
    0x0c3e1c2c, 0x0c3e240c, 0x0c3e3414, 0x0c3e3e04, 0x14040404, 0x1404040c, 0x1404041c, 0x1404042c,
    0x1404043e, 0x14040c04, 0x14040c14, 0x14040c24, 0x14040c34, 0x1404140c, 0x1404141c, 0x1404143e,
    0x14041c04, 0x14041c14, 0x1404240c, 0x1404241c, 0x1404242c, 0x14042c04, 0x14042c14, 0x1404343e,
    0x14043e04, 0x14043e1c, 0x14043e2c, 0x140c0404, 0x140c0414, 0x140c0c04, 0x140c0c1c, 0x140c0c3e,
    0x140c1414, 0x140c142c, 0x140c1c0c, 0x140c1c24, 0x140c2414, 0x140c2c0c, 0x1414040c, 0x14140424,
    0x1414043e, 0x1414140c, 0x1414141c, 0x14141c04, 0x14141c3e, 0x1414240c, 0x14142c1c, 0x14142c3e,
    0x14143e0c, 0x14143e24, 0x141c0404, 0x141c0414, 0x141c042c, 0x141c0c0c, 0x141c1414, 0x141c1424,
    0x141c1c0c, 0x141c1c1c, 0x141c2414, 0x141c2c04, 0x141c3434, 0x1424040c, 0x1424043e, 0x14241404,
    0x1424141c, 0x14241c14, 0x14241c2c, 0x1424240c, 0x14243e14, 0x14243e2c, 0x142c0424, 0x142c0c0c,
    0x142c1414, 0x142c1c3e, 0x142c2404, 0x142c2c1c, 0x142c3e04, 0x14340404, 0x14340414, 0x1434043e,
    0x1434140c, 0x14342c2c, 0x1434340c, 0x143e042c, 0x143e0c0c, 0x143e1434, 0x143e1c04, 0x143e241c,
    0x143e2c04, 0x1c040414, 0x1c040c0c, 0x1c040c1c, 0x1c040c2c, 0x1c040c3e, 0x1c041414, 0x1c041c0c,
    0x1c041c1c, 0x1c041c2c, 0x1c042414, 0x1c042424, 0x1c04243e, 0x1c042c0c, 0x1c04341c, 0x1c043e0c,
    0x1c0c040c, 0x1c0c041c, 0x1c0c042c, 0x1c0c0c24, 0x1c0c140c, 0x1c0c141c, 0x1c0c2404, 0x1c0c3404,
    0x1c0c3e14, 0x1c0c3e34, 0x1c140404, 0x1c140c14, 0x1c141404, 0x1c141c14, 0x1c141c24, 0x1c142c04,
    0x1c1c040c, 0x1c1c0c04, 0x1c1c0c24, 0x1c1c140c, 0x1c1c141c, 0x1c1c143e, 0x1c1c1c04, 0x1c1c240c,
    0x1c1c241c, 0x1c1c243e, 0x1c1c2c2c, 0x1c1c3e1c, 0x1c24041c, 0x1c240c0c, 0x1c240c34, 0x1c241414,
    0x1c241c0c, 0x1c242c14, 0x1c243404, 0x1c243424, 0x1c2c040c, 0x1c2c0c04, 0x1c2c0c14, 0x1c2c142c,
    0x1c2c1c14, 0x1c2c2424, 0x1c2c2c34, 0x1c2c3e1c, 0x1c340c34, 0x1c34240c, 0x1c3e040c, 0x1c3e041c,
    0x1c3e1404, 0x1c3e1414, 0x1c3e1c2c, 0x24040404, 0x24040424, 0x24040c14, 0x24041404, 0x24041424,
    0x2404143e, 0x24041c14, 0x2404240c, 0x24042c04, 0x24043e04, 0x240c0414, 0x240c043e, 0x240c0c0c,
    0x240c0c1c, 0x240c1414, 0x240c1c04, 0x240c1c2c, 0x240c241c, 0x240c2c0c, 0x240c2c2c, 0x2414040c,
    0x2414041c, 0x24140c04, 0x24140c2c, 0x2414140c, 0x24141c1c, 0x24142404, 0x24142c3e, 0x24143414,
    0x24143e04, 0x241c0424, 0x241c0c0c, 0x241c0c1c, 0x241c1404, 0x241c1414, 0x241c1c0c, 0x241c1c2c,
    0x24240404, 0x24240414, 0x24241424, 0x24241c3e, 0x24242404, 0x24243e0c, 0x242c042c, 0x242c043e,
    0x242c140c, 0x242c3414, 0x24340c1c, 0x24341c24, 0x24343404, 0x243e0c04, 0x243e0c2c, 0x243e1c04,
    0x243e241c, 0x243e2c0c, 0x2c040414, 0x2c040c04, 0x2c040c24, 0x2c041414, 0x2c042404, 0x2c042424,
    0x2c04243e, 0x2c042c14, 0x2c043434, 0x2c043e24, 0x2c0c040c, 0x2c0c041c, 0x2c0c042c, 0x2c0c0c14,
    0x2c0c140c, 0x2c0c1c14, 0x2c0c3e14, 0x2c140404, 0x2c140c0c, 0x2c14141c, 0x2c141c04, 0x2c141c34,
    0x2c142c1c, 0x2c1c0414, 0x2c1c043e, 0x2c1c0c04, 0x2c1c143e, 0x2c1c2424, 0x2c1c2c0c, 0x2c1c342c,
    0x2c1c3e1c, 0x2c24040c, 0x2c240424, 0x2c241404, 0x2c241c14, 0x2c242434, 0x2c2c0c14, 0x2c2c1434,
    0x2c2c2c0c, 0x2c2c2c1c, 0x2c342414, 0x2c3e0414, 0x2c3e0424, 0x2c3e1414, 0x34040c0c, 0x34040c1c,
    0x34040c2c, 0x34041c0c, 0x34041c1c, 0x34043404, 0x340c0404, 0x340c1404, 0x340c143e, 0x340c3424,
    0x34140c14, 0x34141c24, 0x34142414, 0x34142c2c, 0x34143414, 0x34143e04, 0x341c0404, 0x341c0c24,
    0x341c140c, 0x341c2404, 0x3424142c, 0x3424241c, 0x34243414, 0x342c0404, 0x342c041c, 0x342c1c24,
    0x342c3404, 0x3434042c, 0x34342404, 0x343e0c0c, 0x343e0c1c, 0x3e040404, 0x3e040424, 0x3e04043e,
    0x3e041404, 0x3e041414, 0x3e041c34, 0x3e042404, 0x3e042c24, 0x3e043414, 0x3e0c0414, 0x3e0c0c0c,
    0x3e0c1424, 0x3e0c241c, 0x3e0c242c, 0x3e14040c, 0x3e140424, 0x3e140c04, 0x3e140c34, 0x3e14140c,
    0x3e141c04, 0x3e142c0c, 0x3e1c0414, 0x3e1c1c14, 0x3e1c1c2c, 0x3e1c2c1c, 0x3e24040c, 0x3e24042c,
    0x3e240c1c, 0x3e241404, 0x3e242c04, 0x3e2c1414, 0x3e2c2414, 0x3e340414, 0x3e341c0c, 0x3e3e0404,
};

#define NGRID_IQ2XXS 512
static const  uint64_t iq1s_grid[NGRID_IQ2XXS] = {
    0xffffffffffff0101, 0xffffffffff01ff00, 0xffffffffff010100, 0xffffffff00000000,
    0xffffffff01ff00ff, 0xffffffff01ff0001, 0xffffffff0101ffff, 0xffffffff0101ff01,
    0xffffff00ff000000, 0xffffff000000ff00, 0xffffff00000000ff, 0xffffff0000000100,
    0xffffff0000010000, 0xffffff0001000000, 0xffffff01ffff00ff, 0xffffff01ff01ff00,
    0xffffff01ff010100, 0xffffff0100000001, 0xffffff0101ffff00, 0xffffff0101ff0101,
    0xffffff0101010100, 0xffff00ffff00ff01, 0xffff00ffff0000ff, 0xffff00ff00ff0100,
    0xffff00ff0100ff00, 0xffff00ff010001ff, 0xffff0000ff0101ff, 0xffff000000ffff00,
    0xffff000000000000, 0xffff00000001ff01, 0xffff000001000101, 0xffff0000010100ff,
    0xffff0001ffff0100, 0xffff00010000ff00, 0xffff000100010101, 0xffff000101000000,
    0xffff01ffffff0000, 0xffff01ffff01ffff, 0xffff01ffff010100, 0xffff01ff00000000,
    0xffff01ff01ffffff, 0xffff01ff01ff0001, 0xffff01ff0101ffff, 0xffff01ff01010001,
    0xffff0100ffffff01, 0xffff01000000ffff, 0xffff010000000100, 0xffff010001ff01ff,
    0xffff010001000000, 0xffff0101ff000000, 0xffff0101000101ff, 0xffff010101ffff01,
    0xffff01010101ff00, 0xff00ffffff000000, 0xff00ffff00ffff00, 0xff00ffff00000001,
    0xff00ffff000001ff, 0xff00ffff01010000, 0xff00ff00ffff0000, 0xff00ff00ff00ff00,
    0xff00ff00ff0000ff, 0xff00ff00ff000100, 0xff00ff00ff010001, 0xff00ff0000ff0001,
    0xff00ff000000ffff, 0xff00ff0000000000, 0xff00ff000001ff00, 0xff00ff0000010100,
    0xff00ff0001ff0000, 0xff00ff000100ff00, 0xff00ff0001000100, 0xff00ff01ff000000,
    0xff00ff0100ff0000, 0xff00ff01000001ff, 0xff00ff0101010001, 0xff0000ff00000000,
    0xff0000ff0001ff00, 0xff0000ff00010100, 0xff000000ffff0101, 0xff000000ff000000,
    0xff000000ff01ff00, 0xff00000000ff0000, 0xff0000000000ff00, 0xff000000000000ff,
    0xff00000000000000, 0xff00000000000001, 0xff00000000000100, 0xff0000000001ffff,
    0xff00000000010000, 0xff00000001000000, 0xff00000001010100, 0xff000001ff00ff01,
    0xff000001ff0100ff, 0xff00000100000000, 0xff0000010001ff00, 0xff00000101ff0100,
    0xff0000010100ff00, 0xff0001ff00ff00ff, 0xff0001ff00000101, 0xff0001ff000100ff,
    0xff0001ff01000000, 0xff000100ff0001ff, 0xff0001000000ff01, 0xff00010000000000,
    0xff00010000010001, 0xff00010000010100, 0xff00010001ffff00, 0xff00010001ff0101,
    0xff00010001010000, 0xff000101ffffffff, 0xff000101ff000101, 0xff00010101ff00ff,
    0xff00010101000001, 0xff000101010100ff, 0xff01ffffff000101, 0xff01ffffff01ffff,
    0xff01ffffff01ff01, 0xff01ffffff0101ff, 0xff01ffff00000000, 0xff01ffff01ff0001,
    0xff01ffff0101ff01, 0xff01ff00ff000000, 0xff01ff0000ff0100, 0xff01ff000000ff01,
    0xff01ff0000010000, 0xff01ff00010000ff, 0xff01ff01ff01ff00, 0xff01ff0100000101,
    0xff0100ffffff0000, 0xff0100ffff010000, 0xff0100ff01ff00ff, 0xff0100ff01000100,
    0xff0100ff010100ff, 0xff010000ffffff01, 0xff01000000000000, 0xff0100000101ff00,
    0xff010001ffff00ff, 0xff010001ff000100, 0xff01000100ffff00, 0xff01000100010001,
    0xff01000101ff0001, 0xff010001010001ff, 0xff0101ffffffffff, 0xff0101ffff01ffff,
    0xff0101ffff010101, 0xff0101ff0000ff00, 0xff0101ff01010001, 0xff010100ff000000,
    0xff010100ff01ff01, 0xff01010000ff0001, 0xff01010000000100, 0xff01010001000000,
    0xff0101010100ffff, 0x00ffffff0000ff01, 0x00ffffff000000ff, 0x00ffffff00000100,
    0x00ffffff00010000, 0x00ffff00ffff0001, 0x00ffff00ff0000ff, 0x00ffff00ff000100,
    0x00ffff0000000000, 0x00ffff0001000100, 0x00ffff0001010001, 0x00ffff01ff00ff01,
    0x00ffff0100ff0100, 0x00ffff010000ff00, 0x00ffff01000100ff, 0x00ffff0101ff00ff,
    0x00ffff010101ff00, 0x00ff00ffffffffff, 0x00ff00ffffff01ff, 0x00ff00ffff000101,
    0x00ff00ff00000000, 0x00ff00ff000101ff, 0x00ff00ff01010101, 0x00ff0000ff000000,
    0x00ff0000ff01ffff, 0x00ff000000ff0000, 0x00ff00000000ff00, 0x00ff0000000000ff,
    0x00ff000000000000, 0x00ff000000000001, 0x00ff000000000100, 0x00ff000000010000,
    0x00ff000001ffff01, 0x00ff000001000000, 0x00ff0001ff000101, 0x00ff000100ffffff,
    0x00ff000100000000, 0x00ff0001010001ff, 0x00ff01ffff000000, 0x00ff01ff0001ff00,
    0x00ff01ff01ff0100, 0x00ff0100ff01ff01, 0x00ff010000ff00ff, 0x00ff010000ff0101,
    0x00ff010000000000, 0x00ff010000010101, 0x00ff01000100ff00, 0x00ff010001010000,
    0x00ff0101ffffff00, 0x00ff01010000ff01, 0x00ff010100000100, 0x00ff010101ff0000,
    0x0000ffffffff0100, 0x0000ffffff00ff00, 0x0000ffffff0000ff, 0x0000ffffff010000,
    0x0000ffff00000000, 0x0000ffff00010101, 0x0000ffff01ffff01, 0x0000ffff01000100,
    0x0000ff00ff000000, 0x0000ff00ff01ff00, 0x0000ff00ff0101ff, 0x0000ff0000ff0000,
    0x0000ff000000ff00, 0x0000ff00000000ff, 0x0000ff0000000000, 0x0000ff0000000001,
    0x0000ff0000000100, 0x0000ff0000010000, 0x0000ff0001ffffff, 0x0000ff0001ff01ff,
    0x0000ff0001000000, 0x0000ff000101ffff, 0x0000ff01ffff0101, 0x0000ff01ff010000,
    0x0000ff0100000000, 0x0000ff0101000101, 0x000000ffffff0001, 0x000000ffff000000,
    0x000000ff00ff0000, 0x000000ff0000ff00, 0x000000ff000000ff, 0x000000ff00000000,
    0x000000ff00000001, 0x000000ff00000100, 0x000000ff00010000, 0x000000ff01000000,
    0x000000ff0101ff00, 0x00000000ffff0000, 0x00000000ff00ff00, 0x00000000ff0000ff,
    0x00000000ff000000, 0x00000000ff000001, 0x00000000ff000100, 0x00000000ff010000,
    0x0000000000ffff00, 0x0000000000ff00ff, 0x0000000000ff0000, 0x0000000000ff0001,
    0x0000000000ff0100, 0x000000000000ffff, 0x000000000000ff00, 0x000000000000ff01,
    0x00000000000000ff, 0x0000000000000001, 0x00000000000001ff, 0x0000000000000100,
    0x0000000000000101, 0x000000000001ff00, 0x00000000000100ff, 0x0000000000010000,
    0x0000000000010001, 0x0000000000010100, 0x0000000001ff0000, 0x000000000100ff00,
    0x00000000010000ff, 0x0000000001000000, 0x0000000001000001, 0x0000000001000100,
    0x0000000001010000, 0x00000001ffff01ff, 0x00000001ff000000, 0x0000000100ff0000,
    0x000000010000ff00, 0x00000001000000ff, 0x0000000100000000, 0x0000000100000001,
    0x0000000100000100, 0x0000000100010000, 0x0000000101000000, 0x000001ffff00ff00,
    0x000001ffff010001, 0x000001ffff0101ff, 0x000001ff00ffff01, 0x000001ff0000ffff,
    0x000001ff00000000, 0x000001ff010000ff, 0x000001ff01010100, 0x00000100ffff0100,
    0x00000100ff000000, 0x0000010000ff0000, 0x000001000000ff00, 0x00000100000000ff,
    0x0000010000000000, 0x0000010000000001, 0x0000010000000100, 0x0000010000010000,
    0x0000010001000000, 0x000001000101ff01, 0x00000101ffff0001, 0x00000101ff01ffff,
    0x0000010100000000, 0x0000010101010100, 0x0001ffffff000000, 0x0001ffff00ffffff,
    0x0001ffff00000100, 0x0001ffff0001ff00, 0x0001ffff01000000, 0x0001ff00ffffff00,
    0x0001ff00ffff01ff, 0x0001ff00ff010000, 0x0001ff0000000000, 0x0001ff0000010001,
    0x0001ff0001ff0000, 0x0001ff0001010100, 0x0001ff01ff0000ff, 0x0001ff01ff000001,
    0x0001ff0100ffffff, 0x0001ff010001ffff, 0x0001ff01000101ff, 0x0001ff010100ff01,
    0x000100ffff00ffff, 0x000100ffff00ff01, 0x000100ffff000100, 0x000100ff00000000,
    0x000100ff000101ff, 0x000100ff01ff0101, 0x000100ff0100ffff, 0x000100ff01010101,
    0x00010000ff000000, 0x00010000ff010100, 0x0001000000ff0000, 0x000100000000ff00,
    0x00010000000000ff, 0x0001000000000000, 0x0001000000000001, 0x0001000000000100,
    0x0001000000010000, 0x0001000001ffff01, 0x0001000001000000, 0x0001000100ff0101,
    0x0001000100000000, 0x00010001010100ff, 0x000101ffffff01ff, 0x000101ffffff0101,
    0x000101ff00010000, 0x000101ff01ff0000, 0x000101ff0100ff01, 0x00010100ffff0000,
    0x0001010000000000, 0x000101000001ffff, 0x0001010000010101, 0x00010100010001ff,
    0x00010101ff00ff00, 0x00010101ff010001, 0x0001010100ffffff, 0x0001010100ff01ff,
    0x00010101000101ff, 0x0001010101ff0000, 0x000101010100ff01, 0x0001010101000101,
    0x01ffffffffff0101, 0x01ffffffff01ffff, 0x01ffffffff01ff01, 0x01ffffffff0101ff,
    0x01ffffffff010101, 0x01ffffff00000000, 0x01ffffff01ff01ff, 0x01ffffff01000101,
    0x01ffffff0101ff01, 0x01ffffff010100ff, 0x01ffff000000ff00, 0x01ffff0000000001,
    0x01ffff00000001ff, 0x01ffff0000010000, 0x01ffff0001ff0000, 0x01ffff01ffffffff,
    0x01ffff01ffff01ff, 0x01ffff01ff000000, 0x01ffff01ff01ffff, 0x01ffff01ff0101ff,
    0x01ffff010100ffff, 0x01ff00ffffff0000, 0x01ff00ffff010000, 0x01ff00ff00ffff01,
    0x01ff0000ff0000ff, 0x01ff000000000000, 0x01ff00000001ff01, 0x01ff000001ffffff,
    0x01ff000001010100, 0x01ff0001ffffff01, 0x01ff0001ff010001, 0x01ff000101ff0100,
    0x01ff000101000001, 0x01ff0001010100ff, 0x01ff01ffff00ffff, 0x01ff01ff00010001,
    0x01ff01ff01000000, 0x01ff01ff010101ff, 0x01ff0100ff000001, 0x01ff010000ffff00,
    0x01ff010000000100, 0x01ff010001ff01ff, 0x01ff01000101ffff, 0x01ff0101ffff00ff,
    0x01ff0101ffff0101, 0x01ff0101ff0101ff, 0x01ff010100010000, 0x0100ffff00ff00ff,
    0x0100ffff00ff0001, 0x0100ffff00000100, 0x0100ffff0100ff00, 0x0100ff00ffff0000,
    0x0100ff00ff00ffff, 0x0100ff00ff00ff01, 0x0100ff00ff000100, 0x0100ff00ff010000,
    0x0100ff0000000000, 0x0100ff00000100ff, 0x0100ff0001ff0101, 0x0100ff0001010101,
    0x0100ff0100ff00ff, 0x0100ff0100ff0001, 0x0100ff0100000100, 0x0100ff0100010001,
    0x0100ff0101000000, 0x010000ffff00ff00, 0x010000ff0000ffff, 0x010000ff00000000,
    0x010000ff010001ff, 0x010000ff01010001, 0x01000000ffffff00, 0x01000000ffff0101,
    0x01000000ff000000, 0x01000000ff0100ff, 0x01000000ff010101, 0x0100000000ff0000,
    0x010000000000ff00, 0x01000000000000ff, 0x0100000000000000, 0x0100000000000001,
    0x0100000000000100, 0x0100000000010000, 0x0100000001000000, 0x0100000100000000,
    0x01000001000101ff, 0x0100000101ffff01, 0x010001ffff000101, 0x010001ff00ff0100,
    0x010001ff0000ff00, 0x010001ff000100ff, 0x010001ff01ffffff, 0x01000100ffff0000,
    0x01000100ff0001ff, 0x0100010000000000, 0x010001000001ff00, 0x0100010001ff0000,
    0x01000100010000ff, 0x0100010001000101, 0x01000101ff00ff01, 0x0100010100ff0100,
    0x010001010000ffff, 0x0100010101010001, 0x0101ffffffff0101, 0x0101ffffff0001ff,
    0x0101ffffff01ffff, 0x0101ffffff010101, 0x0101ffff00000000, 0x0101ffff0101ffff,
    0x0101ffff010101ff, 0x0101ff00ff000000, 0x0101ff0000ff0100, 0x0101ff000000ff00,
    0x0101ff0000010000, 0x0101ff00010000ff, 0x0101ff0001000001, 0x0101ff01ff010101,
    0x0101ff0100000000, 0x0101ff010101ff00, 0x010100ffffff0000, 0x010100ffff010000,
    0x010100ff00ff01ff, 0x010100ff000000ff, 0x010100ff00000101, 0x010100ff01ffff00,
    0x01010000ffffff01, 0x01010000ff000100, 0x01010000ff01ff01, 0x0101000000000000,
    0x01010000000100ff, 0x010100000101ff01, 0x01010001ffff0000, 0x01010001ff00ffff,
    0x01010001ff010000, 0x0101000101ffffff, 0x0101000101ff01ff, 0x0101000101010101,
    0x010101ffff01ffff, 0x010101ff00000000, 0x010101ff0001ff01, 0x010101ff0101ffff,
    0x010101ff010101ff, 0x01010100ffffffff, 0x01010100ff000001, 0x010101000000ff00,
    0x0101010001010000, 0x0101010100ff0001, 0x010101010001ff01, 0x010101010101ffff,

};

static const uint8_t ksigns_iq2xs[128] = {
      0, 129, 130,   3, 132,   5,   6, 135, 136,   9,  10, 139,  12, 141, 142,  15,
    144,  17,  18, 147,  20, 149, 150,  23,  24, 153, 154,  27, 156,  29,  30, 159,
    160,  33,  34, 163,  36, 165, 166,  39,  40, 169, 170,  43, 172,  45,  46, 175,
     48, 177, 178,  51, 180,  53,  54, 183, 184,  57,  58, 187,  60, 189, 190,  63,
    192,  65,  66, 195,  68, 197, 198,  71,  72, 201, 202,  75, 204,  77,  78, 207,
     80, 209, 210,  83, 212,  85,  86, 215, 216,  89,  90, 219,  92, 221, 222,  95,
     96, 225, 226,  99, 228, 101, 102, 231, 232, 105, 106, 235, 108, 237, 238, 111,
    240, 113, 114, 243, 116, 245, 246, 119, 120, 249, 250, 123, 252, 125, 126, 255,
};

static const uint8_t kmask_iq2xs[8] = {1, 2, 4, 8, 16, 32, 64, 128};

void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int k) {
    assert(k % QK_K == 0);
    const int nb = k / QK_K;

    uint32_t aux32[2];
    const uint8_t * aux8 = (const uint8_t *)aux32;

    for (int i = 0; i < nb; i++) {

        const float d = GGML_FP16_TO_FP32(x[i].d);

        for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
            memcpy(aux32, x[i].qs + 4*ib32, 2*sizeof(uint32_t));
            const float db = d * (0.5f + (aux32[1] >> 28)) * 0.25f;
            for (int l = 0; l < 4; ++l) {
                const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
                const uint8_t  signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
                for (int j = 0; j < 8; ++j) {
                    y[j] = db * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
                }
                y += 8;
            }
        }
    }
}

// ====================== 2.3125 bpw (de)-quantization

void dequantize_row_iq2_xs(const block_iq2_xs * restrict x, float * restrict y, int k) {
    assert(k % QK_K == 0);
    const int nb = k / QK_K;

    float db[2];

    for (int i = 0; i < nb; i++) {

        const float d = GGML_FP16_TO_FP32(x[i].d);

        for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
            db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
            db[1] = d * (0.5f + (x[i].scales[ib32] >>  4)) * 0.25f;
            for (int l = 0; l < 4; ++l) {
                const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (x[i].qs[4*ib32 + l] & 511));
                const uint8_t  signs = ksigns_iq2xs[x[i].qs[4*ib32 + l] >> 9];
                for (int j = 0; j < 8; ++j) {
                    y[j] = db[l/2] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
                }
                y += 8;
            }
        }
    }
}

// ====================== 2.5625 bpw (de)-quantization

void dequantize_row_iq2_s(const block_iq2_s * restrict x, float * restrict y, int k) {
    assert(k % QK_K == 0);
    const int nb = k / QK_K;

    float db[2];

    for (int i = 0; i < nb; i++) {

        const float d = GGML_FP16_TO_FP32(x[i].d);
        const uint8_t * qs = x[i].qs;
        const uint8_t * qh = x[i].qh;
        const uint8_t * signs = qs + QK_K/8;

        for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
            db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
            db[1] = d * (0.5f + (x[i].scales[ib32] >>  4)) * 0.25f;
            for (int l = 0; l < 4; ++l) {
                const float dl = db[l/2];
                const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
                for (int j = 0; j < 8; ++j) {
                    y[j] = dl * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1.f : 1.f);
                }
                y += 8;
            }
            qs += 4;
            signs += 4;
        }
    }
}

// ====================== 3.0625 bpw (de)-quantization

void dequantize_row_iq3_xxs(const block_iq3_xxs * restrict x, float * restrict y, int k) {
    assert(k % QK_K == 0);
    const int nb = k / QK_K;

    uint32_t aux32;

    for (int i = 0; i < nb; i++) {

        const float d = GGML_FP16_TO_FP32(x[i].d);
        const uint8_t * qs = x[i].qs;
        const uint8_t * scales_and_signs = qs + QK_K/4;

        for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
            memcpy(&aux32, scales_and_signs + 4*ib32, sizeof(uint32_t));
            const float db = d * (0.5f + (aux32 >> 28)) * 0.5f;
            for (int l = 0; l < 4; ++l) {
                const uint8_t  signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
                const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + qs[2*l+0]);
                const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + qs[2*l+1]);
                for (int j = 0; j < 4; ++j) {
                    y[j+0] = db * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
                    y[j+4] = db * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
                }
                y += 8;
            }
            qs += 8;
        }
    }
}

// ====================== 3.3125 bpw (de)-quantization

void dequantize_row_iq3_s(const block_iq3_s * restrict x, float * restrict y, int k) {
    assert(k % QK_K == 0);
    const int nb = k / QK_K;

    for (int i = 0; i < nb; i++) {

        const float d = GGML_FP16_TO_FP32(x[i].d);
        const uint8_t * qs = x[i].qs;
        const uint8_t * qh = x[i].qh;
        const uint8_t * signs = x[i].signs;

        for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
            const float db1 = d * (0.5f + (x[i].scales[ib32/2] & 0xf)) * 0.5f;
            const float db2 = d * (0.5f + (x[i].scales[ib32/2] >>  4)) * 0.5f;
            for (int l = 0; l < 4; ++l) {
                const uint8_t * grid1 = (const uint8_t *)(iq3xs_grid + (qs[2*l+0] | ((qh[0] << (8-2*l)) & 256)));
                const uint8_t * grid2 = (const uint8_t *)(iq3xs_grid + (qs[2*l+1] | ((qh[0] << (7-2*l)) & 256)));
                for (int j = 0; j < 4; ++j) {
                    y[j+0] = db1 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
                    y[j+4] = db1 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
                }
                y += 8;
            }
            qs += 8;
            signs += 4;
            for (int l = 0; l < 4; ++l) {
                const uint8_t * grid1 = (const uint8_t *)(iq3xs_grid + (qs[2*l+0] | ((qh[1] << (8-2*l)) & 256)));
                const uint8_t * grid2 = (const uint8_t *)(iq3xs_grid + (qs[2*l+1] | ((qh[1] << (7-2*l)) & 256)));
                for (int j = 0; j < 4; ++j) {
                    y[j+0] = db2 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
                    y[j+4] = db2 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
                }
                y += 8;
            }
            qh += 2;
            qs += 8;
            signs += 4;
        }
    }
}

// ====================== 1.5625 bpw (de)-quantization

void dequantize_row_iq1_s(const block_iq1_s * restrict x, float * restrict y, int k) {
    assert(k % QK_K == 0);
    const int nb = k / QK_K;

    float db[4];
    uint16_t idx[4];
    //const int8_t * grid[4];

    for (int i = 0; i < nb; i++) {

        const float d = GGML_FP16_TO_FP32(x[i].d);
        const uint8_t * sc = x[i].scales;
        const uint8_t * qs = x[i].qs;

        for (int i8 = 0; i8 < QK_K/8; i8 += 4) {
            idx[0] = qs[0] | ((sc[0] & 0x08) << 5);
            idx[1] = qs[1] | ((sc[0] & 0x80) << 1);
            idx[2] = qs[2] | ((sc[1] & 0x08) << 5);
            idx[3] = qs[3] | ((sc[1] & 0x80) << 1);
            //grid[0] = (const int8_t *)(iq1s_grid + (qs[0] | ((sc[0] & 0x08) << 5)));
            //grid[1] = (const int8_t *)(iq1s_grid + (qs[1] | ((sc[0] & 0x80) << 1)));
            //grid[2] = (const int8_t *)(iq1s_grid + (qs[2] | ((sc[1] & 0x08) << 5)));
            //grid[3] = (const int8_t *)(iq1s_grid + (qs[3] | ((sc[1] & 0x80) << 1)));
            db[0] = d * (2*(sc[0] & 7) + 1);
            db[1] = d * (2*((sc[0] >> 4) & 7) + 1);
            db[2] = d * (2*(sc[1] & 7) + 1);
            db[3] = d * (2*((sc[1] >> 4) & 7) + 1);
            for (int l = 0; l < 4; ++l) {
                const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
                for (int j = 0; j < 8; ++j) {
                    //y[j] = db[l] * grid[l][j];
                    y[j] = db[l] * grid[j];
                }
                y += 8;
            }
            qs += 4;
            sc += 2;
        }
    }
}

static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};

void dequantize_row_iq4_nl(const block_iq4_nl * restrict x, float * restrict y, int k) {
    assert(k % QK4_NL == 0);
    const int nb = k / QK4_NL;

    for (int i = 0; i < nb; i++) {

        const uint8_t * qs = x[i].qs;

        const float d = GGML_FP16_TO_FP32(x[i].d);
        for (int j = 0; j < QK4_NL/2; ++j) {
            y[j+       0] = d * kvalues_iq4nl[qs[j] & 0xf];
            y[j+QK4_NL/2] = d * kvalues_iq4nl[qs[j] >>  4];
        }
        y  += QK4_NL;
        qs += QK4_NL/2;
    }
}

void dequantize_row_iq4_xs(const block_iq4_xs * restrict x, float * restrict y, int k) {
    assert(k % QK_K == 0);
#if QK_K == 64
    dequantize_row_iq4_nl((const block_iq4_nl *)x, y, k);
#else
    const int nb = k / QK_K;

    for (int i = 0; i < nb; i++) {

        const uint8_t * qs = x[i].qs;

        const float d = GGML_FP16_TO_FP32(x[i].d);

        for (int ib = 0; ib < QK_K/32; ++ib) {
            const int ls = ((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4);
            const float dl = d * (ls - 32);
            for (int j = 0; j < 16; ++j) {
                y[j+ 0] = dl * kvalues_iq4nl[qs[j] & 0xf];
                y[j+16] = dl * kvalues_iq4nl[qs[j] >>  4];
            }
            y  += 32;
            qs += 16;
        }
    }
#endif
}

//===================================== Q8_K ==============================================

void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) {
    assert(k % QK_K == 0);
    const int nb = k / QK_K;

    for (int i = 0; i < nb; i++) {

        float max = 0;
        float amax = 0;
        for (int j = 0; j < QK_K; ++j) {
            float ax = fabsf(x[j]);
            if (ax > amax) {
                amax = ax; max = x[j];
            }
        }
        if (!amax) {
            y[i].d = 0;
            memset(y[i].qs, 0, QK_K);
            x += QK_K;
            continue;
        }
        //const float iscale = -128.f/max;
        // We need this change for IQ2_XXS, else the AVX implementation becomes very awkward
        const float iscale = -127.f/max;
        for (int j = 0; j < QK_K; ++j) {
            int v = nearest_int(iscale*x[j]);
            y[i].qs[j] = MIN(127, v);
        }
        for (int j = 0; j < QK_K/16; ++j) {
            int sum = 0;
            for (int ii = 0; ii < 16; ++ii) {
                sum += y[i].qs[j*16 + ii];
            }
            y[i].bsums[j] = sum;
        }
        y[i].d = 1/iscale;
        x += QK_K;
    }
}

void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k) {
    assert(k % QK_K == 0);
    const int nb = k / QK_K;

    for (int i = 0; i < nb; i++) {
        for (int j = 0; j < QK_K; ++j) {
            *y++ = x[i].d * x[i].qs[j];
        }
    }
}

void quantize_row_q8_K(const float * restrict x, void * restrict y, int k) {
    quantize_row_q8_K_reference(x, y, k);
}

//===================================== Dot ptoducts =================================

//
// Helper functions
//
#if __AVX__ || __AVX2__ || __AVX512F__

// shuffles to pick the required scales in dot products
static inline __m256i get_scale_shuffle_q3k(int i) {
    static const uint8_t k_shuffle[128] = {
         0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,     2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
         4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,     6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
         8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,    10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
        12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,    14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
    };
    return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
}
static inline __m256i get_scale_shuffle_k4(int i) {
    static const uint8_t k_shuffle[256] = {
         0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
         2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
         4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
         6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
         8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
        10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
        12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
        14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
    };
    return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
}
static inline __m128i get_scale_shuffle(int i) {
    static const uint8_t k_shuffle[128] = {
         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
         2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
         4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
         6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
         8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
        10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
        12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
        14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
    };
    return _mm_loadu_si128((const __m128i*)k_shuffle + i);
}
#endif

void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
    const int qk = QK8_0;
    const int nb = n / qk;

    assert(n % qk == 0);
#if defined(__ARM_FEATURE_MATMUL_INT8)
    assert((nrc == 2) || (nrc == 1));
#else
    assert(nrc == 1);
#endif
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_q4_0 * restrict x = vx;
    const block_q8_0 * restrict y = vy;

#if defined(__ARM_FEATURE_MATMUL_INT8)
    if (nrc == 2) {
        const block_q4_0 * restrict vx0 = vx;
        const block_q4_0 * restrict vx1 = vx + bx;

        const block_q8_0 * restrict vy0 = vy;
        const block_q8_0 * restrict vy1 = vy + by;

        float32x4_t sumv0 = vdupq_n_f32(0.0f);

        for (int i = 0; i < nb; i++) {
            const block_q4_0 * restrict b_x0 = &vx0[i];
            const block_q4_0 * restrict b_x1 = &vx1[i];
            const block_q8_0 * restrict b_y0 = &vy0[i];
            const block_q8_0 * restrict b_y1 = &vy1[i];

            const uint8x16_t m4b = vdupq_n_u8(0x0F);
            const int8x16_t  s8b = vdupq_n_s8(0x8);

            const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
            const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);

            // 4-bit -> 8-bit
            const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8  (v0_0, m4b));
            const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
            const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8  (v0_1, m4b));
            const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));

            // sub 8
            const int8x16_t x0_l = vsubq_s8(v0_0l, s8b);
            const int8x16_t x0_h = vsubq_s8(v0_0h, s8b);
            const int8x16_t x1_l = vsubq_s8(v0_1l, s8b);
            const int8x16_t x1_h = vsubq_s8(v0_1h, s8b);

            // load y
            const int8x16_t y0_l = vld1q_s8(b_y0->qs);
            const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
            const int8x16_t y1_l = vld1q_s8(b_y1->qs);
            const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);

            float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
                                 GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
                                 GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
                                 GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};

            int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
            int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));

            int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
            int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));

            int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
            int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));

            int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
            int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));

            sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
                                                                                l1, r1)), l2, r2)), l3, r3))), scale);
        }
        float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
        float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);

        vst1_f32(s, vget_low_f32(sumv2));
        vst1_f32(s + bs, vget_high_f32(sumv2));
        return;
    }
#endif
#if defined(__ARM_NEON)
    float32x4_t sumv0 = vdupq_n_f32(0.0f);
    float32x4_t sumv1 = vdupq_n_f32(0.0f);

    assert(nb % 2 == 0); // TODO: handle odd nb

    for (int i = 0; i < nb; i += 2) {
        const block_q4_0 * restrict x0 = &x[i + 0];
        const block_q4_0 * restrict x1 = &x[i + 1];
        const block_q8_0 * restrict y0 = &y[i + 0];
        const block_q8_0 * restrict y1 = &y[i + 1];

        const uint8x16_t m4b = vdupq_n_u8(0x0F);
        const int8x16_t  s8b = vdupq_n_s8(0x8);

        const uint8x16_t v0_0 = vld1q_u8(x0->qs);
        const uint8x16_t v0_1 = vld1q_u8(x1->qs);

        // 4-bit -> 8-bit
        const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8  (v0_0, m4b));
        const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
        const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8  (v0_1, m4b));
        const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));

        // sub 8
        const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
        const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
        const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
        const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);

        // load y
        const int8x16_t v1_0l = vld1q_s8(y0->qs);
        const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
        const int8x16_t v1_1l = vld1q_s8(y1->qs);
        const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);

        // dot product into int32x4_t
        const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
        const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);

        sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
        sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
    }

    *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
#elif defined(__AVX2__)
    // Initialize accumulator with zeros
    __m256 acc = _mm256_setzero_ps();

    // Main loop
    for (int i = 0; i < nb; ++i) {
        /* Compute combined scale for the block */
        const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );

        __m256i qx = bytes_from_nibbles_32(x[i].qs);

        // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
        const __m256i off = _mm256_set1_epi8( 8 );
        qx = _mm256_sub_epi8( qx, off );

        __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);

        const __m256 q = mul_sum_i8_pairs_float(qx, qy);

        /* Multiply q with scale and accumulate */
        acc = _mm256_fmadd_ps( d, q, acc );
    }

    *s = hsum_float_8(acc);
#elif defined(__AVX__)
    // Initialize accumulator with zeros
    __m256 acc = _mm256_setzero_ps();

    // Main loop
    for (int i = 0; i < nb; ++i) {
        // Compute combined scale for the block
        const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );

        const __m128i lowMask = _mm_set1_epi8(0xF);
        const __m128i off = _mm_set1_epi8(8);

        const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);

        __m128i bx_0 = _mm_and_si128(lowMask, tmp);
        __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
        bx_0 = _mm_sub_epi8(bx_0, off);
        const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);

        bx_0 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
        by_0 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
        bx_0 = _mm_sub_epi8(bx_0, off);
        const __m128i i32_1 = mul_sum_i8_pairs(bx_0, by_0);

        // Convert int32_t to float
        __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));

        // Apply the scale, and accumulate
        acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
    }

    *s = hsum_float_8(acc);
#elif defined(__SSSE3__)
    // set constants
    const __m128i lowMask = _mm_set1_epi8(0xF);
    const __m128i off = _mm_set1_epi8(8);

    // Initialize accumulator with zeros
    __m128 acc_0 = _mm_setzero_ps();
    __m128 acc_1 = _mm_setzero_ps();
    __m128 acc_2 = _mm_setzero_ps();
    __m128 acc_3 = _mm_setzero_ps();

    // First round without accumulation
    {
        _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
        _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);

        // Compute combined scale for the block 0 and 1
        const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );

        const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);

        __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
        __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
        bx_0 = _mm_sub_epi8(bx_0, off);
        const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);

        __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
        __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
        bx_1 = _mm_sub_epi8(bx_1, off);
        const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);

        _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
        _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);

        // Compute combined scale for the block 2 and 3
        const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );

        const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);

        __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
        __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
        bx_2 = _mm_sub_epi8(bx_2, off);
        const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);

        __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
        __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
        bx_3 = _mm_sub_epi8(bx_3, off);
        const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);

        // Convert int32_t to float
        __m128 p0 = _mm_cvtepi32_ps(i32_0);
        __m128 p1 = _mm_cvtepi32_ps(i32_1);
        __m128 p2 = _mm_cvtepi32_ps(i32_2);
        __m128 p3 = _mm_cvtepi32_ps(i32_3);

        // Apply the scale
        acc_0 = _mm_mul_ps( d_0_1, p0 );
        acc_1 = _mm_mul_ps( d_0_1, p1 );
        acc_2 = _mm_mul_ps( d_2_3, p2 );
        acc_3 = _mm_mul_ps( d_2_3, p3 );
    }

    assert(nb % 2 == 0); // TODO: handle odd nb

    // Main loop
    for (int i = 2; i < nb; i+=2) {
        _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
        _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);

        // Compute combined scale for the block 0 and 1
        const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );

        const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);

        __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
        __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
        bx_0 = _mm_sub_epi8(bx_0, off);
        const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);

        __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
        __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
        bx_1 = _mm_sub_epi8(bx_1, off);
        const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);

        _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
        _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);

        // Compute combined scale for the block 2 and 3
        const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );

        const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);

        __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
        __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
        bx_2 = _mm_sub_epi8(bx_2, off);
        const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);

        __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
        __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
        bx_3 = _mm_sub_epi8(bx_3, off);
        const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);

        // Convert int32_t to float
        __m128 p0 = _mm_cvtepi32_ps(i32_0);
        __m128 p1 = _mm_cvtepi32_ps(i32_1);
        __m128 p2 = _mm_cvtepi32_ps(i32_2);
        __m128 p3 = _mm_cvtepi32_ps(i32_3);

        // Apply the scale
        __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
        __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
        __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
        __m128 p3_d = _mm_mul_ps( d_2_3, p3 );

        // Acummulate
        acc_0 = _mm_add_ps(p0_d, acc_0);
        acc_1 = _mm_add_ps(p1_d, acc_1);
        acc_2 = _mm_add_ps(p2_d, acc_2);
        acc_3 = _mm_add_ps(p3_d, acc_3);
    }

    *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
#elif defined(__riscv_v_intrinsic)
    float sumf = 0.0;

    size_t vl = __riscv_vsetvl_e8m1(qk/2);

    for (int i = 0; i < nb; i++) {
        // load elements
        vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);

        vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
        vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);

        // mask and store lower part of x, and then upper part
        vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
        vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);

        vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
        vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);

        // subtract offset
        vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 8, vl);
        vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 8, vl);

        vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
        vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);

        vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);

        vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
        vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);

        int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);

        sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
    }

    *s = sumf;
#else
    // scalar
    float sumf = 0.0;

    for (int i = 0; i < nb; i++) {
        int sumi = 0;

        for (int j = 0; j < qk/2; ++j) {
            const int v0 = (x[i].qs[j] & 0x0F) - 8;
            const int v1 = (x[i].qs[j] >>   4) - 8;

            sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
        }

        sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
    }

    *s = sumf;
#endif
}

void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
    const int qk = QK8_1;
    const int nb = n / qk;

    assert(n % qk == 0);
#if defined(__ARM_FEATURE_MATMUL_INT8)
    assert((nrc == 2) || (nrc == 1));
#else
    assert(nrc == 1);
#endif
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_q4_1 * restrict x = vx;
    const block_q8_1 * restrict y = vy;

#if defined(__ARM_FEATURE_MATMUL_INT8)
    if (nrc == 2) {
        const block_q4_1 * restrict vx0 = vx;
        const block_q4_1 * restrict vx1 = vx + bx;
        const block_q8_1 * restrict vy0 = vy;
        const block_q8_1 * restrict vy1 = vy + by;

        float32x4_t sumv0 = vdupq_n_f32(0.0f);
        float32x4_t summs0 = vdupq_n_f32(0.0f);

        for (int i = 0; i < nb; i++) {
            const block_q4_1 * restrict b_x0 = &vx0[i];
            const block_q4_1 * restrict b_x1 = &vx1[i];
            const block_q8_1 * restrict b_y0 = &vy0[i];
            const block_q8_1 * restrict b_y1 = &vy1[i];

            float32x4_t summs_t = {GGML_FP16_TO_FP32(b_x0->m) * b_y0->s,
                                   GGML_FP16_TO_FP32(b_x1->m) * b_y0->s,
                                   GGML_FP16_TO_FP32(b_x0->m) * b_y1->s,
                                   GGML_FP16_TO_FP32(b_x1->m) * b_y1->s};
            summs0 += summs_t;

            const uint8x16_t m4b = vdupq_n_u8(0x0F);

            const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
            const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);

            // 4-bit -> 8-bit
            const int8x16_t x0_l = vreinterpretq_s8_u8(vandq_u8  (v0_0, m4b));
            const int8x16_t x0_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
            const int8x16_t x1_l = vreinterpretq_s8_u8(vandq_u8  (v0_1, m4b));
            const int8x16_t x1_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));

            // load y
            const int8x16_t y0_l = vld1q_s8(b_y0->qs);
            const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
            const int8x16_t y1_l = vld1q_s8(b_y1->qs);
            const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);

            // mmla into int32x4_t
            float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
                                 GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
                                 GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
                                 GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};

            int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
            int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));

            int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
            int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));

            int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
            int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));

            int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
            int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
            sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
                                                                                l1, r1)), l2, r2)), l3, r3))), scale);
        }

        float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
        float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
        sumv2 = sumv2 + summs0;

        vst1_f32(s, vget_low_f32(sumv2));
        vst1_f32(s + bs, vget_high_f32(sumv2));
        return;
    }
#endif
    // TODO: add WASM SIMD
#if defined(__ARM_NEON)
    float32x4_t sumv0 = vdupq_n_f32(0.0f);
    float32x4_t sumv1 = vdupq_n_f32(0.0f);

    float summs = 0;

    assert(nb % 2 == 0); // TODO: handle odd nb

    for (int i = 0; i < nb; i += 2) {
        const block_q4_1 * restrict x0 = &x[i + 0];
        const block_q4_1 * restrict x1 = &x[i + 1];
        const block_q8_1 * restrict y0 = &y[i + 0];
        const block_q8_1 * restrict y1 = &y[i + 1];

        summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;

        const uint8x16_t m4b = vdupq_n_u8(0x0F);

        const uint8x16_t v0_0 = vld1q_u8(x0->qs);
        const uint8x16_t v0_1 = vld1q_u8(x1->qs);

        // 4-bit -> 8-bit
        const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8  (v0_0, m4b));
        const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
        const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8  (v0_1, m4b));
        const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));

        // load y
        const int8x16_t v1_0l = vld1q_s8(y0->qs);
        const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
        const int8x16_t v1_1l = vld1q_s8(y1->qs);
        const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);

        // dot product into int32x4_t
        const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
        const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);

        sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
        sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
    }

    *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
#elif defined(__AVX2__) || defined(__AVX__)
    // Initialize accumulator with zeros
    __m256 acc = _mm256_setzero_ps();

    float summs = 0;

    // Main loop
    for (int i = 0; i < nb; ++i) {
        const float d0 = GGML_FP16_TO_FP32(x[i].d);
        const float d1 = y[i].d;

        summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;

        const __m256 d0v = _mm256_set1_ps( d0 );
        const __m256 d1v = _mm256_set1_ps( d1 );

        // Compute combined scales
        const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );

        // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
        const __m256i qx = bytes_from_nibbles_32(x[i].qs);
        const __m256i qy = _mm256_loadu_si256( (const __m256i *)y[i].qs );

        const __m256 xy = mul_sum_us8_pairs_float(qx, qy);

        // Accumulate d0*d1*x*y
#if defined(__AVX2__)
        acc = _mm256_fmadd_ps( d0d1, xy, acc );
#else
        acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
#endif
    }

    *s = hsum_float_8(acc) + summs;
#elif defined(__riscv_v_intrinsic)
    float sumf = 0.0;

    size_t vl = __riscv_vsetvl_e8m1(qk/2);

    for (int i = 0; i < nb; i++) {
        // load elements
        vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);

        vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
        vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);

        // mask and store lower part of x, and then upper part
        vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
        vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);

        vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
        vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);

        vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
        vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);

        vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);

        vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
        vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);

        int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);

        sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
    }

    *s = sumf;
#else
    // scalar
    float sumf = 0.0;

    for (int i = 0; i < nb; i++) {
        int sumi = 0;

        for (int j = 0; j < qk/2; ++j) {
            const int v0 = (x[i].qs[j] & 0x0F);
            const int v1 = (x[i].qs[j] >>   4);

            sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
        }

        sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
    }

    *s = sumf;
#endif
}

void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
    const int qk = QK8_0;
    const int nb = n / qk;

    assert(n % qk == 0);
    assert(qk == QK5_0);
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_q5_0 * restrict x = vx;
    const block_q8_0 * restrict y = vy;

#if defined(__ARM_NEON)
    float32x4_t sumv0 = vdupq_n_f32(0.0f);
    float32x4_t sumv1 = vdupq_n_f32(0.0f);

    uint32_t qh0;
    uint32_t qh1;

    uint64_t tmp0[4];
    uint64_t tmp1[4];

    assert(nb % 2 == 0); // TODO: handle odd nb

    for (int i = 0; i < nb; i += 2) {
        const block_q5_0 * restrict x0 = &x[i];
        const block_q5_0 * restrict x1 = &x[i + 1];
        const block_q8_0 * restrict y0 = &y[i];
        const block_q8_0 * restrict y1 = &y[i + 1];

        const uint8x16_t m4b = vdupq_n_u8(0x0F);

        // extract the 5th bit via lookup table ((!b) << 4)
        memcpy(&qh0, x0->qh, sizeof(qh0));
        memcpy(&qh1, x1->qh, sizeof(qh1));

        tmp0[0] = table_b2b_1[(qh0 >>  0) & 0xFF];
        tmp0[1] = table_b2b_1[(qh0 >>  8) & 0xFF];
        tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
        tmp0[3] = table_b2b_1[(qh0 >> 24)       ];

        tmp1[0] = table_b2b_1[(qh1 >>  0) & 0xFF];
        tmp1[1] = table_b2b_1[(qh1 >>  8) & 0xFF];
        tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
        tmp1[3] = table_b2b_1[(qh1 >> 24)       ];

        const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
        const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
        const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
        const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));

        const uint8x16_t v0_0 = vld1q_u8(x0->qs);
        const uint8x16_t v0_1 = vld1q_u8(x1->qs);

        // 4-bit -> 8-bit
        int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8  (v0_0, m4b));
        int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
        int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8  (v0_1, m4b));
        int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));

        // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
        const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
        const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
        const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
        const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);

        // load y
        const int8x16_t v1_0l = vld1q_s8(y0->qs);
        const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
        const int8x16_t v1_1l = vld1q_s8(y1->qs);
        const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);

        sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
                        ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
                        ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
        sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
                        ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
                        ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
    }

    *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
#elif defined(__wasm_simd128__)
    v128_t sumv = wasm_f32x4_splat(0.0f);

    uint32_t qh;
    uint64_t tmp[4];

    // TODO: check if unrolling this is better
    for (int i = 0; i < nb; ++i) {
        const block_q5_0 * restrict x0 = &x[i];
        const block_q8_0 * restrict y0 = &y[i];

        const v128_t m4b  = wasm_i8x16_splat(0x0F);

        // extract the 5th bit
        memcpy(&qh, x0->qh, sizeof(qh));

        tmp[0] = table_b2b_1[(qh >>  0) & 0xFF];
        tmp[1] = table_b2b_1[(qh >>  8) & 0xFF];
        tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
        tmp[3] = table_b2b_1[(qh >> 24)       ];

        const v128_t qhl = wasm_v128_load(tmp + 0);
        const v128_t qhh = wasm_v128_load(tmp + 2);

        const v128_t v0 = wasm_v128_load(x0->qs);

        // 4-bit -> 8-bit
        const v128_t v0l = wasm_v128_and (v0, m4b);
        const v128_t v0h = wasm_u8x16_shr(v0, 4);

        // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
        const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
        const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);

        // load y
        const v128_t v1l = wasm_v128_load(y0->qs);
        const v128_t v1h = wasm_v128_load(y0->qs + 16);

        // int8x16 -> int16x8
        const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
        const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
        const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
        const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);

        const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
        const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
        const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
        const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);

        // dot product
        sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
                        wasm_i32x4_add(
                            wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
                                           wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
                            wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
                                           wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
                    wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
    }

    *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
         wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
#elif defined(__AVX2__)
    // Initialize accumulator with zeros
    __m256 acc = _mm256_setzero_ps();

    // Main loop
    for (int i = 0; i < nb; i++) {
        /* Compute combined scale for the block */
        const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));

        __m256i qx = bytes_from_nibbles_32(x[i].qs);
        __m256i bxhi = bytes_from_bits_32(x[i].qh);
        bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
        qx = _mm256_or_si256(qx, bxhi);

        __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);

        const __m256 q = mul_sum_i8_pairs_float(qx, qy);

        /* Multiply q with scale and accumulate */
        acc = _mm256_fmadd_ps(d, q, acc);
    }

    *s = hsum_float_8(acc);
#elif defined(__AVX__)
    // Initialize accumulator with zeros
    __m256 acc = _mm256_setzero_ps();
    __m128i mask = _mm_set1_epi8((char)0xF0);

    // Main loop
    for (int i = 0; i < nb; i++) {
        /* Compute combined scale for the block */
        const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));

        __m256i bx_0 = bytes_from_nibbles_32(x[i].qs);
        const __m256i bxhi = bytes_from_bits_32(x[i].qh);
        __m128i bxhil = _mm256_castsi256_si128(bxhi);
        __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
        bxhil = _mm_andnot_si128(bxhil, mask);
        bxhih = _mm_andnot_si128(bxhih, mask);
        __m128i bxl = _mm256_castsi256_si128(bx_0);
        __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
        bxl = _mm_or_si128(bxl, bxhil);
        bxh = _mm_or_si128(bxh, bxhih);
        bx_0 = MM256_SET_M128I(bxh, bxl);

        const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[i].qs);

        const __m256 q = mul_sum_i8_pairs_float(bx_0, by_0);

        /* Multiply q with scale and accumulate */
        acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
    }

    *s = hsum_float_8(acc);
#elif defined(__riscv_v_intrinsic)
    float sumf = 0.0;

    uint32_t qh;

    size_t vl = __riscv_vsetvl_e8m1(qk/2);

    // These temporary registers are for masking and shift operations
    vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
    vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl);

    vuint32m2_t vt_3 = __riscv_vsll_vx_u32m2(vt_2, 16, vl);
    vuint32m2_t vt_4 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);

    for (int i = 0; i < nb; i++) {
        memcpy(&qh, x[i].qh, sizeof(uint32_t));

        // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
        vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(vt_2, qh, vl);
        vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(xha_0, vt_1, vl);
        vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);

        // ((qh & (1u << (j + 16))) >> (j + 12));
        vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(vt_3, qh, vl);
        vuint32m2_t xhl_1 = __riscv_vsrl_vv_u32m2(xha_1, vt_4, vl);

        // narrowing
        vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xhl_0, vl);
        vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);

        vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xhl_1, vl);
        vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);

        // load
        vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);

        vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
        vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);

        vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
        vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);

        vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
        vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);

        vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
        vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);

        vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 16, vl);
        vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 16, vl);

        vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
        vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);

        vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);

        vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
        vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);

        int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);

        sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
    }

    *s = sumf;
#else
    // scalar
    float sumf = 0.0;

    for (int i = 0; i < nb; i++) {
        uint32_t qh;
        memcpy(&qh, x[i].qh, sizeof(qh));

        int sumi = 0;

        for (int j = 0; j < qk/2; ++j) {
            const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
            const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));

            const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
            const int32_t x1 = ((x[i].qs[j] >>   4) | xh_1) - 16;

            sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
        }

        sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
    }

    *s = sumf;
#endif
}

void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
    const int qk = QK8_1;
    const int nb = n / qk;

    assert(n % qk == 0);
    assert(qk == QK5_1);
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_q5_1 * restrict x = vx;
    const block_q8_1 * restrict y = vy;

#if defined(__ARM_NEON)
    float32x4_t sumv0 = vdupq_n_f32(0.0f);
    float32x4_t sumv1 = vdupq_n_f32(0.0f);

    float summs0 = 0.0f;
    float summs1 = 0.0f;

    uint32_t qh0;
    uint32_t qh1;

    uint64_t tmp0[4];
    uint64_t tmp1[4];

    assert(nb % 2 == 0); // TODO: handle odd nb

    for (int i = 0; i < nb; i += 2) {
        const block_q5_1 * restrict x0 = &x[i];
        const block_q5_1 * restrict x1 = &x[i + 1];
        const block_q8_1 * restrict y0 = &y[i];
        const block_q8_1 * restrict y1 = &y[i + 1];

        const uint8x16_t m4b = vdupq_n_u8(0x0F);

        summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
        summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;

        // extract the 5th bit via lookup table ((b) << 4)
        memcpy(&qh0, x0->qh, sizeof(qh0));
        memcpy(&qh1, x1->qh, sizeof(qh1));

        tmp0[0] = table_b2b_0[(qh0 >>  0) & 0xFF];
        tmp0[1] = table_b2b_0[(qh0 >>  8) & 0xFF];
        tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
        tmp0[3] = table_b2b_0[(qh0 >> 24)       ];

        tmp1[0] = table_b2b_0[(qh1 >>  0) & 0xFF];
        tmp1[1] = table_b2b_0[(qh1 >>  8) & 0xFF];
        tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
        tmp1[3] = table_b2b_0[(qh1 >> 24)       ];

        const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
        const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
        const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
        const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));

        const uint8x16_t v0_0 = vld1q_u8(x0->qs);
        const uint8x16_t v0_1 = vld1q_u8(x1->qs);

        // 4-bit -> 8-bit
        const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8  (v0_0, m4b));
        const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
        const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8  (v0_1, m4b));
        const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));

        // add high bit
        const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
        const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
        const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
        const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);

        // load y
        const int8x16_t v1_0l = vld1q_s8(y0->qs);
        const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
        const int8x16_t v1_1l = vld1q_s8(y1->qs);
        const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);

        sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
                        ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
                        ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
        sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
                        ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
                        ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
    }

    *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
#elif defined(__wasm_simd128__)
    v128_t sumv = wasm_f32x4_splat(0.0f);

    float summs = 0.0f;

    uint32_t qh;
    uint64_t tmp[4];

    // TODO: check if unrolling this is better
    for (int i = 0; i < nb; ++i) {
        const block_q5_1 * restrict x0 = &x[i];
        const block_q8_1 * restrict y0 = &y[i];

        summs += GGML_FP16_TO_FP32(x0->m) * y0->s;

        const v128_t m4b = wasm_i8x16_splat(0x0F);

        // extract the 5th bit
        memcpy(&qh, x0->qh, sizeof(qh));

        tmp[0] = table_b2b_0[(qh >>  0) & 0xFF];
        tmp[1] = table_b2b_0[(qh >>  8) & 0xFF];
        tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
        tmp[3] = table_b2b_0[(qh >> 24)       ];

        const v128_t qhl = wasm_v128_load(tmp + 0);
        const v128_t qhh = wasm_v128_load(tmp + 2);

        const v128_t v0 = wasm_v128_load(x0->qs);

        // 4-bit -> 8-bit
        const v128_t v0l = wasm_v128_and (v0, m4b);
        const v128_t v0h = wasm_u8x16_shr(v0, 4);

        // add high bit
        const v128_t v0lf = wasm_v128_or(v0l, qhl);
        const v128_t v0hf = wasm_v128_or(v0h, qhh);

        // load y
        const v128_t v1l = wasm_v128_load(y0->qs);
        const v128_t v1h = wasm_v128_load(y0->qs + 16);

        // int8x16 -> int16x8
        const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
        const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
        const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
        const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);

        const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
        const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
        const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
        const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);

        // dot product
        sumv = wasm_f32x4_add(sumv,
                wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
                            wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
                                           wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
                            wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
                                           wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
                    wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
    }

    *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
         wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
#elif defined(__AVX2__)
    // Initialize accumulator with zeros
    __m256 acc = _mm256_setzero_ps();

    float summs = 0.0f;

    // Main loop
    for (int i = 0; i < nb; i++) {
        const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));

        summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;

        __m256i qx = bytes_from_nibbles_32(x[i].qs);
        __m256i bxhi = bytes_from_bits_32(x[i].qh);
        bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
        qx = _mm256_or_si256(qx, bxhi);

        const __m256 dy = _mm256_set1_ps(y[i].d);
        const __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);

        const __m256 q = mul_sum_us8_pairs_float(qx, qy);

        acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
    }

    *s = hsum_float_8(acc) + summs;
#elif defined(__AVX__)
    // Initialize accumulator with zeros
    __m256 acc = _mm256_setzero_ps();
    __m128i mask = _mm_set1_epi8(0x10);

    float summs = 0.0f;

    // Main loop
    for (int i = 0; i < nb; i++) {
        const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));

        summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;

        __m256i bx_0 = bytes_from_nibbles_32(x[i].qs);
        const __m256i bxhi = bytes_from_bits_32(x[i].qh);
        __m128i bxhil = _mm256_castsi256_si128(bxhi);
        __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
        bxhil = _mm_and_si128(bxhil, mask);
        bxhih = _mm_and_si128(bxhih, mask);
        __m128i bxl = _mm256_castsi256_si128(bx_0);
        __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
        bxl = _mm_or_si128(bxl, bxhil);
        bxh = _mm_or_si128(bxh, bxhih);
        bx_0 = MM256_SET_M128I(bxh, bxl);

        const __m256 dy = _mm256_set1_ps(y[i].d);
        const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[i].qs);

        const __m256 q = mul_sum_us8_pairs_float(bx_0, by_0);

        acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
    }

    *s = hsum_float_8(acc) + summs;
#elif defined(__riscv_v_intrinsic)
    float sumf = 0.0;

    uint32_t qh;

    size_t vl = __riscv_vsetvl_e8m1(qk/2);

    // temporary registers for shift operations
    vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
    vuint32m2_t vt_2 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);

    for (int i = 0; i < nb; i++) {
        memcpy(&qh, x[i].qh, sizeof(uint32_t));

        // load qh
        vuint32m2_t vqh = __riscv_vmv_v_x_u32m2(qh, vl);

        // ((qh >> (j +  0)) << 4) & 0x10;
        vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(vqh, vt_1, vl);
        vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
        vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(xhl_0, 0x10, vl);

        // ((qh >> (j + 12))     ) & 0x10;
        vuint32m2_t xhr_1 = __riscv_vsrl_vv_u32m2(vqh, vt_2, vl);
        vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(xhr_1, 0x10, vl);

        // narrowing
        vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xha_0, vl);
        vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);

        vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xha_1, vl);
        vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);

        // load
        vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);

        vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
        vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);

        vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
        vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);

        vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
        vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);

        vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
        vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);

        vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
        vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);

        vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);

        vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
        vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);

        int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);

        sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
    }

    *s = sumf;
#else
    // scalar
    float sumf = 0.0;

    for (int i = 0; i < nb; i++) {
        uint32_t qh;
        memcpy(&qh, x[i].qh, sizeof(qh));

        int sumi = 0;

        for (int j = 0; j < qk/2; ++j) {
            const uint8_t xh_0 = ((qh >> (j +  0)) << 4) & 0x10;
            const uint8_t xh_1 = ((qh >> (j + 12))     ) & 0x10;

            const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
            const int32_t x1 = (x[i].qs[j] >>  4) | xh_1;

            sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
        }

        sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
    }

    *s = sumf;
#endif
}

void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
    const int qk = QK8_0;
    const int nb = n / qk;

    assert(n % qk == 0);
#if defined(__ARM_FEATURE_MATMUL_INT8)
    assert((nrc == 2) || (nrc == 1));
#else
    assert(nrc == 1);
#endif
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_q8_0 * restrict x = vx;
    const block_q8_0 * restrict y = vy;

#if defined(__ARM_FEATURE_MATMUL_INT8)
    if (nrc == 2) {
        const block_q8_0 * restrict vx0 = vx;
        const block_q8_0 * restrict vx1 = vx + bx;
        const block_q8_0 * restrict vy0 = vy;
        const block_q8_0 * restrict vy1 = vy + by;

        float32x4_t sumv0 = vdupq_n_f32(0.0f);

        for (int i = 0; i < nb; i++) {
            const block_q8_0 * restrict b_x0 = &vx0[i];
            const block_q8_0 * restrict b_y0 = &vy0[i];

            const block_q8_0 * restrict b_x1 = &vx1[i];
            const block_q8_0 * restrict b_y1 = &vy1[i];

            const int8x16_t x0_l = vld1q_s8(b_x0->qs);
            const int8x16_t x0_h = vld1q_s8(b_x0->qs + 16);
            const int8x16_t x1_l = vld1q_s8(b_x1->qs);
            const int8x16_t x1_h = vld1q_s8(b_x1->qs + 16);

            // load y
            const int8x16_t y0_l = vld1q_s8(b_y0->qs);
            const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
            const int8x16_t y1_l = vld1q_s8(b_y1->qs);
            const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);

            float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
                             GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
                             GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
                             GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};

            int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
            int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));

            int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
            int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));

            int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
            int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));

            int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
            int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));

            sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
                                                                                       l1, r1)), l2, r2)), l3, r3))), scale);
        }
        float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
        float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);

        vst1_f32(s, vget_low_f32(sumv2));
        vst1_f32(s + bs, vget_high_f32(sumv2));
        return;
    }
#endif
#if defined(__ARM_NEON)
    float32x4_t sumv0 = vdupq_n_f32(0.0f);
    float32x4_t sumv1 = vdupq_n_f32(0.0f);

    assert(nb % 2 == 0); // TODO: handle odd nb

    for (int i = 0; i < nb; i += 2) {
        const block_q8_0 * restrict x0 = &x[i + 0];
        const block_q8_0 * restrict x1 = &x[i + 1];
        const block_q8_0 * restrict y0 = &y[i + 0];
        const block_q8_0 * restrict y1 = &y[i + 1];

        const int8x16_t x0_0 = vld1q_s8(x0->qs);
        const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
        const int8x16_t x1_0 = vld1q_s8(x1->qs);
        const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);

        // load y
        const int8x16_t y0_0 = vld1q_s8(y0->qs);
        const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
        const int8x16_t y1_0 = vld1q_s8(y1->qs);
        const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);

        sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
                        ggml_vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
                        ggml_vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));

        sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
                        ggml_vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
                        ggml_vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
    }

    *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
#elif defined(__AVX2__) || defined(__AVX__)
    // Initialize accumulator with zeros
    __m256 acc = _mm256_setzero_ps();

    // Main loop
    for (int i = 0; i < nb; ++i) {
        // Compute combined scale for the block
        const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
        __m256i qx = _mm256_loadu_si256((const __m256i *)x[i].qs);
        __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);

        const __m256 q = mul_sum_i8_pairs_float(qx, qy);

        // Multiply q with scale and accumulate
#if defined(__AVX2__)
        acc = _mm256_fmadd_ps( d, q, acc );
#else
        acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
#endif
    }

    *s = hsum_float_8(acc);
#elif defined(__riscv_v_intrinsic)
    float sumf = 0.0;
    size_t vl = __riscv_vsetvl_e8m1(qk);

    for (int i = 0; i < nb; i++) {
        // load elements
        vint8m1_t bx_0 = __riscv_vle8_v_i8m1(x[i].qs, vl);
        vint8m1_t by_0 = __riscv_vle8_v_i8m1(y[i].qs, vl);

        vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx_0, by_0, vl);

        vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
        vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);

        int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);

        sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
    }

    *s = sumf;
#else
    // scalar
    float sumf = 0.0;

    for (int i = 0; i < nb; i++) {
        int sumi = 0;

        for (int j = 0; j < qk; j++) {
            sumi += x[i].qs[j]*y[i].qs[j];
        }

        sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
    }

    *s = sumf;
#endif
}

#if QK_K == 256
void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_q2_K * restrict x = vx;
    const block_q8_K * restrict y = vy;

    const int nb = n / QK_K;

#ifdef __ARM_NEON
    const uint8x16_t m3 = vdupq_n_u8(0x3);
    const uint8x16_t m4 = vdupq_n_u8(0xF);

    const int32x4_t vzero = vdupq_n_s32(0);

    ggml_int8x16x2_t q2bytes;
    uint8_t aux[16];

    float sum = 0;

    for (int i = 0; i < nb; ++i) {
        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
        const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);

        const uint8_t * restrict q2 = x[i].qs;
        const int8_t  * restrict q8 = y[i].qs;
        const uint8_t * restrict sc = x[i].scales;

        const uint8x16_t mins_and_scales = vld1q_u8(sc);
        const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
        vst1q_u8(aux, scales);

        const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
        const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
        const ggml_int16x8x2_t mins16 = {{vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))}};
        const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
                                       vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
        const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
                                       vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
        sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));

        int isum = 0;
        int is = 0;

// We use this macro instead of a function call because for some reason
// the code runs 2-3% slower, even if the function is declared inline
#define MULTIPLY_ACCUM_WITH_SCALE(index)\
        isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
        isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];

#define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
        q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
        q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
        q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
        MULTIPLY_ACCUM_WITH_SCALE((index));

        for (int j = 0; j < QK_K/128; ++j) {
            const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32;

            ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
            q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
            q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));

            MULTIPLY_ACCUM_WITH_SCALE(0);

            SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
            SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
            SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);

            is += 8;
        }

        sum += d * isum;
    }

    *s = sum;

#elif defined __AVX2__

    const __m256i m3 = _mm256_set1_epi8(3);
    const __m128i m4 = _mm_set1_epi8(0xF);

    __m256 acc = _mm256_setzero_ps();

    for (int i = 0; i < nb; ++i) {

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
        const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);

        const uint8_t * restrict q2 = x[i].qs;
        const int8_t  * restrict q8 = y[i].qs;

        const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
        const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
        const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
        const __m256i mins = _mm256_cvtepi8_epi16(mins8);
        const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));

        acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);

        const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
        const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
        const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
        const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};

        __m256i sumi = _mm256_setzero_si256();

        for (int j = 0; j < QK_K/128; ++j) {

            const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;

            const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
            const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
            const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
            const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;

            const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
            const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
            const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
            const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);

            __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
            __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
            __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
            __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);

            p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
            p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
            p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
            p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);

            p0 = _mm256_add_epi32(p0, p1);
            p2 = _mm256_add_epi32(p2, p3);

            sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
        }

        acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);

    }

    *s = hsum_float_8(acc);

#elif defined __AVX__

    const __m128i m3 = _mm_set1_epi8(0x3);
    const __m128i m4 = _mm_set1_epi8(0xF);
    const __m128i m2 = _mm_set1_epi8(0x2);

    __m256 acc = _mm256_setzero_ps();

    for (int i = 0; i < nb; ++i) {

        const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
        const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);

        const uint8_t * restrict q2 = x[i].qs;
        const int8_t  * restrict q8 = y[i].qs;

        // load mins and scales from block_q2_K.scales[QK_K/16]
        const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
        const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
        const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
        const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
        const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));

        // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
        const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
        const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));

        // sumf += -dmin * summs in 32bits*8
        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);

        const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
        const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
        const __m128i scales[2] = { scales_0, scales_1 };

        __m128i sumi_0 = _mm_setzero_si128();
        __m128i sumi_1 = _mm_setzero_si128();

        for (int j = 0; j < QK_K/128; ++j) {

            // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
            const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;

            // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
            __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
            const __m128i q2_0 = _mm_and_si128(q2bits, m3);
            const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
            const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
            const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
            q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
            const __m128i q2_1 = _mm_and_si128(q2bits, m3);
            const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
            const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
            const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);

            // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
            __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
            __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
            __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
            __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
            __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
            __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
            __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
            __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);

            // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
            __m128i shuffle = _mm_set1_epi16(0x0100);
            p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
            shuffle = _mm_add_epi16(shuffle, m2);
            p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
            shuffle = _mm_add_epi16(shuffle, m2);
            p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
            shuffle = _mm_add_epi16(shuffle, m2);
            p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
            shuffle = _mm_add_epi16(shuffle, m2);
            p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
            shuffle = _mm_add_epi16(shuffle, m2);
            p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
            shuffle = _mm_add_epi16(shuffle, m2);
            p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
            shuffle = _mm_add_epi16(shuffle, m2);
            p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);

            p0 = _mm_add_epi32(p0, p1);
            p2 = _mm_add_epi32(p2, p3);
            p4 = _mm_add_epi32(p4, p5);
            p6 = _mm_add_epi32(p6, p7);

            // isum in 32bits*4*2
            sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
            sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
        }

        // sumf += dall * isum - dmin * summs in 32bits
        __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
    }

    *s = hsum_float_8(acc);

#elif defined __riscv_v_intrinsic

    float sumf = 0;
    uint8_t temp_01[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                            1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};

    for (int i = 0; i < nb; ++i) {

        const uint8_t * q2 = x[i].qs;
        const  int8_t * q8 = y[i].qs;
        const uint8_t * sc = x[i].scales;

        const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
        const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);

        size_t vl = 16;

        vuint8m1_t scales = __riscv_vle8_v_u8m1(sc, vl);
        vuint8m1_t aux = __riscv_vand_vx_u8m1(scales, 0x0F, vl);

        vint16m1_t q8sums = __riscv_vle16_v_i16m1(y[i].bsums, vl);

        vuint8mf2_t scales_2 = __riscv_vle8_v_u8mf2(sc, vl);
        vuint8mf2_t mins8 = __riscv_vsrl_vx_u8mf2(scales_2, 0x4, vl);
        vint16m1_t mins = __riscv_vreinterpret_v_u16m1_i16m1(__riscv_vzext_vf2_u16m1(mins8, vl));
        vint32m2_t prod = __riscv_vwmul_vv_i32m2(q8sums, mins, vl);
        vint32m1_t vsums = __riscv_vredsum_vs_i32m2_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);

        sumf  += dmin * __riscv_vmv_x_s_i32m1_i32(vsums);

        vl = 32;

        vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
        vuint8m1_t v_b = __riscv_vle8_v_u8m1(temp_01, vl);

        uint8_t is=0;
        int isum=0;

        for (int j = 0; j < QK_K/128; ++j) {
            // load Q2
            vuint8m1_t q2_x = __riscv_vle8_v_u8m1(q2, vl);

            vuint8m1_t q2_0 = __riscv_vand_vx_u8m1(q2_x, 0x03, vl);
            vuint8m1_t q2_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x2, vl), 0x03 , vl);
            vuint8m1_t q2_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x4, vl), 0x03 , vl);
            vuint8m1_t q2_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x6, vl), 0x03 , vl);

            // duplicate scale elements for product
            vuint8m1_t sc0 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 0+is, vl), vl);
            vuint8m1_t sc1 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 2+is, vl), vl);
            vuint8m1_t sc2 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 4+is, vl), vl);
            vuint8m1_t sc3 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 6+is, vl), vl);

            vint16m2_t p0 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_0, sc0, vl));
            vint16m2_t p1 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_1, sc1, vl));
            vint16m2_t p2 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_2, sc2, vl));
            vint16m2_t p3 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_3, sc3, vl));

            // load Q8
            vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
            vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
            vint8m1_t q8_2 = __riscv_vle8_v_i8m1(q8+64, vl);
            vint8m1_t q8_3 = __riscv_vle8_v_i8m1(q8+96, vl);

            vint32m4_t s0 = __riscv_vwmul_vv_i32m4(p0, __riscv_vwcvt_x_x_v_i16m2(q8_0, vl), vl);
            vint32m4_t s1 = __riscv_vwmul_vv_i32m4(p1, __riscv_vwcvt_x_x_v_i16m2(q8_1, vl), vl);
            vint32m4_t s2 = __riscv_vwmul_vv_i32m4(p2, __riscv_vwcvt_x_x_v_i16m2(q8_2, vl), vl);
            vint32m4_t s3 = __riscv_vwmul_vv_i32m4(p3, __riscv_vwcvt_x_x_v_i16m2(q8_3, vl), vl);

            vint32m1_t isum0 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s0, s1, vl), vzero, vl);
            vint32m1_t isum1 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s2, s3, vl), isum0, vl);

            isum += __riscv_vmv_x_s_i32m1_i32(isum1);

            q2+=32;  q8+=128;  is=8;

        }

        sumf += dall * isum;

    }

    *s = sumf;

#else

    float sumf = 0;

    for (int i = 0; i < nb; ++i) {

        const uint8_t * q2 = x[i].qs;
        const  int8_t * q8 = y[i].qs;
        const uint8_t * sc = x[i].scales;

        int summs = 0;
        for (int j = 0; j < 16; ++j) {
            summs += y[i].bsums[j] * (sc[j] >> 4);
        }

        const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
        const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);

        int isum = 0;
        int is = 0;
        int d;
        for (int k = 0; k < QK_K/128; ++k) {
            int shift = 0;
            for (int j = 0; j < 4; ++j) {
                d = sc[is++] & 0xF;
                int isuml = 0;
                for (int l =  0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
                isum += d * isuml;
                d = sc[is++] & 0xF;
                isuml = 0;
                for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
                isum += d * isuml;
                shift += 2;
                q8 += 32;
            }
            q2 += 32;
        }
        sumf += dall * isum - dmin * summs;
    }
    *s = sumf;
#endif
}

#else

void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_q2_K * restrict x = vx;
    const block_q8_K * restrict y = vy;

    const int nb = n / QK_K;

#ifdef __ARM_NEON
    const uint8x16_t m3 = vdupq_n_u8(0x3);

    const int32x4_t vzero = vdupq_n_s32(0);

    ggml_int8x16x4_t q2bytes;

    uint32_t aux32[2];
    const uint8_t * scales = (const uint8_t *)aux32;

    float sum = 0;

    for (int i = 0; i < nb; ++i) {

        const float d    =  y[i].d * GGML_FP16_TO_FP32(x[i].d);
        const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);

        const uint8_t * restrict q2 = x[i].qs;
        const int8_t  * restrict q8 = y[i].qs;
        const uint32_t * restrict sc = (const uint32_t *)x[i].scales;

        aux32[0] = sc[0] & 0x0f0f0f0f;
        aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;

        sum += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);

        int isum1 = 0, isum2 = 0;

        const uint8x16_t q2bits = vld1q_u8(q2);

        const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);

        q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3));
        q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3));
        q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3));
        q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3));

        isum1 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0];
        isum2 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1];
        isum1 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2];
        isum2 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3];

        sum += d * (isum1 + isum2);
    }

    *s = sum;

#elif defined __AVX2__

    const __m256i m3 = _mm256_set1_epi8(3);

    __m256 acc = _mm256_setzero_ps();

    uint32_t ud, um;
    const uint8_t * restrict db = (const uint8_t *)&ud;
    const uint8_t * restrict mb = (const uint8_t *)&um;

    float summs = 0;

    // TODO: optimize this

    for (int i = 0; i < nb; ++i) {

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
        const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);

        const uint8_t * restrict q2 = x[i].qs;
        const int8_t  * restrict q8 = y[i].qs;

        const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
        ud = (sc[0] >> 0) & 0x0f0f0f0f;
        um = (sc[0] >> 4) & 0x0f0f0f0f;

        int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
        summs += dmin * smin;

        const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
        const __m256i q2_0 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 2), q2bits), m3);
        const __m256i q2_1 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3);

        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));

        const __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
        const __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);

        const __m256i p_0 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 0));
        const __m256i p_1 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 1));
        const __m256i p_2 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 0));
        const __m256i p_3 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 1));

        acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0), acc);
        acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1), acc);
        acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2), acc);
        acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3), acc);
    }

    *s = hsum_float_8(acc) + summs;

#elif defined __AVX__

    const __m128i m3 = _mm_set1_epi8(3);

    __m256 acc = _mm256_setzero_ps();

    uint32_t ud, um;
    const uint8_t * restrict db = (const uint8_t *)&ud;
    const uint8_t * restrict mb = (const uint8_t *)&um;

    float summs = 0;

    // TODO: optimize this

    for (int i = 0; i < nb; ++i) {

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
        const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);

        const uint8_t * restrict q2 = x[i].qs;
        const int8_t  * restrict q8 = y[i].qs;

        const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
        ud = (sc[0] >> 0) & 0x0f0f0f0f;
        um = (sc[0] >> 4) & 0x0f0f0f0f;

        int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
        summs += dmin * smin;

        const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
        const __m128i q2_0 = _mm_and_si128(q2bits, m3);
        const __m128i q2_1 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
        const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
        const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);

        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));

        const __m128i p0 = _mm_maddubs_epi16(q2_0, _mm256_extractf128_si256(q8_0, 0));
        const __m128i p1 = _mm_maddubs_epi16(q2_1, _mm256_extractf128_si256(q8_0, 1));
        const __m128i p2 = _mm_maddubs_epi16(q2_2, _mm256_extractf128_si256(q8_1, 0));
        const __m128i p3 = _mm_maddubs_epi16(q2_3, _mm256_extractf128_si256(q8_1, 1));

        const __m256i p_0 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p0, p0)), _mm_cvtepi16_epi32(p0));
        const __m256i p_1 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p1, p1)), _mm_cvtepi16_epi32(p1));
        const __m256i p_2 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p2, p2)), _mm_cvtepi16_epi32(p2));
        const __m256i p_3 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p3, p3)), _mm_cvtepi16_epi32(p3));

        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0)), acc);
        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1)), acc);
        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2)), acc);
        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3)), acc);
    }

    *s = hsum_float_8(acc) + summs;

#elif defined __riscv_v_intrinsic

    uint32_t aux32[2];
    const uint8_t * scales = (const uint8_t *)aux32;

    float sumf = 0;

    for (int i = 0; i < nb; ++i) {

        const float d    =  y[i].d * GGML_FP16_TO_FP32(x[i].d);
        const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);

        const uint8_t * restrict q2 = x[i].qs;
        const int8_t  * restrict q8 = y[i].qs;
        const uint32_t * restrict sc = (const uint32_t *)x[i].scales;

        aux32[0] = sc[0] & 0x0f0f0f0f;
        aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;

        sumf += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);

        int isum1 = 0;
        int isum2 = 0;

        size_t vl = 16;

        vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);

        // load Q2
        vuint8mf2_t q2_x = __riscv_vle8_v_u8mf2(q2, vl);

        vint8mf2_t q2_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q2_x, 0x03, vl));
        vint8mf2_t q2_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x2, vl), 0x03 , vl));
        vint8mf2_t q2_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x4, vl), 0x03 , vl));
        vint8mf2_t q2_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x6, vl), 0x03 , vl));

        // load Q8, and take product with Q2
        vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q2_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
        vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q2_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
        vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q2_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
        vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q2_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);

        vint16m1_t vs_0 = __riscv_vredsum_vs_i16m1_i16m1(p0, vzero, vl);
        vint16m1_t vs_1 = __riscv_vredsum_vs_i16m1_i16m1(p1, vzero, vl);
        vint16m1_t vs_2 = __riscv_vredsum_vs_i16m1_i16m1(p2, vzero, vl);
        vint16m1_t vs_3 = __riscv_vredsum_vs_i16m1_i16m1(p3, vzero, vl);

        isum1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[0];
        isum2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[1];
        isum1 += __riscv_vmv_x_s_i16m1_i16(vs_2) * scales[2];
        isum2 += __riscv_vmv_x_s_i16m1_i16(vs_3) * scales[3];

        sumf += d * (isum1 + isum2);

    }

    *s = sumf;

#else

    float sumf = 0;

    int isum[QK_K/16];

    for (int i = 0; i < nb; ++i) {

        const uint8_t * q2 = x[i].qs;
        const  int8_t * q8 = y[i].qs;
        const uint8_t * sc = x[i].scales;

        int summs = 0;
        for (int j = 0; j < QK_K/16; ++j) {
            summs += y[i].bsums[j] * (sc[j] >> 4);
        }

        const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
        const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);

        memset(isum, 0, (QK_K/16)*sizeof(int));
        for (int l =  0; l < 16; ++l) {
            isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3);
            isum[1] += q8[l+16] * ((q2[l] >> 2) & 3);
            isum[2] += q8[l+32] * ((q2[l] >> 4) & 3);
            isum[3] += q8[l+48] * ((q2[l] >> 6) & 3);
        }
        for (int l = 0; l < QK_K/16; ++l) {
            isum[l] *= (sc[l] & 0xF);
        }
        sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs;
    }
    *s = sumf;
#endif
}
#endif

#if QK_K == 256
void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
    assert(n % QK_K == 0);
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const uint32_t kmask1 = 0x03030303;
    const uint32_t kmask2 = 0x0f0f0f0f;

    const block_q3_K * restrict x = vx;
    const block_q8_K * restrict y = vy;

    const int nb = n / QK_K;

#ifdef __ARM_NEON

    uint32_t aux[3];
    uint32_t utmp[4];

    const uint8x16_t m3b = vdupq_n_u8(0x3);
    const int32x4_t  vzero = vdupq_n_s32(0);

    const uint8x16_t m0 = vdupq_n_u8(1);
    const uint8x16_t m1 = vshlq_n_u8(m0, 1);
    const uint8x16_t m2 = vshlq_n_u8(m0, 2);
    const uint8x16_t m3 = vshlq_n_u8(m0, 3);
    const int8_t m32 = 32;

    ggml_int8x16x4_t q3bytes;

    float sum = 0;

    for (int i = 0; i < nb; ++i) {

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);

        const uint8_t * restrict q3 = x[i].qs;
        const uint8_t * restrict qh = x[i].hmask;
        const int8_t  * restrict q8 = y[i].qs;

        ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);

        ggml_uint8x16x4_t q3h;

        int32_t isum = 0;

        // Set up scales
        memcpy(aux, x[i].scales, 12);
        utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
        utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
        utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
        utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);

        int8_t * scale = (int8_t *)utmp;
        for (int j = 0; j < 16; ++j) scale[j] -= m32;

        for (int j = 0; j < QK_K/128; ++j) {

            const ggml_uint8x16x2_t q3bits = ggml_vld1q_u8_x2(q3); q3 += 32;
            const ggml_int8x16x4_t q8bytes_1 = ggml_vld1q_s8_x4(q8); q8 += 64;
            const ggml_int8x16x4_t q8bytes_2 = ggml_vld1q_s8_x4(q8); q8 += 64;

            q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
            q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
            q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
            q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);

            q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
            q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
            q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
            q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));

            isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
            isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
            isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
            isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];

            scale += 4;

            q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
            q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
            q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
            q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);

            q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
            q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
            q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
            q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));

            isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
            isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
            isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
            isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];

            scale += 4;

            if (j == 0) {
                qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
                qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
            }

        }
        sum += d * isum;

    }

    *s = sum;

#elif defined __AVX2__

    const __m256i m3 = _mm256_set1_epi8(3);
    const __m256i mone = _mm256_set1_epi8(1);
    const __m128i m32 = _mm_set1_epi8(32);

    __m256 acc = _mm256_setzero_ps();

    uint32_t aux[3];

    for (int i = 0; i < nb; ++i) {

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);

        const uint8_t * restrict q3 = x[i].qs;
        const int8_t  * restrict q8 = y[i].qs;

        // Set up scales
        memcpy(aux, x[i].scales, 12);
        __m128i scales128 = _mm_set_epi32(
                ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
                ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
                (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
                (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
        scales128 = _mm_sub_epi8(scales128, m32);
        const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
        const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
        const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
        const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};

        // high bit
        const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);

        // integer accumulator
        __m256i sumi = _mm256_setzero_si256();

        int bit = 0;
        int is  = 0;

        for (int j = 0; j < QK_K/128; ++j) {
            // load low 2 bits
            const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;

            // prepare low and high bits
            const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
            const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
            ++bit;

            const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
            const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
            ++bit;

            const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
            const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
            ++bit;

            const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
            const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
            ++bit;

            // load Q8 quants
            const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
            const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
            const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
            const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;

            // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
            // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
            // and 2 if the high bit was set)
            __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
            __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
            __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
            __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);

            __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
            __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
            __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
            __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);

            p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
            p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
            p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
            p16_3 = _mm256_sub_epi16(p16_3, q8s_3);

            // multiply with scales
            p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
            p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
            p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
            p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);

            // accumulate
            p16_0 = _mm256_add_epi32(p16_0, p16_1);
            p16_2 = _mm256_add_epi32(p16_2, p16_3);
            sumi  = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));

        }

        // multiply with block scale and accumulate
        acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);

    }

    *s = hsum_float_8(acc);

#elif defined __AVX__

    const __m128i m3 = _mm_set1_epi8(3);
    const __m128i mone = _mm_set1_epi8(1);
    const __m128i m32 = _mm_set1_epi8(32);
    const __m128i m2 = _mm_set1_epi8(2);

    __m256 acc = _mm256_setzero_ps();

    const uint32_t *aux;

    for (int i = 0; i < nb; ++i) {

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);

        const uint8_t * restrict q3 = x[i].qs;
        const int8_t  * restrict q8 = y[i].qs;

        // Set up scales
        aux = (const uint32_t *)x[i].scales;
        __m128i scales128 = _mm_set_epi32(
                ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
                ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
                (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
                (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
        scales128 = _mm_sub_epi8(scales128, m32);
        const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
        const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
        const __m128i scales[2] = { scales_0, scales_1 };

        // high bit *128*2 from block_q3_K.hmask[QK_K/8]
        const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
        const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);

        // integer accumulator
        __m128i sumi_0 = _mm_setzero_si128();
        __m128i sumi_1 = _mm_setzero_si128();

        for (int j = 0; j < QK_K/128; ++j) {
            // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
            const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
            const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;

            // prepare low and high bits
            const int bit = j << 2;

            const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
            const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
            const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
            const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);

            const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
            const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
            const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
            const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);

            const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
            const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
            const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
            const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);

            const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
            const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
            const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
            const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);

            // load Q8 quants from block_q8_K.qs[QK_K]
            const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;

            // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
            // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
            // and 2 if the high bit was set)
            __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
            __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
            __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
            __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
            __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
            __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
            __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
            __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);

            __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
            __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
            __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
            __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
            __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
            __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
            __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
            __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);

            p16_0 = _mm_sub_epi16(p16_0, q8s_0);
            p16_1 = _mm_sub_epi16(p16_1, q8s_1);
            p16_2 = _mm_sub_epi16(p16_2, q8s_2);
            p16_3 = _mm_sub_epi16(p16_3, q8s_3);
            p16_4 = _mm_sub_epi16(p16_4, q8s_4);
            p16_5 = _mm_sub_epi16(p16_5, q8s_5);
            p16_6 = _mm_sub_epi16(p16_6, q8s_6);
            p16_7 = _mm_sub_epi16(p16_7, q8s_7);

            // multiply with scales
            __m128i shuffle = _mm_set1_epi16(0x0100);
            p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
            shuffle = _mm_add_epi16(shuffle, m2);
            p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
            shuffle = _mm_add_epi16(shuffle, m2);
            p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
            shuffle = _mm_add_epi16(shuffle, m2);
            p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
            shuffle = _mm_add_epi16(shuffle, m2);
            p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
            shuffle = _mm_add_epi16(shuffle, m2);
            p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
            shuffle = _mm_add_epi16(shuffle, m2);
            p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
            shuffle = _mm_add_epi16(shuffle, m2);
            p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);

            // accumulate
            p16_0 = _mm_add_epi32(p16_0, p16_1);
            p16_2 = _mm_add_epi32(p16_2, p16_3);
            p16_4 = _mm_add_epi32(p16_4, p16_5);
            p16_6 = _mm_add_epi32(p16_6, p16_7);
            sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
            sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));

        }

        // multiply with block scale and accumulate
        __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);

    }

    *s = hsum_float_8(acc);

#elif defined __riscv_v_intrinsic

    uint32_t aux[3];
    uint32_t utmp[4];

    float sumf = 0;
    for (int i = 0; i < nb; ++i) {

        const uint8_t * restrict q3 = x[i].qs;
        const uint8_t * restrict qh = x[i].hmask;
        const  int8_t * restrict q8 = y[i].qs;

        memcpy(aux, x[i].scales, 12);
        utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
        utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
        utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
        utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);

        int8_t * scale = (int8_t *)utmp;
        for (int j = 0; j < 16; ++j) scale[j] -= 32;


        size_t vl = 32;
        uint8_t m =  1;

        vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
        vuint8m1_t vqh = __riscv_vle8_v_u8m1(qh, vl);

        int sum_t = 0;

        for (int j = 0; j < QK_K; j += 128) {

            vl = 32;

            // load Q3
            vuint8m1_t q3_x = __riscv_vle8_v_u8m1(q3, vl);

            vint8m1_t q3_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q3_x, 0x03, vl));
            vint8m1_t q3_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x2, vl), 0x03 , vl));
            vint8m1_t q3_2 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x4, vl), 0x03 , vl));
            vint8m1_t q3_3 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x6, vl), 0x03 , vl));

            // compute mask for subtraction
            vuint8m1_t qh_m0 = __riscv_vand_vx_u8m1(vqh, m, vl);
            vbool8_t vmask_0 = __riscv_vmseq_vx_u8m1_b8(qh_m0, 0, vl);
            vint8m1_t q3_m0 = __riscv_vsub_vx_i8m1_m(vmask_0, q3_0, 0x4, vl);
            m <<= 1;

            vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
            vbool8_t vmask_1 = __riscv_vmseq_vx_u8m1_b8(qh_m1, 0, vl);
            vint8m1_t q3_m1 = __riscv_vsub_vx_i8m1_m(vmask_1, q3_1, 0x4, vl);
            m <<= 1;

            vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
            vbool8_t vmask_2 = __riscv_vmseq_vx_u8m1_b8(qh_m2, 0, vl);
            vint8m1_t q3_m2 = __riscv_vsub_vx_i8m1_m(vmask_2, q3_2, 0x4, vl);
            m <<= 1;

            vuint8m1_t qh_m3 = __riscv_vand_vx_u8m1(vqh, m, vl);
            vbool8_t vmask_3 = __riscv_vmseq_vx_u8m1_b8(qh_m3, 0, vl);
            vint8m1_t q3_m3 = __riscv_vsub_vx_i8m1_m(vmask_3, q3_3, 0x4, vl);
            m <<= 1;

            // load Q8 and take product with Q3
            vint16m2_t a0 = __riscv_vwmul_vv_i16m2(q3_m0, __riscv_vle8_v_i8m1(q8, vl), vl);
            vint16m2_t a1 = __riscv_vwmul_vv_i16m2(q3_m1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
            vint16m2_t a2 = __riscv_vwmul_vv_i16m2(q3_m2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
            vint16m2_t a3 = __riscv_vwmul_vv_i16m2(q3_m3, __riscv_vle8_v_i8m1(q8+96, vl), vl);

            vl = 16;

            // retrieve lane to multiply with scale
            vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl);
            vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl);
            vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl);
            vint32m2_t aux1_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 1), (scale[3]), vl);
            vint32m2_t aux2_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 0), (scale[4]), vl);
            vint32m2_t aux2_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 1), (scale[5]), vl);
            vint32m2_t aux3_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 0), (scale[6]), vl);
            vint32m2_t aux3_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 1), (scale[7]), vl);

            vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux0_0, aux0_1, vl), vzero, vl);
            vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux1_0, aux1_1, vl), isum0, vl);
            vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux2_0, aux2_1, vl), isum1, vl);
            vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux3_0, aux3_1, vl), isum2, vl);

            sum_t +=  __riscv_vmv_x_s_i32m1_i32(isum3);

            q3 += 32;    q8 += 128;   scale += 8;

        }

        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;

        sumf += d*sum_t;

    }

    *s = sumf;

#else
    // scalar version
    // This function is written like this so the compiler can manage to vectorize most of it
    // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
    // manually vectorized version above. Every other version I tried would run at least 4 times slower.
    // The ideal situation would be if we could just write the code once, and the compiler would
    // automatically produce the best possible set of machine instructions, instead of us having to manually
    // write vectorized versions for AVX, ARM_NEON, etc.

    int8_t  aux8[QK_K];
    int16_t aux16[8];
    float   sums [8];
    int32_t aux32[8];
    memset(sums, 0, 8*sizeof(float));

    uint32_t auxs[4];
    const int8_t * scales = (const int8_t*)auxs;

    float sumf = 0;
    for (int i = 0; i < nb; ++i) {
        const uint8_t * restrict q3 = x[i].qs;
        const uint8_t * restrict hm = x[i].hmask;
        const  int8_t * restrict q8 = y[i].qs;
        memset(aux32, 0, 8*sizeof(int32_t));
        int8_t * restrict a = aux8;
        uint8_t m = 1;
        for (int j = 0; j < QK_K; j += 128) {
            for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
            for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
            a += 32; m <<= 1;
            for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
            for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
            a += 32; m <<= 1;
            for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
            for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
            a += 32; m <<= 1;
            for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
            for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
            a += 32; m <<= 1;
            q3 += 32;
        }
        a = aux8;

        memcpy(auxs, x[i].scales, 12);
        uint32_t tmp = auxs[2];
        auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
        auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
        auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
        auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
        for (int j = 0; j < QK_K/16; ++j) {
            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
            for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
            q8 += 8; a += 8;
            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
            for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
            q8 += 8; a += 8;
        }
        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
        for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
    }
    for (int l = 0; l < 8; ++l) sumf += sums[l];
    *s = sumf;

#endif

}

#else

void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
    assert(n % QK_K == 0);
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_q3_K * restrict x = vx;
    const block_q8_K * restrict y = vy;

    const int nb = n / QK_K;

#ifdef __ARM_NEON
    const int32x4_t vzero = vdupq_n_s32(0);

    const uint8x16_t m3b = vdupq_n_u8(0x3);
    const uint8x16_t mh  = vdupq_n_u8(4);

    ggml_int8x16x4_t q3bytes;

    uint16_t aux16[2];
    int8_t * scales = (int8_t *)aux16;

    float sum = 0;

    for (int i = 0; i < nb; ++i) {

        ggml_uint8x16x4_t q3h;

        const uint8x8_t  hbits    = vld1_u8(x[i].hmask);
        const uint8x16_t q3bits   = vld1q_u8(x[i].qs);
        const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(y[i].qs);

        const uint16_t a = *(const uint16_t *)x[i].scales;
        aux16[0] = a & 0x0f0f;
        aux16[1] = (a >> 4) & 0x0f0f;

        for (int j = 0; j < 4; ++j) scales[j] -= 8;

        int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);

        const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1));
        q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2));
        q3h.val[1] = vandq_u8(mh, htmp);
        q3h.val[2] = vandq_u8(mh, vshrq_n_u8(htmp, 2));
        q3h.val[3] = vandq_u8(mh, vshrq_n_u8(htmp, 4));

        q3bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q3bits, m3b),                q3h.val[0]));
        q3bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 2), m3b), q3h.val[1]));
        q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2]));
        q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6),                q3h.val[3]));

        isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0];
        isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2];
        isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1];
        isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3];

        sum += d * isum;

    }

    *s = sum;

#elif defined __AVX2__

    const __m256i m3 = _mm256_set1_epi8(3);
    const __m256i m1 = _mm256_set1_epi8(1);

    __m256 acc = _mm256_setzero_ps();

    uint64_t aux64;

    uint16_t aux16[2];
    const int8_t * aux8 = (const int8_t *)aux16;

    for (int i = 0; i < nb; ++i) {

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);

        const uint8_t * restrict q3 = x[i].qs;
        const int8_t  * restrict q8 = y[i].qs;

        const uint16_t a = *(const uint16_t *)x[i].scales;
        aux16[0] = a & 0x0f0f;
        aux16[1] = (a >> 4) & 0x0f0f;

        const __m256i scale_0 = MM256_SET_M128I(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8));
        const __m256i scale_1 = MM256_SET_M128I(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8));

        memcpy(&aux64, x[i].hmask, 8);

        const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
        __m256i q3h_0 = MM256_SET_M128I(_mm_srli_epi16(haux, 2), haux);
        __m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4);
        q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2);
        q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2);

        // load low 2 bits
        const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);

        // prepare low and high bits
        const __m256i q3aux  = MM256_SET_M128I(_mm_srli_epi16(q3bits, 2), q3bits);
        const __m256i q3l_0 = _mm256_and_si256(q3aux, m3);
        const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3);

        // load Q8 quants
        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));

        // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
        // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
        // and 2 if the high bit was set)
        const __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
        const __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);

        __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
        __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);

        p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
        p16_1 = _mm256_sub_epi16(p16_1, q8s_1);

        // multiply with scales
        p16_0 = _mm256_madd_epi16(scale_0, p16_0);
        p16_1 = _mm256_madd_epi16(scale_1, p16_1);

        p16_0 = _mm256_add_epi32(p16_0, p16_1);

        // multiply with block scale and accumulate
        acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16_0), acc);

    }

    *s = hsum_float_8(acc);

#elif defined __AVX__

    const __m128i m3 = _mm_set1_epi8(3);
    const __m128i m1 = _mm_set1_epi8(1);

    __m256 acc = _mm256_setzero_ps();

    uint64_t aux64;

    uint16_t aux16[2];
    const int8_t * aux8 = (const int8_t *)aux16;

    for (int i = 0; i < nb; ++i) {

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);

        const uint8_t * restrict q3 = x[i].qs;
        const int8_t  * restrict q8 = y[i].qs;

        const uint16_t a = *(const uint16_t *)x[i].scales;
        aux16[0] = a & 0x0f0f;
        aux16[1] = (a >> 4) & 0x0f0f;

        const __m128i scale_0 = _mm_set1_epi16(aux8[0] - 8);
        const __m128i scale_1 = _mm_set1_epi16(aux8[2] - 8);
        const __m128i scale_2 = _mm_set1_epi16(aux8[1] - 8);
        const __m128i scale_3 = _mm_set1_epi16(aux8[3] - 8);

        memcpy(&aux64, x[i].hmask, 8);

        __m128i q3h_0 = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
        __m128i q3h_1 = _mm_srli_epi16(q3h_0, 2);
        __m128i q3h_2 = _mm_srli_epi16(q3h_0, 4);
        __m128i q3h_3 = _mm_srli_epi16(q3h_0, 6);
        q3h_0 = _mm_slli_epi16(_mm_andnot_si128(q3h_0, m1), 2);
        q3h_1 = _mm_slli_epi16(_mm_andnot_si128(q3h_1, m1), 2);
        q3h_2 = _mm_slli_epi16(_mm_andnot_si128(q3h_2, m1), 2);
        q3h_3 = _mm_slli_epi16(_mm_andnot_si128(q3h_3, m1), 2);

        // load low 2 bits
        const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);

        // prepare low and high bits
        const __m128i q3l_0 = _mm_and_si128(q3bits, m3);
        const __m128i q3l_1 = _mm_and_si128(_mm_srli_epi16(q3bits, 2), m3);
        const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits, 4), m3);
        const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits, 6), m3);

        // load Q8 quants
        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));

        // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm_maddubs_epi16,
        // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
        // and 2 if the high bit was set)
        const __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, _mm256_extractf128_si256(q8_0, 0));
        const __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, _mm256_extractf128_si256(q8_0, 1));
        const __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, _mm256_extractf128_si256(q8_1, 0));
        const __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, _mm256_extractf128_si256(q8_1, 1));

        __m128i p16_0 = _mm_maddubs_epi16(q3l_0, _mm256_extractf128_si256(q8_0, 0));
        __m128i p16_1 = _mm_maddubs_epi16(q3l_1, _mm256_extractf128_si256(q8_0, 1));
        __m128i p16_2 = _mm_maddubs_epi16(q3l_2, _mm256_extractf128_si256(q8_1, 0));
        __m128i p16_3 = _mm_maddubs_epi16(q3l_3, _mm256_extractf128_si256(q8_1, 1));

        p16_0 = _mm_sub_epi16(p16_0, q8s_0);
        p16_1 = _mm_sub_epi16(p16_1, q8s_1);
        p16_2 = _mm_sub_epi16(p16_2, q8s_2);
        p16_3 = _mm_sub_epi16(p16_3, q8s_3);

        // multiply with scales
        p16_0 = _mm_madd_epi16(scale_0, p16_0);
        p16_1 = _mm_madd_epi16(scale_1, p16_1);
        p16_2 = _mm_madd_epi16(scale_2, p16_2);
        p16_3 = _mm_madd_epi16(scale_3, p16_3);

        p16_0 = _mm_add_epi32(p16_0, p16_2);
        p16_1 = _mm_add_epi32(p16_1, p16_3);
        __m256i p16 = MM256_SET_M128I(p16_1, p16_0);

        // multiply with block scale and accumulate
        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16)), acc);

    }

    *s = hsum_float_8(acc);

#elif defined __riscv_v_intrinsic

    uint16_t aux16[2];
    int8_t * scales = (int8_t *)aux16;

    float sumf = 0;

    for (int i = 0; i < nb; ++i) {

        const uint8_t * restrict q3 = x[i].qs;
        const int8_t  * restrict q8 = y[i].qs;

        const uint16_t a = *(const uint16_t *)x[i].scales;
        aux16[0] = a & 0x0f0f;
        aux16[1] = (a >> 4) & 0x0f0f;

        for (int j = 0; j < 4; ++j) scales[j] -= 8;

        int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);

        vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);

        // load qh
        vuint8mf4_t qh_x1   = __riscv_vle8_v_u8mf4(x[i].hmask, 8);
        vuint8mf2_t qh_x2   = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8));

        size_t vl = 16;

        // extend and combine both qh_x1 and qh_x2
        vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl);

        vuint8mf2_t qh_0 = __riscv_vand_vx_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl);
        vuint8mf2_t qh_1 = __riscv_vand_vx_u8mf2(qh_x, 0x4, vl);
        vuint8mf2_t qh_2 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl);
        vuint8mf2_t qh_3 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), 0x4, vl);

        // load Q3
        vuint8mf2_t q3_x  = __riscv_vle8_v_u8mf2(q3, vl);

        vuint8mf2_t q3h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q3_x, 0x3, vl), qh_0, vl);
        vuint8mf2_t q3h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 2, vl), 0x3, vl), qh_1, vl);
        vuint8mf2_t q3h_2 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 4, vl), 0x3, vl), qh_2, vl);
        vuint8mf2_t q3h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 0x6, vl), qh_3, vl);

        vint8mf2_t q3_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_0);
        vint8mf2_t q3_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_1);
        vint8mf2_t q3_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_2);
        vint8mf2_t q3_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_3);

        // load Q8 and take product with Q3
        vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q3_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
        vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q3_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
        vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q3_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
        vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q3_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);

        vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
        vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
        vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
        vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);

        isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scales[0];
        isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scales[2];
        isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scales[1];
        isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scales[3];

        sumf += d * isum;

    }

    *s = sumf;

#else

    int8_t  aux8[QK_K];
    int16_t aux16[8];
    float   sums [8];
    int32_t aux32[8];
    int32_t scales[4];
    memset(sums, 0, 8*sizeof(float));

    float sumf = 0;
    for (int i = 0; i < nb; ++i) {
        const uint8_t * restrict q3 = x[i].qs;
        const uint8_t * restrict hm = x[i].hmask;
        const  int8_t * restrict q8 = y[i].qs;
        int8_t * restrict a = aux8;
        for (int l = 0; l < 8; ++l) {
            a[l+ 0] = (int8_t)((q3[l+0] >> 0) & 3) - (hm[l] & 0x01 ? 0 : 4);
            a[l+ 8] = (int8_t)((q3[l+8] >> 0) & 3) - (hm[l] & 0x02 ? 0 : 4);
            a[l+16] = (int8_t)((q3[l+0] >> 2) & 3) - (hm[l] & 0x04 ? 0 : 4);
            a[l+24] = (int8_t)((q3[l+8] >> 2) & 3) - (hm[l] & 0x08 ? 0 : 4);
            a[l+32] = (int8_t)((q3[l+0] >> 4) & 3) - (hm[l] & 0x10 ? 0 : 4);
            a[l+40] = (int8_t)((q3[l+8] >> 4) & 3) - (hm[l] & 0x20 ? 0 : 4);
            a[l+48] = (int8_t)((q3[l+0] >> 6) & 3) - (hm[l] & 0x40 ? 0 : 4);
            a[l+56] = (int8_t)((q3[l+8] >> 6) & 3) - (hm[l] & 0x80 ? 0 : 4);
        }

        scales[0] = (x[i].scales[0] & 0xF) - 8;
        scales[1] = (x[i].scales[0] >>  4) - 8;
        scales[2] = (x[i].scales[1] & 0xF) - 8;
        scales[3] = (x[i].scales[1] >>  4) - 8;

        memset(aux32, 0, 8*sizeof(int32_t));
        for (int j = 0; j < QK_K/16; ++j) {
            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
            q8 += 8; a += 8;
            for (int l = 0; l < 8; ++l) aux16[l] += q8[l] * a[l];
            q8 += 8; a += 8;
            for (int l = 0; l < 8; ++l) aux32[l] += scales[j] * aux16[l];
        }
        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
        for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
    }
    for (int l = 0; l < 8; ++l) sumf += sums[l];
    *s = sumf;

#endif

}
#endif

#if QK_K == 256
void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
    assert(n % QK_K == 0);
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_q4_K * restrict x = vx;
    const block_q8_K * restrict y = vy;

    const int nb = n / QK_K;

    static const uint32_t kmask1 = 0x3f3f3f3f;
    static const uint32_t kmask2 = 0x0f0f0f0f;
    static const uint32_t kmask3 = 0x03030303;

    uint32_t utmp[4];

#ifdef __ARM_NEON
    const uint8x16_t m4b = vdupq_n_u8(0xf);
    const int32x4_t mzero = vdupq_n_s32(0);

    ggml_int8x16x2_t q4bytes;
    ggml_int8x16x2_t q8bytes;

    float sumf = 0;

    for (int i = 0; i < nb; ++i) {

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
        const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);

        const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));

        memcpy(utmp, x[i].scales, 12);

        uint32x2_t mins8 = { 0 };
        mins8 = vset_lane_u32(utmp[1] & kmask1, mins8, 0);
        mins8 = vset_lane_u32(((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4), mins8, 1);

        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
        utmp[0] &= kmask1;

        const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
        const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
                                         vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
        sumf -= dmin * vaddvq_s32(prod);

        const uint8_t * scales = (const uint8_t *)utmp;

        const uint8_t * restrict q4 = x[i].qs;
        const int8_t  * restrict q8 = y[i].qs;

        int32_t sumi1 = 0;
        int32_t sumi2 = 0;

        for (int j = 0; j < QK_K/64; ++j) {
            const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;

            q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
            q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8  (q4bits.val[0], m4b));
            q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8  (q4bits.val[1], m4b));

            const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
            sumi1 += vaddvq_s32(p1) * scales[2*j+0];

            q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
            q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
            q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));

            const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);

            sumi2 += vaddvq_s32(p2) * scales[2*j+1];
        }

        sumf += d * (sumi1 + sumi2);

    }

    *s = sumf;

#elif defined __AVX2__

    const __m256i m4 = _mm256_set1_epi8(0xF);

    __m256 acc = _mm256_setzero_ps();
    __m128 acc_m = _mm_setzero_ps();

   for (int i = 0; i < nb; ++i) {

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
        const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);

        memcpy(utmp, x[i].scales, 12);
        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
        const uint32_t uaux = utmp[1] & kmask1;
        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
        utmp[2] = uaux;
        utmp[0] &= kmask1;

        const uint8_t * restrict q4 = x[i].qs;
        const int8_t  * restrict q8 = y[i].qs;

        const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));

        const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
        const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
        const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
        acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);

        const __m128i sc128  = _mm256_extracti128_si256(mins_and_scales, 0);
        const __m256i scales = MM256_SET_M128I(sc128, sc128);

        __m256i sumi = _mm256_setzero_si256();

        for (int j = 0; j < QK_K/64; ++j) {

            const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
            const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));

            const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
            const __m256i q4l = _mm256_and_si256(q4bits, m4);
            const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);

            const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
            __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
            p16l = _mm256_madd_epi16(scale_l, p16l);

            const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
            __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
            p16h = _mm256_madd_epi16(scale_h, p16h);
            const __m256i sumj = _mm256_add_epi32(p16l, p16h);

            sumi = _mm256_add_epi32(sumi, sumj);
        }

        __m256 vd = _mm256_set1_ps(d);
        acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);

    }

    acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
    acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));

    *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);

#elif defined __AVX__

    const __m128i m4 = _mm_set1_epi8(0xF);
    const __m128i m2 = _mm_set1_epi8(0x2);

    __m256 acc = _mm256_setzero_ps();
    __m128 acc_m = _mm_setzero_ps();

   for (int i = 0; i < nb; ++i) {

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
        const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);

        const uint8_t * restrict q4 = x[i].qs;
        const int8_t  * restrict q8 = y[i].qs;

        memcpy(utmp, x[i].scales, 12);
        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
        const uint32_t uaux = utmp[1] & kmask1;
        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
        utmp[2] = uaux;
        utmp[0] &= kmask1;

        const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
        const __m128i scales = _mm_cvtepu8_epi16(utmps);
        const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));

        const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
        const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
        const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
        const __m128i prod = _mm_madd_epi16(mins, q8s);
        acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);

        __m128i sumi_0 = _mm_setzero_si128();
        __m128i sumi_1 = _mm_setzero_si128();

        __m128i shuffle = _mm_set1_epi16(0x0100);
        for (int j = 0; j < QK_K/64; ++j) {

            const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
            shuffle = _mm_add_epi16(shuffle, m2);
            const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
            shuffle = _mm_add_epi16(shuffle, m2);

            __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
            const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
            const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
            q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
            const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
            const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);

            const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
            p16l = _mm_madd_epi16(scale_l, p16l);
            sumi_0 = _mm_add_epi32(sumi_0, p16l);
            const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
            p16l = _mm_madd_epi16(scale_l, p16l);
            sumi_1 = _mm_add_epi32(sumi_1, p16l);

            const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
            p16h = _mm_madd_epi16(scale_h, p16h);
            sumi_0 = _mm_add_epi32(sumi_0, p16h);
            const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
            p16h = _mm_madd_epi16(scale_h, p16h);
            sumi_1 = _mm_add_epi32(sumi_1, p16h);

        }

        __m256 vd = _mm256_set1_ps(d);
        __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
        acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);

    }

    acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
    acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));

    *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);

#elif defined __riscv_v_intrinsic

    const uint8_t * scales = (const uint8_t*)&utmp[0];
    const uint8_t * mins   = (const uint8_t*)&utmp[2];

    float sumf = 0;

    for (int i = 0; i < nb; ++i) {

        size_t vl = 8;

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
        const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);

        vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
        vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
        vint16mf2_t q8sums   = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);

        memcpy(utmp, x[i].scales, 12);
        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
        const uint32_t uaux = utmp[1] & kmask1;
        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
        utmp[2] = uaux;
        utmp[0] &= kmask1;

        vuint8mf4_t mins8  = __riscv_vle8_v_u8mf4(mins, vl);
        vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
        vint32m1_t  prod   = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);

        vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
        sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);

        const uint8_t * restrict q4 = x[i].qs;
        const int8_t  * restrict q8 = y[i].qs;

        vl = 32;

        int32_t sum_1 = 0;
        int32_t sum_2 = 0;

        vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);

        for (int j = 0; j < QK_K/64; ++j) {
            // load Q4
            vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);

            // load Q8 and multiply it with lower Q4 nibble
            vint8m1_t  q8_0 = __riscv_vle8_v_i8m1(q8, vl);
            vint8m1_t  q4_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
            vint16m2_t qv_0 = __riscv_vwmul_vv_i16m2(q4_0, q8_0, vl);
            vint16m1_t vs_0 = __riscv_vredsum_vs_i16m2_i16m1(qv_0, vzero, vl);

            sum_1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[2*j+0];

            // load Q8 and multiply it with upper Q4 nibble
            vint8m1_t  q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
            vint8m1_t  q4_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
            vint16m2_t qv_1 = __riscv_vwmul_vv_i16m2(q4_1, q8_1, vl);
            vint16m1_t vs_1 = __riscv_vredsum_vs_i16m2_i16m1(qv_1, vzero, vl);

            sum_2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[2*j+1];

            q4 += 32;    q8 += 64;

        }

        sumf += d*(sum_1 + sum_2);

    }

    *s = sumf;

#else


    const uint8_t * scales = (const uint8_t*)&utmp[0];
    const uint8_t * mins   = (const uint8_t*)&utmp[2];

    int8_t  aux8[QK_K];
    int16_t aux16[8];
    float   sums [8];
    int32_t aux32[8];
    memset(sums, 0, 8*sizeof(float));

    float sumf = 0;
    for (int i = 0; i < nb; ++i) {
        const uint8_t * restrict q4 = x[i].qs;
        const  int8_t * restrict q8 = y[i].qs;
        memset(aux32, 0, 8*sizeof(int32_t));
        int8_t * restrict a = aux8;
        for (int j = 0; j < QK_K/64; ++j) {
            for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
            a += 32;
            for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l]  >> 4);
            a += 32; q4 += 32;
        }
        memcpy(utmp, x[i].scales, 12);
        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
        const uint32_t uaux = utmp[1] & kmask1;
        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
        utmp[2] = uaux;
        utmp[0] &= kmask1;

        int sumi = 0;
        for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
        a = aux8;
        int is = 0;
        for (int j = 0; j < QK_K/32; ++j) {
            int32_t scale = scales[is++];
            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
            q8 += 8; a += 8;
            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
            q8 += 8; a += 8;
            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
            q8 += 8; a += 8;
            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
            q8 += 8; a += 8;
        }
        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
        for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
        const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
        sumf -= dmin * sumi;
    }
    for (int l = 0; l < 8; ++l) sumf += sums[l];
    *s = sumf;
#endif
}
#else
void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
    assert(n % QK_K == 0);
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_q4_K * restrict x = vx;
    const block_q8_K * restrict y = vy;

    const int nb = n / QK_K;

#ifdef __ARM_NEON
    const uint8x16_t m4b = vdupq_n_u8(0xf);

    const int32x4_t mzero = vdupq_n_s32(0);

    float sumf = 0;

    ggml_int8x16x2_t q4bytes;
    ggml_int8x16x4_t q8bytes;

    float sum_mins = 0.f;

    uint16_t aux16[2];
    const uint8_t * restrict scales = (const uint8_t *)aux16;

    for (int i = 0; i < nb; ++i) {

        const uint8_t * restrict q4 = x[i].qs;
        const int8_t  * restrict q8 = y[i].qs;

        const uint16_t * restrict a = (const uint16_t *)x[i].scales;
        aux16[0] = a[0] & 0x0f0f;
        aux16[1] = (a[0] >> 4) & 0x0f0f;

        const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]);
        sum_mins += y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * summi;

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);

        const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4);

        q8bytes = ggml_vld1q_s8_x4(q8);
        q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8  (q4bits.val[0], m4b));
        q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8  (q4bits.val[1], m4b));

        const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
        const int32_t sumi1 = vaddvq_s32(p1) * scales[0];

        q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
        q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));

        const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]);
        const int32_t sumi2 = vaddvq_s32(p2) * scales[1];

        sumf += d * (sumi1 + sumi2);
    }

    *s = sumf - sum_mins;

#elif defined __AVX2__

    const __m256i m4 = _mm256_set1_epi8(0xF);

    __m256 acc = _mm256_setzero_ps();

    float summs = 0;

    uint16_t aux16[2];
    const uint8_t * scales = (const uint8_t *)aux16;

    for (int i = 0; i < nb; ++i) {

        const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d;
        const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d;
        const __m256 vd = _mm256_set1_ps(d);

        const uint16_t * a = (const uint16_t *)x[i].scales;
        aux16[0] = a[0] & 0x0f0f;
        aux16[1] = (a[0] >> 4) & 0x0f0f;

        summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));

        const uint8_t * restrict q4 = x[i].qs;
        const int8_t  * restrict q8 = y[i].qs;

        const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
        const __m256i q4l = _mm256_and_si256(q4bits, m4);
        const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);

        const __m256i q8l = _mm256_loadu_si256((const __m256i*)(q8+ 0));
        const __m256i q8h = _mm256_loadu_si256((const __m256i*)(q8+32));

        const __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
        const __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);

        const __m256i p32l = _mm256_madd_epi16(_mm256_set1_epi16(scales[0]), p16l);
        acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32l), acc);

        const __m256i p32h = _mm256_madd_epi16(_mm256_set1_epi16(scales[1]), p16h);
        acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32h), acc);

    }

    *s = hsum_float_8(acc) - summs;

#elif defined __AVX__

    const __m128i m4 = _mm_set1_epi8(0xF);

    __m256 acc = _mm256_setzero_ps();

    float summs = 0;

    uint16_t aux16[2];
    const uint8_t * scales = (const uint8_t *)aux16;

    for (int i = 0; i < nb; ++i) {

        const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d;
        const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d;
        const __m256 vd = _mm256_set1_ps(d);

        const uint16_t * a = (const uint16_t *)x[i].scales;
        aux16[0] = a[0] & 0x0f0f;
        aux16[1] = (a[0] >> 4) & 0x0f0f;

        summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));

        const uint8_t * restrict q4 = x[i].qs;
        const int8_t  * restrict q8 = y[i].qs;

        const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
        const __m128i q4bits_0 = _mm256_extractf128_si256(q4bits, 0);
        const __m128i q4bits_1 = _mm256_extractf128_si256(q4bits, 1);
        const __m128i q4_0 = _mm_and_si128(q4bits_0, m4);
        const __m128i q4_1 = _mm_and_si128(q4bits_1, m4);
        const __m128i q4_2 = _mm_and_si128(_mm_srli_epi16(q4bits_0, 4), m4);
        const __m128i q4_3 = _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4);

        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));

        const __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
        const __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
        const __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
        const __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));

        const __m128i p32_0 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_0);
        const __m128i p32_1 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_1);
        acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_1, p32_0))), acc);

        const __m128i p32_2 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_2);
        const __m128i p32_3 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_3);
        acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_3, p32_2))), acc);

    }

    *s = hsum_float_8(acc) - summs;

#elif defined __riscv_v_intrinsic

    uint16_t s16[2];
    const uint8_t * restrict scales = (const uint8_t *)s16;

    float sumf = 0;

    for (int i = 0; i < nb; ++i) {

        const uint8_t * restrict q4 = x[i].qs;
        const  int8_t * restrict q8 = y[i].qs;

        const uint16_t * restrict b = (const uint16_t *)x[i].scales;
        s16[0] = b[0] & 0x0f0f;
        s16[1] = (b[0] >> 4) & 0x0f0f;

        sumf -= y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);

        size_t vl = 32;

        vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);

        // load Q4
        vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);

        // load Q8 and multiply it with lower Q4 nibble
        vint8m1_t  q4_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
        vint16m2_t va_0 = __riscv_vwmul_vv_i16m2(q4_a, __riscv_vle8_v_i8m1(q8, vl), vl);
        vint16m1_t aux1 = __riscv_vredsum_vs_i16m2_i16m1(va_0, vzero, vl);

        sumf += d*scales[0]*__riscv_vmv_x_s_i16m1_i16(aux1);

        // load Q8 and multiply it with upper Q4 nibble
        vint8m1_t  q4_s = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
        vint16m2_t va_1 = __riscv_vwmul_vv_i16m2(q4_s, __riscv_vle8_v_i8m1(q8+32, vl), vl);
        vint16m1_t aux2 = __riscv_vredsum_vs_i16m2_i16m1(va_1, vzero, vl);

        sumf += d*scales[1]*__riscv_vmv_x_s_i16m1_i16(aux2);

    }

    *s = sumf;

#else

    uint8_t aux8[QK_K];
    int16_t aux16[16];
    float   sums [8];
    memset(sums, 0, 8*sizeof(float));

    uint16_t s16[2];
    const uint8_t * restrict scales = (const uint8_t *)s16;

    float sumf = 0;
    for (int i = 0; i < nb; ++i) {
        const uint8_t * restrict q4 = x[i].qs;
        const  int8_t * restrict q8 = y[i].qs;
        uint8_t * restrict a = aux8;
        for (int l = 0; l < 32; ++l) a[l+ 0] = q4[l] & 0xF;
        for (int l = 0; l < 32; ++l) a[l+32] = q4[l]  >> 4;

        const uint16_t * restrict b = (const uint16_t *)x[i].scales;
        s16[0] = b[0] & 0x0f0f;
        s16[1] = (b[0] >> 4) & 0x0f0f;

        sumf -= y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);

        for (int j = 0; j < QK_K/32; ++j) {
            for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
            q8 += 16; a += 16;
            for (int l = 0; l < 16; ++l) aux16[l] += q8[l] * a[l];
            q8 += 16; a += 16;
            const float dl = d * scales[j];
            for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[l+8]);
        }
    }
    for (int l = 0; l < 8; ++l) sumf += sums[l];
    *s = sumf;
#endif
}
#endif

#if QK_K == 256
void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy,  size_t by, int nrc) {
    assert(n % QK_K == 0);
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_q5_K * restrict x = vx;
    const block_q8_K * restrict y = vy;

    const int nb = n / QK_K;

    static const uint32_t kmask1 = 0x3f3f3f3f;
    static const uint32_t kmask2 = 0x0f0f0f0f;
    static const uint32_t kmask3 = 0x03030303;

    uint32_t utmp[4];

#ifdef __ARM_NEON
    const uint8x16_t m4b = vdupq_n_u8(0xf);
    const uint8x16_t mone = vdupq_n_u8(1);
    const uint8x16_t mtwo = vdupq_n_u8(2);
    const int32x4_t mzero = vdupq_n_s32(0);

    ggml_int8x16x4_t q5bytes;

    float sumf = 0;

    for (int i = 0; i < nb; ++i) {

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
        const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);

        const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));

        memcpy(utmp, x[i].scales, 12);
        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
        const uint32_t uaux = utmp[1] & kmask1;
        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
        utmp[2] = uaux;
        utmp[0] &= kmask1;

        const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
        const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
        const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
                                         vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
        int32_t sumi_mins = vaddvq_s32(prod);

        const uint8_t * scales = (const uint8_t *)utmp;

        const uint8_t * restrict q5 = x[i].qs;
        const uint8_t * restrict qh = x[i].qh;
        const int8_t  * restrict q8 = y[i].qs;

        ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);

        ggml_uint8x16x4_t q5h;

        int32_t sumi = 0;

        for (int j = 0; j < QK_K/64; ++j) {

            const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); q5 += 32;
            const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;

            q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
            q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
            q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
            q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
            qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
            qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);

            q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
            q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
            q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
            q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));

            sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
            sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
        }

        sumf += d * sumi - dmin * sumi_mins;
    }

    *s = sumf;

#elif defined __AVX2__

    const __m256i m4 = _mm256_set1_epi8(0xF);
    const __m128i mzero = _mm_setzero_si128();
    const __m256i mone  = _mm256_set1_epi8(1);

    __m256 acc = _mm256_setzero_ps();

    float summs = 0.f;

   for (int i = 0; i < nb; ++i) {

        const uint8_t * restrict q5 = x[i].qs;
        const int8_t  * restrict q8 = y[i].qs;

#if QK_K == 256
        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
        const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);

        memcpy(utmp, x[i].scales, 12);
        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
        const uint32_t uaux = utmp[1] & kmask1;
        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
        utmp[2] = uaux;
        utmp[0] &= kmask1;
#else
        // TODO
        const float d = 0, dmin = 0;
#endif

        const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));

        const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
        const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
        const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
        const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
        summs += dmin * _mm_extract_epi32(hsum, 0);

        const __m128i sc128  = _mm256_extracti128_si256(mins_and_scales, 0);
        const __m256i scales = MM256_SET_M128I(sc128, sc128);

        const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
        __m256i hmask = mone;

        __m256i sumi = _mm256_setzero_si256();

        int bit = 0;

        for (int j = 0; j < QK_K/64; ++j) {

            const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
            const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));

            const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;

            const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
            const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
            const __m256i q5_0  = _mm256_add_epi8(q5l_0, q5h_0);
            hmask = _mm256_slli_epi16(hmask, 1);

            const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
            const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
            const __m256i q5_1  = _mm256_add_epi8(q5l_1, q5h_1);
            hmask = _mm256_slli_epi16(hmask, 1);

            const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
            const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;

            __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
            __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);

            p16_0 = _mm256_madd_epi16(scale_0, p16_0);
            p16_1 = _mm256_madd_epi16(scale_1, p16_1);

            sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));

        }

        __m256 vd = _mm256_set1_ps(d);
        acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);

    }

    *s = hsum_float_8(acc) + summs;

#elif defined __AVX__

    const __m128i m4 = _mm_set1_epi8(0xF);
    const __m128i mzero = _mm_setzero_si128();
    const __m128i mone  = _mm_set1_epi8(1);
    const __m128i m2 = _mm_set1_epi8(2);

    __m256 acc = _mm256_setzero_ps();

    float summs = 0.f;

    for (int i = 0; i < nb; ++i) {

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
        const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);

        const uint8_t * restrict q5 = x[i].qs;
        const int8_t  * restrict q8 = y[i].qs;

        memcpy(utmp, x[i].scales, 12);
        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
        const uint32_t uaux = utmp[1] & kmask1;
        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
        utmp[2] = uaux;
        utmp[0] &= kmask1;

        const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
        const __m128i scales = _mm_cvtepu8_epi16(utmps);
        const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));

        const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
        const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
        const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
        const __m128i prod = _mm_madd_epi16(mins, q8s);
        const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
        summs += dmin * _mm_extract_epi32(hsum, 0);

        const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
        const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
        __m128i hmask = mone;

        __m128i sumi_0 = _mm_setzero_si128();
        __m128i sumi_1 = _mm_setzero_si128();

        int bit = 0;

        __m128i shuffle = _mm_set1_epi16(0x0100);
        for (int j = 0; j < QK_K/64; ++j) {

            const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
            shuffle = _mm_add_epi16(shuffle, m2);
            const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
            shuffle = _mm_add_epi16(shuffle, m2);

            const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
            const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;

            __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
            __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
            __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
            __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
            __m128i q5_0  = _mm_add_epi8(q5l_0, q5h_0);
            __m128i q5_1  = _mm_add_epi8(q5l_1, q5h_1);
            hmask = _mm_slli_epi16(hmask, 1);

            __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
            __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
            p16_0 = _mm_madd_epi16(scale_0, p16_0);
            p16_1 = _mm_madd_epi16(scale_0, p16_1);

            q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
            q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
            q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
            q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
            q5_0  = _mm_add_epi8(q5l_0, q5h_0);
            q5_1  = _mm_add_epi8(q5l_1, q5h_1);
            hmask = _mm_slli_epi16(hmask, 1);

            q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
            __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
            p16_2 = _mm_madd_epi16(scale_1, p16_2);
            p16_3 = _mm_madd_epi16(scale_1, p16_3);

            sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
            sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));

        }

        __m256 vd = _mm256_set1_ps(d);
        __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
        acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);

    }

    *s = hsum_float_8(acc) + summs;

#elif defined __riscv_v_intrinsic

    const uint8_t * scales = (const uint8_t*)&utmp[0];
    const uint8_t * mins   = (const uint8_t*)&utmp[2];

    float sumf = 0;
    float sums = 0.0;

    size_t vl;

    for (int i = 0; i < nb; ++i) {

        vl = 8;

        const uint8_t * restrict q5 = x[i].qs;
        const uint8_t * restrict hm = x[i].qh;
        const  int8_t * restrict q8 = y[i].qs;

        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
        const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;

        vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
        vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
        vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);

        memcpy(utmp, x[i].scales, 12);
        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
        const uint32_t uaux = utmp[1] & kmask1;
        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
        utmp[2] = uaux;
        utmp[0] &= kmask1;

        vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
        vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
        vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);

        vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
        sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);

        vl = 32;
        int32_t aux32 = 0;
        int is = 0;

        uint8_t m = 1;
        vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
        vuint8m1_t vqh = __riscv_vle8_v_u8m1(hm, vl);

        for (int j = 0; j < QK_K/64; ++j) {
            // load Q5 and Q8
            vuint8m1_t q5_x = __riscv_vle8_v_u8m1(q5, vl);
            vint8m1_t  q8_y1 = __riscv_vle8_v_i8m1(q8, vl);
            vint8m1_t  q8_y2 = __riscv_vle8_v_i8m1(q8+32, vl);

            // compute mask for addition
            vint8m1_t q5_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q5_x, 0x0F, vl));
            vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
            vbool8_t vmask_1 = __riscv_vmsne_vx_u8m1_b8(qh_m1, 0, vl);
            vint8m1_t q5_m1 = __riscv_vadd_vx_i8m1_m(vmask_1, q5_a, 16, vl);
            m <<= 1;

            vint8m1_t q5_l = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q5_x, 0x04, vl));
            vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
            vbool8_t vmask_2 = __riscv_vmsne_vx_u8m1_b8(qh_m2, 0, vl);
            vint8m1_t q5_m2 = __riscv_vadd_vx_i8m1_m(vmask_2, q5_l, 16, vl);
            m <<= 1;

            vint16m2_t v0 = __riscv_vwmul_vv_i16m2(q5_m1, q8_y1, vl);
            vint16m2_t v1 = __riscv_vwmul_vv_i16m2(q5_m2, q8_y2, vl);

            vint32m4_t vs1 = __riscv_vwmul_vx_i32m4(v0, scales[is++], vl);
            vint32m4_t vs2 = __riscv_vwmul_vx_i32m4(v1, scales[is++], vl);

            vint32m1_t vacc1 = __riscv_vredsum_vs_i32m4_i32m1(vs1, vzero, vl);
            vint32m1_t vacc2 = __riscv_vredsum_vs_i32m4_i32m1(vs2, vzero, vl);

            aux32 += __riscv_vmv_x_s_i32m1_i32(vacc1) + __riscv_vmv_x_s_i32m1_i32(vacc2);
            q5 += 32;    q8 += 64;

        }

        vfloat32m1_t vaux = __riscv_vfmul_vf_f32m1(__riscv_vfmv_v_f_f32m1(aux32, 1), d, 1);
        sums += __riscv_vfmv_f_s_f32m1_f32(vaux);

    }

    *s = sumf+sums;

#else

    const uint8_t * scales = (const uint8_t*)&utmp[0];
    const uint8_t * mins   = (const uint8_t*)&utmp[2];

    int8_t  aux8[QK_K];
    int16_t aux16[8];
    float   sums [8];
    int32_t aux32[8];
    memset(sums, 0, 8*sizeof(float));

    float sumf = 0;
    for (int i = 0; i < nb; ++i) {
        const uint8_t * restrict q4 = x[i].qs;
        const uint8_t * restrict hm = x[i].qh;
        const  int8_t * restrict q8 = y[i].qs;
        memset(aux32, 0, 8*sizeof(int32_t));
        int8_t * restrict a = aux8;
        uint8_t m = 1;
        for (int j = 0; j < QK_K/64; ++j) {
            for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
            for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
            a += 32; m <<= 1;
            for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l]  >> 4);
            for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
            a += 32; m <<= 1;
            q4 += 32;
        }
        memcpy(utmp, x[i].scales, 12);
        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
        const uint32_t uaux = utmp[1] & kmask1;
        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
        utmp[2] = uaux;
        utmp[0] &= kmask1;

        int sumi = 0;
        for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
        a = aux8;
        int is = 0;
        for (int j = 0; j < QK_K/32; ++j) {
            int32_t scale = scales[is++];
            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
            q8 += 8; a += 8;
            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
            q8 += 8; a += 8;
            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
            q8 += 8; a += 8;
            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
            q8 += 8; a += 8;
        }
        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
        for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
        const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
        sumf -= dmin * sumi;
    }
    for (int l = 0; l < 8; ++l) sumf += sums[l];
    *s = sumf;
#endif
}

#else

void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
    assert(n % QK_K == 0);
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_q5_K * restrict x = vx;
    const block_q8_K * restrict y = vy;

    const int nb = n / QK_K;

#ifdef __ARM_NEON
    const uint8x16_t m4b = vdupq_n_u8(0xf);
    const uint8x16_t mh = vdupq_n_u8(16);
    const int32x4_t mzero = vdupq_n_s32(0);

    ggml_int8x16x4_t q5bytes;
    ggml_uint8x16x4_t q5h;

    float sumf = 0;

    for (int i = 0; i < nb; ++i) {

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
        const int8_t * sc = x[i].scales;

        const uint8_t * restrict q5 = x[i].qs;
        const uint8_t * restrict qh = x[i].qh;
        const int8_t  * restrict q8 = y[i].qs;

        const uint8x8_t qhbits = vld1_u8(qh);

        const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5);
        const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);

        const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1));
        q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4));
        q5h.val[1] = vbicq_u8(mh, vshlq_n_u8(htmp, 2));
        q5h.val[2] = vbicq_u8(mh, htmp);
        q5h.val[3] = vbicq_u8(mh, vshrq_n_u8(htmp, 2));

        q5bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[0], m4b)), vreinterpretq_s8_u8(q5h.val[0]));
        q5bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[1], m4b)), vreinterpretq_s8_u8(q5h.val[1]));
        q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2]));
        q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3]));

        int32_t sumi1 = sc[0] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]));
        int32_t sumi2 = sc[1] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1]));
        int32_t sumi3 = sc[2] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]));
        int32_t sumi4 = sc[3] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3]));

        sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
    }

    *s = sumf;

#elif defined __AVX2__

    const __m256i m4 = _mm256_set1_epi8(0xF);
    const __m256i mone  = _mm256_set1_epi8(1);

    __m256 acc = _mm256_setzero_ps();

    for (int i = 0; i < nb; ++i) {

        const uint8_t * restrict q5 = x[i].qs;
        const int8_t  * restrict q8 = y[i].qs;

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);

        const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);

        const __m256i scale_l = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0]));
        const __m256i scale_h = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2]));

        int64_t aux64;
        memcpy(&aux64, x[i].qh, 8);
        const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64);
        const __m256i haux256 = MM256_SET_M128I(_mm_srli_epi16(haux128, 2), haux128);

        const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4);
        const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4);

        const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
        const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);

        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));

        const __m256i p16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5l_0, q8_0));
        const __m256i p16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5l_1, q8_1));
        const __m256i s16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5h_0, q8_0));
        const __m256i s16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5h_1, q8_1));

        const __m256i dot = _mm256_sub_epi32(_mm256_add_epi32(p16_0, p16_1), _mm256_add_epi32(s16_0, s16_1));

        acc = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(dot), acc);

    }

    *s = hsum_float_8(acc);

#elif defined __AVX__

    const __m128i m4 = _mm_set1_epi8(0xF);
    const __m128i mone  = _mm_set1_epi8(1);

    __m256 acc = _mm256_setzero_ps();

    for (int i = 0; i < nb; ++i) {

        const uint8_t * restrict q5 = x[i].qs;
        const int8_t  * restrict q8 = y[i].qs;

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);

        const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);

        const __m128i scale_0 = _mm_set1_epi16(x[i].scales[0]);
        const __m128i scale_1 = _mm_set1_epi16(x[i].scales[1]);
        const __m128i scale_2 = _mm_set1_epi16(x[i].scales[2]);
        const __m128i scale_3 = _mm_set1_epi16(x[i].scales[3]);

        int64_t aux64;
        memcpy(&aux64, x[i].qh, 8);
        const __m128i haux128_0 = _mm_set_epi64x(aux64 >> 1, aux64);
        const __m128i haux128_1 = _mm_srli_epi16(haux128_0, 2);

        const __m128i q5h_0 = _mm_slli_epi16(_mm_andnot_si128(haux128_0, mone), 4);
        const __m128i q5h_1 = _mm_slli_epi16(_mm_andnot_si128(haux128_1, mone), 4);
        const __m128i q5h_2 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_0, 4), mone), 4);
        const __m128i q5h_3 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_1, 4), mone), 4);

        const __m128i q5l_0 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 0), m4);
        const __m128i q5l_1 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 1), m4);
        const __m128i q5l_2 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 0), 4), m4);
        const __m128i q5l_3 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 1), 4), m4);

        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));

        const __m128i p16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5l_0, _mm256_extractf128_si256(q8_0, 0)));
        const __m128i p16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5l_1, _mm256_extractf128_si256(q8_0, 1)));
        const __m128i p16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5l_2, _mm256_extractf128_si256(q8_1, 0)));
        const __m128i p16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5l_3, _mm256_extractf128_si256(q8_1, 1)));
        const __m128i s16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5h_0, _mm256_extractf128_si256(q8_0, 0)));
        const __m128i s16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5h_1, _mm256_extractf128_si256(q8_0, 1)));
        const __m128i s16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5h_2, _mm256_extractf128_si256(q8_1, 0)));
        const __m128i s16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5h_3, _mm256_extractf128_si256(q8_1, 1)));

        const __m128i dot_0 = _mm_sub_epi32(_mm_add_epi32(p16_0, p16_2), _mm_add_epi32(s16_0, s16_2));
        const __m128i dot_1 = _mm_sub_epi32(_mm_add_epi32(p16_1, p16_3), _mm_add_epi32(s16_1, s16_3));

        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(dot_1, dot_0))), acc);

    }

    *s = hsum_float_8(acc);

#elif defined __riscv_v_intrinsic

    float sumf = 0;

    for (int i = 0; i < nb; ++i) {

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
        const int8_t * sc = x[i].scales;

        const uint8_t * restrict q5 = x[i].qs;
        const uint8_t * restrict qh = x[i].qh;
        const int8_t  * restrict q8 = y[i].qs;

        vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);

        // load qh
        vuint8mf4_t qh_x1   = __riscv_vle8_v_u8mf4(qh, 8);
        vuint8mf2_t qh_x2   = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8));

        size_t vl = 16;

        // combine both qh_1 and qh_2
        vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl);

        vuint8mf2_t qh_h0 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl);
        vuint8mf2_t qh_h1 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), vl), 16, vl);
        vuint8mf2_t qh_h2 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(qh_x, vl), 16, vl);
        vuint8mf2_t qh_h3 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl);

        vint8mf2_t qh_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h0);
        vint8mf2_t qh_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h1);
        vint8mf2_t qh_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h2);
        vint8mf2_t qh_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h3);

        // load q5
        vuint8mf2_t q5_x1  = __riscv_vle8_v_u8mf2(q5, vl);
        vuint8mf2_t q5_x2  = __riscv_vle8_v_u8mf2(q5+16, vl);

        vint8mf2_t q5s_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x1, 0xF, vl));
        vint8mf2_t q5s_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x2, 0xF, vl));
        vint8mf2_t q5s_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x1, 0x4, vl));
        vint8mf2_t q5s_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x2, 0x4, vl));

        vint8mf2_t q5_0 = __riscv_vsub_vv_i8mf2(q5s_0, qh_0, vl);
        vint8mf2_t q5_1 = __riscv_vsub_vv_i8mf2(q5s_1, qh_1, vl);
        vint8mf2_t q5_2 = __riscv_vsub_vv_i8mf2(q5s_2, qh_2, vl);
        vint8mf2_t q5_3 = __riscv_vsub_vv_i8mf2(q5s_3, qh_3, vl);

        // load Q8 and multiply it with Q5
        vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q5_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
        vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q5_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
        vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q5_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
        vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q5_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);

        vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
        vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
        vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
        vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);

        int32_t sumi1 = sc[0] * __riscv_vmv_x_s_i32m1_i32(vs_0);
        int32_t sumi2 = sc[1] * __riscv_vmv_x_s_i32m1_i32(vs_1);
        int32_t sumi3 = sc[2] * __riscv_vmv_x_s_i32m1_i32(vs_2);
        int32_t sumi4 = sc[3] * __riscv_vmv_x_s_i32m1_i32(vs_3);

        sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);

    }

    *s = sumf;

#else

    int8_t aux8[QK_K];
    int16_t aux16[16];
    float   sums [8];
    memset(sums, 0, 8*sizeof(float));

    float sumf = 0;
    for (int i = 0; i < nb; ++i) {
        const uint8_t * restrict q4 = x[i].qs;
        const uint8_t * restrict hm = x[i].qh;
        const  int8_t * restrict q8 = y[i].qs;
        int8_t * restrict a = aux8;
        for (int l = 0; l < 32; ++l) {
            a[l+ 0] = q4[l] & 0xF;
            a[l+32] = q4[l]  >> 4;
        }
        for (int is = 0; is < 8; ++is) {
            uint8_t m = 1 << is;
            for (int l = 0; l < 8; ++l) a[8*is + l] -= (hm[l] & m ? 0 : 16);
        }

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
        const int8_t * restrict sc = x[i].scales;

        for (int j = 0; j < QK_K/16; ++j) {
            const float dl = d * sc[j];
            for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
            for (int l = 0; l <  8; ++l) sums[l] += dl * (aux16[l] + aux16[8+l]);
            q8 += 16; a += 16;
        }
    }
    for (int l = 0; l < 8; ++l) sumf += sums[l];
    *s = sumf;
#endif
}
#endif


#if QK_K == 256
void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
    assert(n % QK_K == 0);
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_q6_K * restrict x = vx;
    const block_q8_K * restrict y = vy;

    const int nb = n / QK_K;

#ifdef __ARM_NEON
    float sum = 0;

    const uint8x16_t m4b = vdupq_n_u8(0xF);
    const int32x4_t  vzero = vdupq_n_s32(0);
    //const int8x16_t  m32s = vdupq_n_s8(32);

    const uint8x16_t mone = vdupq_n_u8(3);

    ggml_int8x16x4_t q6bytes;
    ggml_uint8x16x4_t q6h;

    for (int i = 0; i < nb; ++i) {

        const float d_all = GGML_FP16_TO_FP32(x[i].d);

        const uint8_t * restrict q6 = x[i].ql;
        const uint8_t * restrict qh = x[i].qh;
        const int8_t  * restrict q8 = y[i].qs;

        const int8_t * restrict scale = x[i].scales;

        const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
        const int8x16_t scales = vld1q_s8(scale);
        const ggml_int16x8x2_t q6scales = {{vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))}};

        const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
                                                   vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
                                         vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
                                                   vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
        int32_t isum_mins = vaddvq_s32(prod);

        int32_t isum = 0;

        for (int j = 0; j < QK_K/128; ++j) {

            ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); qh += 32;
            ggml_uint8x16x4_t q6bits = ggml_vld1q_u8_x4(q6); q6 += 64;
            ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;

            q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
            q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
            uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
            q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
            shifted = vshrq_n_u8(qhbits.val[1], 2);
            q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);

            //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
            //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
            //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
            //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
            q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
            q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
            q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
            q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));

            isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
                    vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
                    vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
                    vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];

            scale += 4;

            q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;

            shifted = vshrq_n_u8(qhbits.val[0], 4);
            q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
            shifted = vshrq_n_u8(qhbits.val[1], 4);
            q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
            shifted = vshrq_n_u8(qhbits.val[0], 6);
            q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
            shifted = vshrq_n_u8(qhbits.val[1], 6);
            q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);

            //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
            //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
            //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
            //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
            q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
            q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
            q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
            q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));

            isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
                    vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
                    vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
                    vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
            scale += 4;
        }
        //sum += isum * d_all * y[i].d;
        sum += d_all * y[i].d * (isum - 32 * isum_mins);

    }
    *s = sum;

#elif defined __AVX2__

    const __m256i m4 = _mm256_set1_epi8(0xF);
    const __m256i m2 = _mm256_set1_epi8(3);
    const __m256i m32s = _mm256_set1_epi8(32);

    __m256 acc = _mm256_setzero_ps();

    for (int i = 0; i < nb; ++i) {

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);

        const uint8_t * restrict q4 = x[i].ql;
        const uint8_t * restrict qh = x[i].qh;
        const int8_t  * restrict q8 = y[i].qs;

        const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);

        __m256i sumi = _mm256_setzero_si256();

        int is = 0;

        for (int j = 0; j < QK_K/128; ++j) {

            const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
            const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
            const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
            const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
            is += 4;

            const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
            const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
            const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;

            const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
            const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
            const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
            const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);

            const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
            const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
            const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
            const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);

            const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
            const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
            const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
            const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;

            __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
            __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
            __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
            __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);

            __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
            __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
            __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
            __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);

            p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
            p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
            p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
            p16_3 = _mm256_sub_epi16(p16_3, q8s_3);

            p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
            p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
            p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
            p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);

            sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
            sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));

        }

        acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
    }

    *s = hsum_float_8(acc);

#elif defined __AVX__

    const __m128i m4 = _mm_set1_epi8(0xF);
    const __m128i m3 = _mm_set1_epi8(3);
    const __m128i m32s = _mm_set1_epi8(32);
    const __m128i m2 = _mm_set1_epi8(2);

    __m256 acc = _mm256_setzero_ps();

    for (int i = 0; i < nb; ++i) {

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);

        const uint8_t * restrict q4 = x[i].ql;
        const uint8_t * restrict qh = x[i].qh;
        const int8_t  * restrict q8 = y[i].qs;

        const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);

        __m128i sumi_0 = _mm_setzero_si128();
        __m128i sumi_1 = _mm_setzero_si128();

        __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
        for (int j = 0; j < QK_K/128; ++j) {

            const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
            const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;

            const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
            const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
            const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4);
            const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4);
            const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4);
            const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4);
            const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4);
            const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4);

            const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
            const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
            const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
            const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;

            const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0);
            const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1);
            const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2);
            const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3);
            const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4);
            const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5);
            const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6);
            const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7);

            const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
            const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;

            __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0);
            __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1);
            __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2);
            __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3);
            __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4);
            __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5);
            __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6);
            __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7);

            __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
            __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
            __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
            __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
            __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
            __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
            __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
            __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);

            p16_0 = _mm_sub_epi16(p16_0, q8s_0);
            p16_1 = _mm_sub_epi16(p16_1, q8s_1);
            p16_2 = _mm_sub_epi16(p16_2, q8s_2);
            p16_3 = _mm_sub_epi16(p16_3, q8s_3);
            p16_4 = _mm_sub_epi16(p16_4, q8s_4);
            p16_5 = _mm_sub_epi16(p16_5, q8s_5);
            p16_6 = _mm_sub_epi16(p16_6, q8s_6);
            p16_7 = _mm_sub_epi16(p16_7, q8s_7);

            const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
            shuffle = _mm_add_epi8(shuffle, m2);
            const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
            shuffle = _mm_add_epi8(shuffle, m2);
            const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle);
            shuffle = _mm_add_epi8(shuffle, m2);
            const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle);
            shuffle = _mm_add_epi8(shuffle, m2);

            p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
            p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
            p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
            p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
            p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
            p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5);
            p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
            p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7);

            sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
            sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
            sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
            sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));

        }

        __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
    }

    *s = hsum_float_8(acc);

#elif defined __riscv_v_intrinsic

    float sumf = 0;
    for (int i = 0; i < nb; ++i) {

        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;

        const uint8_t * restrict q6 = x[i].ql;
        const uint8_t * restrict qh = x[i].qh;
        const  int8_t * restrict q8 = y[i].qs;

        const int8_t * restrict scale = x[i].scales;

        size_t vl;

        vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);

        int sum_t = 0;
        int is = 0;

        for (int j = 0; j < QK_K/128; ++j) {

            vl = 32;

            // load qh
            vuint8m1_t qh_x = __riscv_vle8_v_u8m1(qh, vl);

            // load Q6
            vuint8m1_t q6_0 = __riscv_vle8_v_u8m1(q6, vl);
            vuint8m1_t q6_1 = __riscv_vle8_v_u8m1(q6+32, vl);

            vuint8m1_t q6a_0 = __riscv_vand_vx_u8m1(q6_0, 0x0F, vl);
            vuint8m1_t q6a_1 = __riscv_vand_vx_u8m1(q6_1, 0x0F, vl);
            vuint8m1_t q6s_0 = __riscv_vsrl_vx_u8m1(q6_0, 0x04, vl);
            vuint8m1_t q6s_1 = __riscv_vsrl_vx_u8m1(q6_1, 0x04, vl);

            vuint8m1_t qh_0 = __riscv_vand_vx_u8m1(qh_x, 0x03, vl);
            vuint8m1_t qh_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x2, vl), 0x03 , vl);
            vuint8m1_t qh_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x4, vl), 0x03 , vl);
            vuint8m1_t qh_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x6, vl), 0x03 , vl);

            vuint8m1_t qhi_0 = __riscv_vor_vv_u8m1(q6a_0, __riscv_vsll_vx_u8m1(qh_0, 0x04, vl), vl);
            vuint8m1_t qhi_1 = __riscv_vor_vv_u8m1(q6a_1, __riscv_vsll_vx_u8m1(qh_1, 0x04, vl), vl);
            vuint8m1_t qhi_2 = __riscv_vor_vv_u8m1(q6s_0, __riscv_vsll_vx_u8m1(qh_2, 0x04, vl), vl);
            vuint8m1_t qhi_3 = __riscv_vor_vv_u8m1(q6s_1, __riscv_vsll_vx_u8m1(qh_3, 0x04, vl), vl);

            vint8m1_t a_0 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_0), 32, vl);
            vint8m1_t a_1 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_1), 32, vl);
            vint8m1_t a_2 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_2), 32, vl);
            vint8m1_t a_3 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_3), 32, vl);

            // load Q8 and take product
            vint16m2_t va_q_0 = __riscv_vwmul_vv_i16m2(a_0, __riscv_vle8_v_i8m1(q8, vl), vl);
            vint16m2_t va_q_1 = __riscv_vwmul_vv_i16m2(a_1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
            vint16m2_t va_q_2 = __riscv_vwmul_vv_i16m2(a_2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
            vint16m2_t va_q_3 = __riscv_vwmul_vv_i16m2(a_3, __riscv_vle8_v_i8m1(q8+96, vl), vl);

            vl = 16;

            vint32m2_t vaux_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 0), scale[is+0], vl);
            vint32m2_t vaux_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 1), scale[is+1], vl);
            vint32m2_t vaux_2 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 0), scale[is+2], vl);
            vint32m2_t vaux_3 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 1), scale[is+3], vl);
            vint32m2_t vaux_4 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 0), scale[is+4], vl);
            vint32m2_t vaux_5 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 1), scale[is+5], vl);
            vint32m2_t vaux_6 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 0), scale[is+6], vl);
            vint32m2_t vaux_7 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 1), scale[is+7], vl);

            vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_0, vaux_1, vl), vzero, vl);
            vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_2, vaux_3, vl), isum0, vl);
            vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_4, vaux_5, vl), isum1, vl);
            vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_6, vaux_7, vl), isum2, vl);

            sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);

            q6 += 64;   qh += 32;   q8 += 128;   is=8;

        }

        sumf += d * sum_t;

    }

    *s = sumf;

#else

    int8_t  aux8[QK_K];
    int16_t aux16[8];
    float   sums [8];
    int32_t aux32[8];
    memset(sums, 0, 8*sizeof(float));

    float sumf = 0;
    for (int i = 0; i < nb; ++i) {
        const uint8_t * restrict q4 = x[i].ql;
        const uint8_t * restrict qh = x[i].qh;
        const  int8_t * restrict q8 = y[i].qs;
        memset(aux32, 0, 8*sizeof(int32_t));
        int8_t * restrict a = aux8;
        for (int j = 0; j < QK_K; j += 128) {
            for (int l = 0; l < 32; ++l) {
                a[l +  0] = (int8_t)((q4[l +  0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
                a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
                a[l + 64] = (int8_t)((q4[l +  0] >>  4) | (((qh[l] >> 4) & 3) << 4)) - 32;
                a[l + 96] = (int8_t)((q4[l + 32] >>  4) | (((qh[l] >> 6) & 3) << 4)) - 32;
            }
            a  += 128;
            q4 += 64;
            qh += 32;
        }
        a = aux8;
        int is = 0;
        for (int j = 0; j < QK_K/16; ++j) {
            int scale = x[i].scales[is++];
            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
            q8 += 8; a += 8;
            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
            q8 += 8; a += 8;
        }
        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
        for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
    }
    for (int l = 0; l < 8; ++l) sumf += sums[l];
    *s = sumf;
#endif
}

#else

void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
    assert(n % QK_K == 0);
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_q6_K * restrict x = vx;
    const block_q8_K * restrict y = vy;

    const int nb = n / QK_K;

#ifdef __ARM_NEON
    float sum = 0;

    const uint8x16_t m4b = vdupq_n_u8(0xF);
    const int8x16_t  m32s = vdupq_n_s8(32);
    const int32x4_t  vzero = vdupq_n_s32(0);

    const uint8x16_t mone = vdupq_n_u8(3);

    ggml_int8x16x4_t q6bytes;
    ggml_uint8x16x4_t q6h;

    for (int i = 0; i < nb; ++i) {

        const float d_all = GGML_FP16_TO_FP32(x[i].d);

        const uint8_t * restrict q6 = x[i].ql;
        const uint8_t * restrict qh = x[i].qh;
        const int8_t  * restrict q8 = y[i].qs;

        const int8_t * restrict scale = x[i].scales;

        int32_t isum = 0;

        uint8x16_t qhbits = vld1q_u8(qh);
        ggml_uint8x16x2_t q6bits = ggml_vld1q_u8_x2(q6);
        ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);

        q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4);
        uint8x16_t shifted = vshrq_n_u8(qhbits, 2);
        q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
        shifted = vshrq_n_u8(qhbits, 4);
        q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
        shifted = vshrq_n_u8(qhbits, 6);
        q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);

        q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
        q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
        q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s);
        q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s);

        isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
                vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
                vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
                vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];

        sum += isum * d_all * y[i].d;

    }
    *s = sum;

#elif defined __AVX2__

    const __m256i m4 = _mm256_set1_epi8(0xF);
    const __m256i m2 = _mm256_set1_epi8(3);
    const __m256i m32s = _mm256_set1_epi8(32);

    __m256 acc = _mm256_setzero_ps();

    for (int i = 0; i < nb; ++i) {

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);

        const uint8_t * restrict q4 = x[i].ql;
        const uint8_t * restrict qh = x[i].qh;
        const int8_t  * restrict q8 = y[i].qs;

        const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
        const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
        const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
        const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);

        __m256i sumi = _mm256_setzero_si256();

        const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
        const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);

        const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
        const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);

        const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4);
        const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4);

        const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
        const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1);

        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));

        __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
        __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);

        __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
        __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);

        p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
        p16_1 = _mm256_sub_epi16(p16_1, q8s_1);

        p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
        p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);

        sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));

        acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
    }

    *s = hsum_float_8(acc);

#elif defined __AVX__

    const __m128i m4 = _mm_set1_epi8(0xF);
    const __m128i m2 = _mm_set1_epi8(3);
    const __m128i m32s = _mm_set1_epi8(32);

    __m256 acc = _mm256_setzero_ps();

    for (int i = 0; i < nb; ++i) {

        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);

        const uint8_t * restrict q4 = x[i].ql;
        const uint8_t * restrict qh = x[i].qh;
        const int8_t  * restrict q8 = y[i].qs;

        const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
        const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
        const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
        const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);

        __m128i sumi_0 = _mm_setzero_si128();
        __m128i sumi_1 = _mm_setzero_si128();

        const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
        const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);

        const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
        const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);

        const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH, m2), 4);
        const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 2), m2), 4);
        const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 4), m2), 4);
        const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 6), m2), 4);

        const __m128i q4_0 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 0), m4), q4h_0);
        const __m128i q4_1 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 1), m4), q4h_1);
        const __m128i q4_2 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 0), 4), m4), q4h_2);
        const __m128i q4_3 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 1), 4), m4), q4h_3);

        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));

        __m128i q8s_0 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 0));
        __m128i q8s_1 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 1));
        __m128i q8s_2 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 0));
        __m128i q8s_3 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 1));

        __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
        __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
        __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
        __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));

        p16_0 = _mm_sub_epi16(p16_0, q8s_0);
        p16_1 = _mm_sub_epi16(p16_1, q8s_1);
        p16_2 = _mm_sub_epi16(p16_2, q8s_2);
        p16_3 = _mm_sub_epi16(p16_3, q8s_3);

        p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
        p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
        p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
        p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);

        sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
        sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));

        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi_1, sumi_0))), acc);
    }

    *s = hsum_float_8(acc);

#elif defined __riscv_v_intrinsic

    float sumf = 0;

    for (int i = 0; i < nb; ++i) {

        const float d_all = GGML_FP16_TO_FP32(x[i].d);

        const uint8_t * restrict q6 = x[i].ql;
        const uint8_t * restrict qh = x[i].qh;
        const int8_t  * restrict q8 = y[i].qs;

        const int8_t * restrict scale = x[i].scales;

        int32_t isum = 0;

        size_t vl = 16;

        vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);

        // load Q6
        vuint8mf2_t q6_0 = __riscv_vle8_v_u8mf2(q6, vl);
        vuint8mf2_t q6_1 = __riscv_vle8_v_u8mf2(q6+16, vl);

        // load qh
        vuint8mf2_t qh_x = __riscv_vle8_v_u8mf2(qh, vl);

        vuint8mf2_t qh0 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
        qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
        vuint8mf2_t qh1 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
        qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
        vuint8mf2_t qh2 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
        qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
        vuint8mf2_t qh3 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);

        vuint8mf2_t q6h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_0, 0xF, vl), qh0, vl);
        vuint8mf2_t q6h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_1, 0xF, vl), qh1, vl);
        vuint8mf2_t q6h_2 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_0, 0x4, vl), qh2, vl);
        vuint8mf2_t q6h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_1, 0x4, vl), qh3, vl);

        vint8mf2_t q6v_0 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_0), 32, vl);
        vint8mf2_t q6v_1 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_1), 32, vl);
        vint8mf2_t q6v_2 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_2), 32, vl);
        vint8mf2_t q6v_3 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_3), 32, vl);

        // load Q8 and take product
        vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q6v_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
        vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q6v_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
        vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q6v_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
        vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q6v_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);

        vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
        vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
        vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
        vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);

        isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scale[0];
        isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scale[1];
        isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scale[2];
        isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scale[3];

        sumf += isum * d_all * y[i].d;

    }

    *s = sumf;

#else

    int8_t  aux8[QK_K];
    int16_t aux16[8];
    float   sums [8];
    int32_t aux32[8];
    memset(sums, 0, 8*sizeof(float));

    float sumf = 0;
    for (int i = 0; i < nb; ++i) {
        const uint8_t * restrict q4 = x[i].ql;
        const uint8_t * restrict qh = x[i].qh;
        const  int8_t * restrict q8 = y[i].qs;
        memset(aux32, 0, 8*sizeof(int32_t));
        int8_t * restrict a = aux8;
        for (int l = 0; l < 16; ++l) {
            a[l+ 0] = (int8_t)((q4[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
            a[l+16] = (int8_t)((q4[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
            a[l+32] = (int8_t)((q4[l+ 0] >>  4) | (((qh[l] >> 4) & 3) << 4)) - 32;
            a[l+48] = (int8_t)((q4[l+16] >>  4) | (((qh[l] >> 6) & 3) << 4)) - 32;
        }
        int is = 0;
        for (int j = 0; j < QK_K/16; ++j) {
            int scale = x[i].scales[is++];
            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
            q8 += 8; a += 8;
            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
            q8 += 8; a += 8;
        }
        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
        for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
    }
    for (int l = 0; l < 8; ++l) sumf += sums[l];
    *s = sumf;
#endif
}

#endif

#if defined (__AVX2__) || defined (__ARM_NEON)
static const int8_t keven_signs_q2xs[1024] = {
     1,  1,  1,  1,  1,  1,  1,  1, -1,  1,  1,  1,  1,  1,  1, -1,  1, -1,  1,  1,  1,  1,  1, -1, -1, -1,  1,  1,  1,  1,  1,  1,
     1,  1, -1,  1,  1,  1,  1, -1, -1,  1, -1,  1,  1,  1,  1,  1,  1, -1, -1,  1,  1,  1,  1,  1, -1, -1, -1,  1,  1,  1,  1, -1,
     1,  1,  1, -1,  1,  1,  1, -1, -1,  1,  1, -1,  1,  1,  1,  1,  1, -1,  1, -1,  1,  1,  1,  1, -1, -1,  1, -1,  1,  1,  1, -1,
     1,  1, -1, -1,  1,  1,  1,  1, -1,  1, -1, -1,  1,  1,  1, -1,  1, -1, -1, -1,  1,  1,  1, -1, -1, -1, -1, -1,  1,  1,  1,  1,
     1,  1,  1,  1, -1,  1,  1, -1, -1,  1,  1,  1, -1,  1,  1,  1,  1, -1,  1,  1, -1,  1,  1,  1, -1, -1,  1,  1, -1,  1,  1, -1,
     1,  1, -1,  1, -1,  1,  1,  1, -1,  1, -1,  1, -1,  1,  1, -1,  1, -1, -1,  1, -1,  1,  1, -1, -1, -1, -1,  1, -1,  1,  1,  1,
     1,  1,  1, -1, -1,  1,  1,  1, -1,  1,  1, -1, -1,  1,  1, -1,  1, -1,  1, -1, -1,  1,  1, -1, -1, -1,  1, -1, -1,  1,  1,  1,
     1,  1, -1, -1, -1,  1,  1, -1, -1,  1, -1, -1, -1,  1,  1,  1,  1, -1, -1, -1, -1,  1,  1,  1, -1, -1, -1, -1, -1,  1,  1, -1,
     1,  1,  1,  1,  1, -1,  1, -1, -1,  1,  1,  1,  1, -1,  1,  1,  1, -1,  1,  1,  1, -1,  1,  1, -1, -1,  1,  1,  1, -1,  1, -1,
     1,  1, -1,  1,  1, -1,  1,  1, -1,  1, -1,  1,  1, -1,  1, -1,  1, -1, -1,  1,  1, -1,  1, -1, -1, -1, -1,  1,  1, -1,  1,  1,
     1,  1,  1, -1,  1, -1,  1,  1, -1,  1,  1, -1,  1, -1,  1, -1,  1, -1,  1, -1,  1, -1,  1, -1, -1, -1,  1, -1,  1, -1,  1,  1,
     1,  1, -1, -1,  1, -1,  1, -1, -1,  1, -1, -1,  1, -1,  1,  1,  1, -1, -1, -1,  1, -1,  1,  1, -1, -1, -1, -1,  1, -1,  1, -1,
     1,  1,  1,  1, -1, -1,  1,  1, -1,  1,  1,  1, -1, -1,  1, -1,  1, -1,  1,  1, -1, -1,  1, -1, -1, -1,  1,  1, -1, -1,  1,  1,
     1,  1, -1,  1, -1, -1,  1, -1, -1,  1, -1,  1, -1, -1,  1,  1,  1, -1, -1,  1, -1, -1,  1,  1, -1, -1, -1,  1, -1, -1,  1, -1,
     1,  1,  1, -1, -1, -1,  1, -1, -1,  1,  1, -1, -1, -1,  1,  1,  1, -1,  1, -1, -1, -1,  1,  1, -1, -1,  1, -1, -1, -1,  1, -1,
     1,  1, -1, -1, -1, -1,  1,  1, -1,  1, -1, -1, -1, -1,  1, -1,  1, -1, -1, -1, -1, -1,  1, -1, -1, -1, -1, -1, -1, -1,  1,  1,
     1,  1,  1,  1,  1,  1, -1, -1, -1,  1,  1,  1,  1,  1, -1,  1,  1, -1,  1,  1,  1,  1, -1,  1, -1, -1,  1,  1,  1,  1, -1, -1,
     1,  1, -1,  1,  1,  1, -1,  1, -1,  1, -1,  1,  1,  1, -1, -1,  1, -1, -1,  1,  1,  1, -1, -1, -1, -1, -1,  1,  1,  1, -1,  1,
     1,  1,  1, -1,  1,  1, -1,  1, -1,  1,  1, -1,  1,  1, -1, -1,  1, -1,  1, -1,  1,  1, -1, -1, -1, -1,  1, -1,  1,  1, -1,  1,
     1,  1, -1, -1,  1,  1, -1, -1, -1,  1, -1, -1,  1,  1, -1,  1,  1, -1, -1, -1,  1,  1, -1,  1, -1, -1, -1, -1,  1,  1, -1, -1,
     1,  1,  1,  1, -1,  1, -1,  1, -1,  1,  1,  1, -1,  1, -1, -1,  1, -1,  1,  1, -1,  1, -1, -1, -1, -1,  1,  1, -1,  1, -1,  1,
     1,  1, -1,  1, -1,  1, -1, -1, -1,  1, -1,  1, -1,  1, -1,  1,  1, -1, -1,  1, -1,  1, -1,  1, -1, -1, -1,  1, -1,  1, -1, -1,
     1,  1,  1, -1, -1,  1, -1, -1, -1,  1,  1, -1, -1,  1, -1,  1,  1, -1,  1, -1, -1,  1, -1,  1, -1, -1,  1, -1, -1,  1, -1, -1,
     1,  1, -1, -1, -1,  1, -1,  1, -1,  1, -1, -1, -1,  1, -1, -1,  1, -1, -1, -1, -1,  1, -1, -1, -1, -1, -1, -1, -1,  1, -1,  1,
     1,  1,  1,  1,  1, -1, -1,  1, -1,  1,  1,  1,  1, -1, -1, -1,  1, -1,  1,  1,  1, -1, -1, -1, -1, -1,  1,  1,  1, -1, -1,  1,
     1,  1, -1,  1,  1, -1, -1, -1, -1,  1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1, -1, -1, -1,  1,  1, -1, -1, -1,
     1,  1,  1, -1,  1, -1, -1, -1, -1,  1,  1, -1,  1, -1, -1,  1,  1, -1,  1, -1,  1, -1, -1,  1, -1, -1,  1, -1,  1, -1, -1, -1,
     1,  1, -1, -1,  1, -1, -1,  1, -1,  1, -1, -1,  1, -1, -1, -1,  1, -1, -1, -1,  1, -1, -1, -1, -1, -1, -1, -1,  1, -1, -1,  1,
     1,  1,  1,  1, -1, -1, -1, -1, -1,  1,  1,  1, -1, -1, -1,  1,  1, -1,  1,  1, -1, -1, -1,  1, -1, -1,  1,  1, -1, -1, -1, -1,
     1,  1, -1,  1, -1, -1, -1,  1, -1,  1, -1,  1, -1, -1, -1, -1,  1, -1, -1,  1, -1, -1, -1, -1, -1, -1, -1,  1, -1, -1, -1,  1,
     1,  1,  1, -1, -1, -1, -1,  1, -1,  1,  1, -1, -1, -1, -1, -1,  1, -1,  1, -1, -1, -1, -1, -1, -1, -1,  1, -1, -1, -1, -1,  1,
     1,  1, -1, -1, -1, -1, -1, -1, -1,  1, -1, -1, -1, -1, -1,  1,  1, -1, -1, -1, -1, -1, -1,  1, -1, -1, -1, -1, -1, -1, -1, -1,
};
#endif

void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
    assert(n % QK_K == 0);
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_iq2_xxs * restrict x = vx;
    const block_q8_K    * restrict y = vy;

    const int nb = n / QK_K;

#if defined(__ARM_NEON)

    const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;

    uint32_t aux32[4];
    const uint8_t * aux8 = (const uint8_t *)aux32;

    ggml_int8x16x4_t q2u;
    ggml_int8x16x4_t q2s;
    ggml_int8x16x4_t q8b;

    float sumf = 0;
    for (int i = 0; i < nb; ++i) {
        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
        const uint16_t * restrict q2 = x[i].qs;
        const int8_t   * restrict q8 = y[i].qs;
        float sumf1 = 0, sumf2 = 0;
        for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
            q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
            memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
            q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 0])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 1])));
            q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 2])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 3])));
            q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 8])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 9])));
            q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[10])), vld1_s8((const void *)(iq2xxs_grid + aux8[11])));
            q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >>  0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >>  7) & 127))));
            q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
            q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >>  0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >>  7) & 127))));
            q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 21) & 127))));
            q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
            q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
            q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
            q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
            const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]), q2u.val[1], q8b.val[1]);
            const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]), q2u.val[3], q8b.val[3]);
            sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[1] >> 28));
            sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[3] >> 28));
        }
        sumf += d*(sumf1 + sumf2);
    }
    *s = 0.25f * sumf;

#elif defined(__AVX2__)

    const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;

    uint32_t aux32[4];
    const uint8_t * aux8 = (const uint8_t *)aux32;

    __m256 accumf = _mm256_setzero_ps();
    for (int i = 0; i < nb; ++i) {
        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
        const uint16_t * restrict q2 = x[i].qs;
        const int8_t   * restrict q8 = y[i].qs;
        __m256i sumi1 = _mm256_setzero_si256();
        __m256i sumi2 = _mm256_setzero_si256();
        for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
            const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
            const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
            memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
            const __m256i q2_1 = _mm256_set_epi64x(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
            const __m256i q2_2 = _mm256_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
            const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
                                                   signs64[(aux32[1] >>  7) & 127], signs64[(aux32[1] >>  0) & 127]);
            const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
                                                   signs64[(aux32[3] >>  7) & 127], signs64[(aux32[3] >>  0) & 127]);
            const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
            const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
            const __m256i dot1  = _mm256_maddubs_epi16(q2_1, q8s_1);
            const __m256i dot2  = _mm256_maddubs_epi16(q2_2, q8s_2);
            const uint16_t ls1 = aux32[1] >> 28;
            const uint16_t ls2 = aux32[3] >> 28;
            const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
            const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
            sumi1 = _mm256_add_epi32(sumi1, p1);
            sumi2 = _mm256_add_epi32(sumi2, p2);
        }

        accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);

    }

    *s = 0.125f * hsum_float_8(accumf);

#else

    uint32_t aux32[2];
    const uint8_t * aux8 = (const uint8_t *)aux32;

    float sumf = 0.f;
    for (int i = 0; i < nb; ++i) {
        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
        const uint16_t * restrict q2 = x[i].qs;
        const int8_t   * restrict q8 = y[i].qs;
        int32_t bsum = 0;
        for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
            memcpy(aux32, q2, 2*sizeof(uint32_t));
            q2 += 4;
            const uint32_t ls = 2*(aux32[1] >> 28) + 1;
            int32_t sumi = 0;
            for (int l = 0; l < 4; ++l) {
                const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
                const uint8_t  signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
                for (int j = 0; j < 8; ++j) {
                    sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
                }
                q8 += 8;
            }
            bsum += sumi * ls;
        }
        sumf += d * bsum;
    }
    *s = 0.125f * sumf;
#endif
}

void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
    assert(n % QK_K == 0);
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_iq2_xs * restrict x = vx;
    const block_q8_K   * restrict y = vy;

    const int nb = n / QK_K;

#if defined(__ARM_NEON)

    const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;

    ggml_int8x16x4_t q2u;
    ggml_int8x16x4_t q2s;
    ggml_int8x16x4_t q8b;

    int32x4x4_t scales32;

    float sumf = 0;
    for (int i = 0; i < nb; ++i) {
        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
        const uint16_t * restrict q2 = x[i].qs;
        const int8_t   * restrict q8 = y[i].qs;
        const uint8x8_t scales8 = vld1_u8(x[i].scales);
        const uint8x8_t scales_l = vand_u8(scales8, vdup_n_u8(0xf));
        const uint8x8_t scales_h = vshr_n_u8(scales8, 4);
        uint8x16_t scales = vcombine_u8(vzip1_u8(scales_l, scales_h), vzip2_u8(scales_l, scales_h));
        scales = vaddq_u8(vshlq_n_u8(scales, 1), vdupq_n_u8(1));
        const uint16x8_t scales1 = vmovl_u8(vget_low_u8(scales));
        const uint16x8_t scales2 = vmovl_u8(vget_high_u8(scales));
        scales32.val[0] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales1)));
        scales32.val[1] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales1)));
        scales32.val[2] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales2)));
        scales32.val[3] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales2)));
        int32x4_t sumi = vdupq_n_s32(0);
        for (int ib64 = 0; ib64 < QK_K/64; ++ib64) {
            q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
            q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[0] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[1] & 511))));
            q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[2] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[3] & 511))));
            q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[4] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[5] & 511))));
            q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[6] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[7] & 511))));
            q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[0] >> 9))), vld1_s8((const void *)(signs64 + (q2[1] >> 9))));
            q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[2] >> 9))), vld1_s8((const void *)(signs64 + (q2[3] >> 9))));
            q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[4] >> 9))), vld1_s8((const void *)(signs64 + (q2[5] >> 9))));
            q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[6] >> 9))), vld1_s8((const void *)(signs64 + (q2[7] >> 9))));
            q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
            q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
            q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
            q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
            const int32x4_t p1 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]);
            const int32x4_t p2 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[1], q8b.val[1]);
            const int32x4_t p3 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]);
            const int32x4_t p4 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[3], q8b.val[3]);
            const int32x4_t p = vpaddq_s32(vpaddq_s32(p1, p2), vpaddq_s32(p3, p4));
            sumi = vmlaq_s32(sumi, p, scales32.val[ib64]);
            q2 += 8;
        }
        sumf += d*vaddvq_s32(sumi);
    }
    *s = 0.125f * sumf;

#elif defined(__AVX2__)

    const __m256i mone = _mm256_set1_epi8(1);
    static const char block_sign_shuffle_mask_1[32] = {
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
        0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
    };
    static const char block_sign_shuffle_mask_2[32] = {
        0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
        0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
    };
    static const uint8_t bit_selector_mask_bytes[32] = {
        0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
        0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
    };

    const __m256i bit_selector_mask = _mm256_loadu_si256((const __m256i*)bit_selector_mask_bytes);
    const __m256i block_sign_shuffle_1 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_1);
    const __m256i block_sign_shuffle_2 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_2);

#if QK_K == 64
    static const uint8_t k_bit_helper[16] = {
        0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
    };
    const __m128i bit_helper = _mm_loadu_si128((const __m128i*)k_bit_helper);
    const __m128i m511 = _mm_set1_epi16(511);
    typedef union {
        __m128i vec_index;
        uint16_t index[8];
    } index_t;

    index_t idx;
    __m256 accumf = _mm256_setzero_ps();
    for (int i = 0; i < nb; ++i) {
        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
        const __m128i q2_data = _mm_loadu_si128((const __m128i*)x[i].qs);
        idx.vec_index = _mm_and_si128(q2_data, m511);

        const __m128i partial_sign_bits = _mm_srli_epi16(q2_data, 9);
        const __m128i partial_sign_bits_upper = _mm_srli_epi16(q2_data, 13);
        const __m128i partial_sign_bits_for_counting = _mm_xor_si128(partial_sign_bits, partial_sign_bits_upper);

        const __m128i odd_bits = _mm_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
        const __m128i full_sign_bits = _mm_or_si128(partial_sign_bits, odd_bits);
        const __m256i full_signs = _mm256_set_m128i(full_sign_bits, full_sign_bits);

        const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)y[i].qs);
        const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)(y[i].qs+32));

        const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[idx.index[3]], iq2xs_grid[idx.index[2]],
                                               iq2xs_grid[idx.index[1]], iq2xs_grid[idx.index[0]]);
        const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[idx.index[7]], iq2xs_grid[idx.index[6]],
                                               iq2xs_grid[idx.index[5]], iq2xs_grid[idx.index[4]]);

        __m256i signs;
        signs = _mm256_shuffle_epi8(full_signs, block_sign_shuffle_1);
        signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
        const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone));

        signs = _mm256_shuffle_epi8(full_signs, block_sign_shuffle_2);
        signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
        const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone));

        const __m256i dot1  = _mm256_maddubs_epi16(q2_1, q8s_1);
        const __m256i dot2  = _mm256_maddubs_epi16(q2_2, q8s_2);

        const __m256i sc1 = _mm256_set_m128i(_mm_set1_epi16(2*(x[i].scales[0] >> 4)+1), _mm_set1_epi16(2*(x[i].scales[0] & 0xf)+1));
        const __m256i sc2 = _mm256_set_m128i(_mm_set1_epi16(2*(x[i].scales[1] >> 4)+1), _mm_set1_epi16(2*(x[i].scales[1] & 0xf)+1));

        const __m256i sum = _mm256_add_epi32(_mm256_madd_epi16(sc1, dot1), _mm256_madd_epi16(sc2, dot2));

        accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sum), accumf);

    }

    *s = 0.125f * hsum_float_8(accumf);
#else

    static const uint8_t k_bit_helper[32] = {
        0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
        0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
    };
    const __m256i bit_helper = _mm256_loadu_si256((const __m256i*)k_bit_helper);
    const __m256i m511 = _mm256_set1_epi16(511);
    const __m128i m4 = _mm_set1_epi8(0xf);
    const __m128i m1 = _mm_set1_epi8(1);

    uint64_t aux64;

    // somewhat hacky, but gives a significant boost in performance
    __m256i aux_gindex;
    const uint16_t * gindex = (const uint16_t *)&aux_gindex;

    __m256 accumf = _mm256_setzero_ps();
    for (int i = 0; i < nb; ++i) {
        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
        const uint16_t * restrict q2 = x[i].qs;
        const int8_t   * restrict q8 = y[i].qs;

        memcpy(&aux64, x[i].scales, 8);
        __m128i stmp = _mm_set1_epi64x(aux64);
        stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4));
        const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1);

        __m256i sumi1 = _mm256_setzero_si256();
        __m256i sumi2 = _mm256_setzero_si256();
        for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {

            const __m256i q2_data = _mm256_loadu_si256((const __m256i*)q2);  q2 += 16;
            aux_gindex = _mm256_and_si256(q2_data, m511);

            const __m256i partial_sign_bits = _mm256_srli_epi16(q2_data, 9);
            const __m256i partial_sign_bits_upper = _mm256_srli_epi16(q2_data, 13);
            const __m256i partial_sign_bits_for_counting = _mm256_xor_si256(partial_sign_bits, partial_sign_bits_upper);

            const __m256i odd_bits = _mm256_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
            const __m256i full_sign_bits = _mm256_or_si256(partial_sign_bits, odd_bits);

            const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
            const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
            const __m256i q8_3 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
            const __m256i q8_4 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;

            const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
                                                   iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
            const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
                                                   iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
            const __m256i q2_3 = _mm256_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
                                                   iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
            const __m256i q2_4 = _mm256_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
                                                   iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);

            const __m128i full_signs_l = _mm256_castsi256_si128(full_sign_bits);
            const __m128i full_signs_h = _mm256_extractf128_si256(full_sign_bits, 1);
            const __m256i full_signs_1 = _mm256_set_m128i(full_signs_l, full_signs_l);
            const __m256i full_signs_2 = _mm256_set_m128i(full_signs_h, full_signs_h);

            __m256i signs;
            signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_1);
            signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
            const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone));

            signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_2);
            signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
            const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone));

            signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_1);
            signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
            const __m256i q8s_3 = _mm256_sign_epi8(q8_3, _mm256_or_si256(signs, mone));

            signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_2);
            signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
            const __m256i q8s_4 = _mm256_sign_epi8(q8_4, _mm256_or_si256(signs, mone));

            const __m256i dot1  = _mm256_maddubs_epi16(q2_1, q8s_1);
            const __m256i dot2  = _mm256_maddubs_epi16(q2_2, q8s_2);
            const __m256i dot3  = _mm256_maddubs_epi16(q2_3, q8s_3);
            const __m256i dot4  = _mm256_maddubs_epi16(q2_4, q8s_4);

            const __m256i sc1 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0)));
            const __m256i sc2 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1)));
            const __m256i sc3 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2)));
            const __m256i sc4 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3)));

            sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot1, sc1));
            sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot2, sc2));
            sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot3, sc3));
            sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot4, sc4));
        }

        accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);

    }

    *s = 0.125f * hsum_float_8(accumf);
#endif

#else

    float sumf = 0.f;
    for (int i = 0; i < nb; ++i) {
        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
        const uint16_t * restrict q2 = x[i].qs;
        const uint8_t  * restrict sc = x[i].scales;
        const int8_t   * restrict q8 = y[i].qs;
        int32_t bsum = 0;
        for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
            const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
            const uint16_t ls2 = 2*(sc[ib32] >>  4) + 1;
            int32_t sumi = 0;
            for (int l = 0; l < 2; ++l) {
                const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
                const uint8_t  signs = ksigns_iq2xs[q2[l] >> 9];
                for (int j = 0; j < 8; ++j) {
                    sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
                }
                q8 += 8;
            }
            bsum += sumi * ls1;
            sumi = 0;
            for (int l = 2; l < 4; ++l) {
                const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
                const uint8_t  signs = ksigns_iq2xs[q2[l] >> 9];
                for (int j = 0; j < 8; ++j) {
                    sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
                }
                q8 += 8;
            }
            bsum += sumi * ls2;
            q2 += 4;
        }
        sumf += d * bsum;
    }
    *s = 0.125f * sumf;
#endif
}

void ggml_vec_dot_iq2_s_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
    assert(n % QK_K == 0);
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_iq2_s * restrict x = vx;
    const block_q8_K  * restrict y = vy;

    const int nb = n / QK_K;

#if defined(__ARM_NEON)

   static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
                                       0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
   };

    static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};

    const uint8x16x2_t mask1 = vld1q_u8_x2(k_mask1);
    const uint8x16_t   mask2 = vld1q_u8(k_mask2);
    const uint8x16_t m1 = vdupq_n_u8(1);
    const int32x4_t vzero = vdupq_n_s32(0);

    uint8x16x2_t vs;
    ggml_int8x16x4_t q2s;
    ggml_int8x16x4_t q8b;

    float sumf = 0;
    for (int i = 0; i < nb; ++i) {

        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;

        const uint8_t * restrict qs = x[i].qs;
        const uint8_t * restrict qh = x[i].qh;
        const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
        const int8_t  * restrict q8 = y[i].qs;

        int sumi1 = 0, sumi2 = 0;
        for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
            q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
            q2s.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[0] | ((qh[ib32+0] << 8) & 0x300)))),
                                     vld1_s8((const int8_t *)(iq2s_grid + (qs[1] | ((qh[ib32+0] << 6) & 0x300)))));
            q2s.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[2] | ((qh[ib32+0] << 4) & 0x300)))),
                                     vld1_s8((const int8_t *)(iq2s_grid + (qs[3] | ((qh[ib32+0] << 2) & 0x300)))));
            q2s.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[4] | ((qh[ib32+1] << 8) & 0x300)))),
                                     vld1_s8((const int8_t *)(iq2s_grid + (qs[5] | ((qh[ib32+1] << 6) & 0x300)))));
            q2s.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[6] | ((qh[ib32+1] << 4) & 0x300)))),
                                     vld1_s8((const int8_t *)(iq2s_grid + (qs[7] | ((qh[ib32+1] << 2) & 0x300)))));
            qs += 8;

            vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | (signs[1] << 16)));
            vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
            vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
            vs.val[0] = vceqq_u8(vs.val[0], mask2);
            vs.val[1] = vceqq_u8(vs.val[1], mask2);

            q2s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[0]);
            q2s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[1]);

            vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | (signs[3] << 16)));
            vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
            vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
            vs.val[0] = vceqq_u8(vs.val[0], mask2);
            vs.val[1] = vceqq_u8(vs.val[1], mask2);

            signs += 4;

            q2s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[2]);
            q2s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[3]);

            const int32x4_t p1 = ggml_vdotq_s32(vzero, q2s.val[0], q8b.val[0]);
            const int32x4_t p2 = ggml_vdotq_s32(vzero, q2s.val[1], q8b.val[1]);
            const int32x4_t p3 = ggml_vdotq_s32(vzero, q2s.val[2], q8b.val[2]);
            const int32x4_t p4 = ggml_vdotq_s32(vzero, q2s.val[3], q8b.val[3]);

            sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32+0] & 0xf));
            sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32+0] >>  4));
            sumi1 += vaddvq_s32(p3) * (1 + 2*(x[i].scales[ib32+1] & 0xf));
            sumi2 += vaddvq_s32(p4) * (1 + 2*(x[i].scales[ib32+1] >>  4));
        }
        sumf += d*(sumi1 + sumi2);
    }

    *s = 0.125f * sumf;

#elif defined(__AVX2__)

   static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
                                       0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
   };

    static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
                                        0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
    };

    const __m128i m4 = _mm_set1_epi8(0xf);
    const __m128i m1 = _mm_set1_epi8(1);

    const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
    const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);

    uint64_t aux64;

    __m256 accumf = _mm256_setzero_ps();
    for (int i = 0; i < nb; ++i) {
        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
        const uint8_t * restrict qs = x[i].qs;
        const uint8_t * restrict qh = x[i].qh;
        const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
        const int8_t  * restrict q8 = y[i].qs;

        memcpy(&aux64, x[i].scales, 8);
        const __m128i scales8 = _mm_add_epi8(_mm_slli_epi16(_mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), m4), 1), m1);
        const __m256i scales16 = _mm256_cvtepi8_epi16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15

        __m256i sumi1 = _mm256_setzero_si256();
        __m256i sumi2 = _mm256_setzero_si256();
        for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
            const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
            const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
            const __m256i q2_1 = _mm256_set_epi64x(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
                                                   iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)],
                                                   iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
                                                   iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
            const __m256i q2_2 = _mm256_set_epi64x(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
                                                   iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)],
                                                   iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
                                                   iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
            qs += 8;

            __m256i aux256 = _mm256_set1_epi32(signs[0] | (signs[1] << 16));
            aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
            const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
            const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);

            aux256 = _mm256_set1_epi32(signs[2] | (signs[3] << 16));
            aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
            const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
            const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);

            signs += 4;

            const __m256i dot1  = _mm256_maddubs_epi16(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1
            const __m256i dot2  = _mm256_maddubs_epi16(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3

            const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+0)));
            const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+1)));
            sumi1 = _mm256_add_epi32(sumi1, p1);
            sumi2 = _mm256_add_epi32(sumi2, p2);
        }

        accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);

    }

    *s = 0.125f * hsum_float_8(accumf);

#else

    float sumf = 0;
    for (int i = 0; i < nb; i++) {

        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
        const int8_t  * q8 = y[i].qs;
        const uint8_t * qs = x[i].qs;
        const uint8_t * qh = x[i].qh;
        const uint8_t * signs = qs + QK_K/8;

        int bsum = 0;
        for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
            int ls1 = 1 + 2*(x[i].scales[ib32] & 0xf);
            int ls2 = 1 + 2*(x[i].scales[ib32] >>  4);
            int sumi1 = 0, sumi2 = 0;
            for (int l = 0; l < 2; ++l) {
                const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
                for (int j = 0; j < 8; ++j) {
                    sumi1 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
                }
                q8 += 8;
            }
            for (int l = 2; l < 4; ++l) {
                const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
                for (int j = 0; j < 8; ++j) {
                    sumi2 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
                }
                q8 += 8;
            }
            bsum += ls1 * sumi1 + ls2 * sumi2;
            qs += 4;
            signs += 4;
        }

        sumf += d * bsum;
    }

    *s = 0.125f * sumf;

#endif

}

void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
    assert(n % QK_K == 0);
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_iq3_xxs * restrict x = vx;
    const block_q8_K    * restrict y = vy;

    const int nb = n / QK_K;

#if defined(__ARM_NEON)

    const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;

    uint32_t aux32[2];

    ggml_int8x16x4_t q3s;
    ggml_int8x16x4_t q8b;

    float sumf = 0;
    for (int i = 0; i < nb; ++i) {
        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
        const uint8_t * restrict q3 = x[i].qs;
        const uint8_t * restrict gas = x[i].qs + QK_K/4;
        const int8_t   * restrict q8 = y[i].qs;
        float sumf1 = 0, sumf2 = 0;
        for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
            q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
            memcpy(aux32, gas, 2*sizeof(uint32_t)); gas += 2*sizeof(uint32_t);
            const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]);
            const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]);
            const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]);
            const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]);
            q3 += 16;
            q3s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >>  0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >>  7) & 127))));
            q3s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 21) & 127))));
            q3s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >>  0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >>  7) & 127))));
            q3s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
            q3s.val[0] = vmulq_s8(q3s.val[0], vreinterpretq_s8_u32(aux32x4_0));
            q3s.val[1] = vmulq_s8(q3s.val[1], vreinterpretq_s8_u32(aux32x4_1));
            q3s.val[2] = vmulq_s8(q3s.val[2], vreinterpretq_s8_u32(aux32x4_2));
            q3s.val[3] = vmulq_s8(q3s.val[3], vreinterpretq_s8_u32(aux32x4_3));
            const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
            const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
            sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[0] >> 28));
            sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[1] >> 28));
        }
        sumf += d*(sumf1 + sumf2);
    }
    *s = 0.5f * sumf;

#elif defined(__AVX2__)

    const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;

    uint32_t aux32[2];

    __m256 accumf = _mm256_setzero_ps();
    for (int i = 0; i < nb; ++i) {
        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
        const uint8_t * restrict q3 = x[i].qs;
        const uint8_t * restrict gas = x[i].qs + QK_K/4;
        const int8_t  * restrict q8 = y[i].qs;
        __m256i sumi1 = _mm256_setzero_si256();
        __m256i sumi2 = _mm256_setzero_si256();
        for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
            const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
            const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
            const __m256i q2_1 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
                                                  iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
            q3 += 8;
            const __m256i q2_2 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
                                                  iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
            q3 += 8;
            memcpy(aux32, gas, 8); gas += 8;
            const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
                                                   signs64[(aux32[0] >>  7) & 127], signs64[(aux32[0] >>  0) & 127]);
            const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
                                                   signs64[(aux32[1] >>  7) & 127], signs64[(aux32[1] >>  0) & 127]);
            const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
            const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
            const __m256i dot1  = _mm256_maddubs_epi16(q2_1, q8s_1);
            const __m256i dot2  = _mm256_maddubs_epi16(q2_2, q8s_2);
            const uint16_t ls1 = aux32[0] >> 28;
            const uint16_t ls2 = aux32[1] >> 28;
            const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
            const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
            sumi1 = _mm256_add_epi32(sumi1, p1);
            sumi2 = _mm256_add_epi32(sumi2, p2);
        }

        accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);

    }

    *s = 0.25f * hsum_float_8(accumf);

#else

    uint32_t aux32;

    float sumf = 0.f;
    for (int i = 0; i < nb; ++i) {
        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
        const uint8_t * restrict q3 = x[i].qs;
        const uint8_t * restrict gas = x[i].qs + QK_K/4;
        const int8_t  * restrict q8 = y[i].qs;
        int32_t bsum = 0;
        for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
            memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
            const uint32_t ls = 2*(aux32 >> 28) + 1;
            int32_t sumi = 0;
            for (int l = 0; l < 4; ++l) {
                const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
                const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
                const uint8_t  signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
                for (int j = 0; j < 4; ++j) {
                    sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
                    sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
                }
                q8 += 8;
            }
            q3 += 8;
            bsum += sumi * ls;
        }
        sumf += d * bsum;
    }
    *s = 0.25f * sumf;
#endif
}

void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
    assert(n % QK_K == 0);
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_iq3_s * restrict x = vx;
    const block_q8_K  * restrict y = vy;

    const int nb = n / QK_K;

#if defined(__ARM_NEON)

   static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
                                       0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
   };

    static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};

    const uint8x16x2_t mask1 = vld1q_u8_x2(k_mask1);
    const uint8x16_t   mask2 = vld1q_u8(k_mask2);

    uint8x16x2_t vs;
    ggml_int8x16x4_t q3s;
    ggml_int8x16x4_t q8b;

    float sumf = 0;
    for (int i = 0; i < nb; ++i) {
        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
        const uint8_t * restrict qs = x[i].qs;
        const uint8_t * restrict qh = x[i].qh;
        const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
        const int8_t   * restrict q8 = y[i].qs;
        int sumi1 = 0, sumi2 = 0;
        for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
            q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
            const uint32x4_t aux32x4_0 = {iq3xs_grid[qs[ 0] | ((qh[ib32+0] << 8) & 256)], iq3xs_grid[qs[ 1] | ((qh[ib32+0] << 7) & 256)],
                                          iq3xs_grid[qs[ 2] | ((qh[ib32+0] << 6) & 256)], iq3xs_grid[qs[ 3] | ((qh[ib32+0] << 5) & 256)]};
            const uint32x4_t aux32x4_1 = {iq3xs_grid[qs[ 4] | ((qh[ib32+0] << 4) & 256)], iq3xs_grid[qs[ 5] | ((qh[ib32+0] << 3) & 256)],
                                          iq3xs_grid[qs[ 6] | ((qh[ib32+0] << 2) & 256)], iq3xs_grid[qs[ 7] | ((qh[ib32+0] << 1) & 256)]};
            const uint32x4_t aux32x4_2 = {iq3xs_grid[qs[ 8] | ((qh[ib32+1] << 8) & 256)], iq3xs_grid[qs[ 9] | ((qh[ib32+1] << 7) & 256)],
                                          iq3xs_grid[qs[10] | ((qh[ib32+1] << 6) & 256)], iq3xs_grid[qs[11] | ((qh[ib32+1] << 5) & 256)]};
            const uint32x4_t aux32x4_3 = {iq3xs_grid[qs[12] | ((qh[ib32+1] << 4) & 256)], iq3xs_grid[qs[13] | ((qh[ib32+1] << 3) & 256)],
                                          iq3xs_grid[qs[14] | ((qh[ib32+1] << 2) & 256)], iq3xs_grid[qs[15] | ((qh[ib32+1] << 1) & 256)]};
            qs += 16;

            vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | (signs[1] << 16)));
            vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
            vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
            vs.val[0] = vceqq_u8(vs.val[0], mask2);
            vs.val[1] = vceqq_u8(vs.val[1], mask2);

            q3s.val[0] = vsubq_s8(vreinterpretq_s8_u8(veorq_u8(vs.val[0], vreinterpretq_u8_u32(aux32x4_0))), vreinterpretq_s8_u8(vs.val[0]));
            q3s.val[1] = vsubq_s8(vreinterpretq_s8_u8(veorq_u8(vs.val[1], vreinterpretq_u8_u32(aux32x4_1))), vreinterpretq_s8_u8(vs.val[1]));

            vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | (signs[3] << 16)));
            vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
            vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
            vs.val[0] = vceqq_u8(vs.val[0], mask2);
            vs.val[1] = vceqq_u8(vs.val[1], mask2);

            signs += 4;

            q3s.val[2] = vsubq_s8(vreinterpretq_s8_u8(veorq_u8(vs.val[0], vreinterpretq_u8_u32(aux32x4_2))), vreinterpretq_s8_u8(vs.val[0]));
            q3s.val[3] = vsubq_s8(vreinterpretq_s8_u8(veorq_u8(vs.val[1], vreinterpretq_u8_u32(aux32x4_3))), vreinterpretq_s8_u8(vs.val[1]));

            const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
            const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
            sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32/2] & 0xf));
            sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32/2] >>  4));
        }
        sumf += d*(sumi1 + sumi2);
    }
    *s = 0.25f * sumf;

#elif defined(__AVX2__)

   static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
                                       0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
   };

    static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
                                        0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
    };

    const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
    const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);

    __m256 accumf = _mm256_setzero_ps();
    for (int i = 0; i < nb; ++i) {
        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
        const uint8_t * restrict qs = x[i].qs;
        const uint8_t * restrict qh = x[i].qh;
        const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
        const int8_t  * restrict q8 = y[i].qs;
        __m256i sumi1 = _mm256_setzero_si256();
        __m256i sumi2 = _mm256_setzero_si256();
        for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
            const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
            const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
            const __m256i q2_1 = _mm256_set_epi32(iq3xs_grid[qs[7] | ((qh[ib32+0] << 1) & 256)],
                                                  iq3xs_grid[qs[6] | ((qh[ib32+0] << 2) & 256)],
                                                  iq3xs_grid[qs[5] | ((qh[ib32+0] << 3) & 256)],
                                                  iq3xs_grid[qs[4] | ((qh[ib32+0] << 4) & 256)],
                                                  iq3xs_grid[qs[3] | ((qh[ib32+0] << 5) & 256)],
                                                  iq3xs_grid[qs[2] | ((qh[ib32+0] << 6) & 256)],
                                                  iq3xs_grid[qs[1] | ((qh[ib32+0] << 7) & 256)],
                                                  iq3xs_grid[qs[0] | ((qh[ib32+0] << 8) & 256)]);
            qs += 8;
            const __m256i q2_2 = _mm256_set_epi32(iq3xs_grid[qs[7] | ((qh[ib32+1] << 1) & 256)],
                                                  iq3xs_grid[qs[6] | ((qh[ib32+1] << 2) & 256)],
                                                  iq3xs_grid[qs[5] | ((qh[ib32+1] << 3) & 256)],
                                                  iq3xs_grid[qs[4] | ((qh[ib32+1] << 4) & 256)],
                                                  iq3xs_grid[qs[3] | ((qh[ib32+1] << 5) & 256)],
                                                  iq3xs_grid[qs[2] | ((qh[ib32+1] << 6) & 256)],
                                                  iq3xs_grid[qs[1] | ((qh[ib32+1] << 7) & 256)],
                                                  iq3xs_grid[qs[0] | ((qh[ib32+1] << 8) & 256)]);
            qs += 8;

            __m256i aux256 = _mm256_set1_epi32(signs[0] | (signs[1] << 16));
            aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
            const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
            const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);

            aux256 = _mm256_set1_epi32(signs[2] | (signs[3] << 16));
            aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
            const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
            const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);

            signs += 4;

            const __m256i dot1  = _mm256_maddubs_epi16(q2_1, q8s_1);
            const __m256i dot2  = _mm256_maddubs_epi16(q2_2, q8s_2);
            const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
            const uint16_t ls2 = x[i].scales[ib32/2] >>  4;
            const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
            const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
            sumi1 = _mm256_add_epi32(sumi1, p1);
            sumi2 = _mm256_add_epi32(sumi2, p2);
        }

        accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);

    }

    *s = 0.25f * hsum_float_8(accumf);

#else

    float sumf = 0.f;
    for (int i = 0; i < nb; ++i) {
        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
        const uint8_t * restrict qs = x[i].qs;
        const uint8_t * restrict qh = x[i].qh;
        const uint8_t * restrict signs = x[i].signs;
        const int8_t  * restrict q8 = y[i].qs;
        int32_t bsum = 0;
        for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
            const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1;
            const uint32_t ls2 = 2*(x[i].scales[ib32/2] >>  4) + 1;
            int32_t sumi = 0;
            for (int l = 0; l < 4; ++l) {
                const uint8_t * grid1 = (const uint8_t *)(iq3xs_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
                const uint8_t * grid2 = (const uint8_t *)(iq3xs_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
                for (int j = 0; j < 4; ++j) {
                    sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
                    sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
                }
                q8 += 8;
            }
            qs += 8;
            signs += 4;
            bsum += sumi * ls1;
            sumi = 0;
            for (int l = 0; l < 4; ++l) {
                const uint8_t * grid1 = (const uint8_t *)(iq3xs_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
                const uint8_t * grid2 = (const uint8_t *)(iq3xs_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
                for (int j = 0; j < 4; ++j) {
                    sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
                    sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
                }
                q8 += 8;
            }
            qs += 8;
            signs += 4;
            bsum += sumi * ls2;
        }
        sumf += d * bsum;
    }
    *s = 0.25f * sumf;
#endif
}


#ifdef __AVX2__
static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
    const __m256i ax = _mm256_sign_epi8(x, x);
    const __m256i sy = _mm256_sign_epi8(y, x);
    return _mm256_maddubs_epi16(ax, sy);
}
#endif

void ggml_vec_dot_iq1_s_q8_K  (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
    assert(n % QK_K == 0);
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_iq1_s * restrict x = vx;
    const block_q8_K  * restrict y = vy;

    const int nb = n / QK_K;

    // TODO: implement for QK_K = 64
#if defined __ARM_NEON && QK_K == 256

    const uint8x16_t m8 = vdupq_n_u8(0x08);
    const uint8x16_t m7 = vdupq_n_u8(0x07);
    const uint8x16_t m1 = vdupq_n_u8(0x01);
    const int32x4_t vzero = vdupq_n_s32(0);

    uint16_t gindex[8];
    uint16x8x2_t vindex;
    int8x16x4_t q1b;
    ggml_int8x16x4_t q8b;
    uint16x8x4_t scales;
    int32x4x2_t sumi;
    int32x4x2_t dotq;

    float sumf = 0;
    for (int i = 0; i < nb; ++i) {

        const int8_t  * q8 = y[i].qs;
        const uint8_t * qs = x[i].qs;
        const uint8_t * sc = x[i].scales;

        sumi.val[0] = sumi.val[1] = vzero;

        for (int i128 = 0; i128 < QK_K/128; ++i128) {
            const uint8x16_t ql = vld1q_u8(qs); qs += 16;
            const uint8x8_t tm1 = vld1_u8 (sc); sc +=  8;
            const uint8x8_t tm2 = vshr_n_u8(tm1, 4);
            const uint8x16_t qh = vcombine_u8(vzip1_u8(tm1, tm2), vzip2_u8(tm1, tm2));
            const uint8x16_t hbit = vandq_u8(qh, m8);
            vindex.val[0] = vorrq_u16(vmovl_u8(vget_low_u8 (ql)), vshlq_n_u16(vmovl_u8(vget_low_u8 (hbit)), 5));
            vindex.val[1] = vorrq_u16(vmovl_u8(vget_high_u8(ql)), vshlq_n_u16(vmovl_u8(vget_high_u8(hbit)), 5));
            const uint8x16_t scales8 = vorrq_u8(vshlq_n_u8(vandq_u8(qh, m7), 1), m1);
            scales.val[0] = vmovl_u8(vget_low_u8 (scales8));
            scales.val[1] = vmovl_u8(vget_high_u8 (scales8));

            for (int l = 0; l < 2; ++l) {
                vst1q_u16(gindex+0, vindex.val[l]);
                q1b.val[0] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[0])), vld1_s8((const void *)(iq1s_grid+gindex[1])));
                q1b.val[1] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[2])), vld1_s8((const void *)(iq1s_grid+gindex[3])));
                q1b.val[2] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[4])), vld1_s8((const void *)(iq1s_grid+gindex[5])));
                q1b.val[3] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[6])), vld1_s8((const void *)(iq1s_grid+gindex[7])));
                q8b = ggml_vld1q_s8_x4(q8); q8 += 64;

                dotq.val[0] = vpaddq_s32(ggml_vdotq_s32(vzero, q1b.val[0], q8b.val[0]), ggml_vdotq_s32(vzero, q1b.val[1], q8b.val[1]));
                dotq.val[1] = vpaddq_s32(ggml_vdotq_s32(vzero, q1b.val[2], q8b.val[2]), ggml_vdotq_s32(vzero, q1b.val[3], q8b.val[3]));

                sumi.val[0] = vmlaq_s32(sumi.val[0], dotq.val[0], vreinterpretq_s32_u32(vmovl_u16(vget_low_u16 (scales.val[l]))));
                sumi.val[1] = vmlaq_s32(sumi.val[1], dotq.val[1], vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales.val[l]))));
            }
        }

        sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * vaddvq_s32(vaddq_s32(sumi.val[0], sumi.val[1]));
    }

    *s = sumf;

    // TODO: implement for QK_K = 64
#elif defined __AVX2__ && QK_K == 256

    const __m128i m8 = _mm_set1_epi8(0x08);
    const __m128i m7 = _mm_set1_epi8(0x07);
    const __m128i m1 = _mm_set1_epi8(0x01);
    const __m128i shuffle_h = _mm_set_epi8(15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0);
    const __m128i shuffle_s[4] = {
        _mm_set_epi32(0x03030303, 0x02020202, 0x01010101, 0x00000000),
        _mm_set_epi32(0x07070707, 0x06060606, 0x05050505, 0x04040404),
        _mm_set_epi32(0x0b0b0b0b, 0x0a0a0a0a, 0x09090909, 0x08080808),
        _mm_set_epi32(0x0f0f0f0f, 0x0e0e0e0e, 0x0d0d0d0d, 0x0c0c0c0c)
    };

    uint64_t aux64;

    typedef union m256i_uint16 {
        __m256i reg;
        uint16_t s[16];
    } m256i_uint16_t;

    m256i_uint16_t v_gindex;

    __m256 accum = _mm256_setzero_ps();
    for (int i = 0; i < nb; ++i) {

        const int8_t  * q8 = y[i].qs;
        const uint8_t * qs = x[i].qs;
        const uint8_t * sc = x[i].scales;

        __m256i sumi = _mm256_setzero_si256();
        for (int i128 = 0; i128 < QK_K/128; ++i128) {
            const __m128i ql = _mm_loadu_si128((const __m128i*)qs); qs += 16;
            memcpy(&aux64, sc, 8); sc += 8;
            const __m128i qh = _mm_shuffle_epi8(_mm_set_epi64x(aux64 >> 4, aux64), shuffle_h);
            const __m256i hbit = _mm256_cvtepu8_epi16(_mm_and_si128(qh, m8));
            v_gindex.reg = _mm256_or_si256(_mm256_cvtepu8_epi16(ql), _mm256_slli_epi16(hbit, 5));
            const __m128i scales = _mm_or_si128(_mm_slli_epi16(_mm_and_si128(qh, m7), 1), m1);

            for (int i32 = 0; i32 < 4; ++i32) {
                const __m256i q8b = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
                const __m256i q1b = _mm256_set_epi64x(iq1s_grid[v_gindex.s[4*i32+3]], iq1s_grid[v_gindex.s[4*i32+2]],
                                                      iq1s_grid[v_gindex.s[4*i32+1]], iq1s_grid[v_gindex.s[4*i32+0]]);
                const __m256i dot = mul_add_epi8(q1b, q8b);
                const __m256i s16 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, shuffle_s[i32]));
                const __m256i p   = _mm256_madd_epi16(s16, dot);
                sumi = _mm256_add_epi32(sumi, p);
            }

        }

        accum = _mm256_fmadd_ps(_mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d)), _mm256_cvtepi32_ps(sumi), accum);

    }

    *s = hsum_float_8(accum);

#else

    int db[4];
    uint16_t idx[4];

    float sumf = 0;
    for (int i = 0; i < nb; ++i) {

        const int8_t  * q8 = y[i].qs;
        const uint8_t * qs = x[i].qs;
        const uint8_t * sc = x[i].scales;

        int sumi = 0;
        for (int i32 = 0; i32 < QK_K/32; ++i32) {
            idx[0] = qs[0] | ((sc[0] & 0x08) << 5);
            idx[1] = qs[1] | ((sc[0] & 0x80) << 1);
            idx[2] = qs[2] | ((sc[1] & 0x08) << 5);
            idx[3] = qs[3] | ((sc[1] & 0x80) << 1);
            db[0] = (2*(sc[0] & 7) + 1);
            db[1] = (2*((sc[0] >> 4) & 7) + 1);
            db[2] = (2*(sc[1] & 7) + 1);
            db[3] = (2*((sc[1] >> 4) & 7) + 1);
            for (int l = 0; l < 4; ++l) {
                const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
                int suml = 0;
                for (int j = 0; j < 8; ++j) suml += q8[j] * grid[j];
                sumi += db[l] * suml;
                q8 += 8;
            }
            qs += 4;
            sc += 2;
        }

        sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * sumi;
    }

    *s = sumf;

#endif
}

void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);
    assert(n % QK4_NL == 0);
    static_assert(QK4_NL == QK8_0, "QK4_NL and QK8_0 must be the same");

    const block_iq4_nl * restrict x = vx;
    const block_q8_0   * restrict y = vy;

    const int nb = n / QK4_NL;

#if defined __ARM_NEON
    const int8x16_t values = vld1q_s8(kvalues_iq4nl);
    const uint8x16_t m4b = vdupq_n_u8(0x0f);
    uint8x16x2_t q4bits;
    int8x16x4_t q4b;
    int8x16x4_t q8b;
    int32x4_t prod_1, prod_2;

    float sumf = 0;

    for (int ib = 0; ib < nb; ib += 2) {

        q4bits.val[0] = vld1q_u8(x[ib+0].qs);
        q4bits.val[1] = vld1q_u8(x[ib+1].qs);
        q8b.val[0]    = vld1q_s8(y[ib+0].qs);
        q8b.val[1]    = vld1q_s8(y[ib+0].qs + 16);
        q8b.val[2]    = vld1q_s8(y[ib+1].qs);
        q8b.val[3]    = vld1q_s8(y[ib+1].qs + 16);

        q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8  (q4bits.val[0], m4b));
        q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
        q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8  (q4bits.val[1], m4b));
        q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));

        prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
        prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);

        sumf +=
            GGML_FP16_TO_FP32(x[ib+0].d) * GGML_FP16_TO_FP32(y[ib+0].d) * vaddvq_s32(prod_1) +
            GGML_FP16_TO_FP32(x[ib+1].d) * GGML_FP16_TO_FP32(y[ib+1].d) * vaddvq_s32(prod_2);
    }

    *s = sumf;

#elif defined __AVX2__

    const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
    const __m128i m4b  = _mm_set1_epi8(0x0f);
    const __m256i mone = _mm256_set1_epi16(1);

    __m256 accum1 = _mm256_setzero_ps();
    __m256 accum2 = _mm256_setzero_ps();
    for (int ib = 0; ib < nb; ib += 2) {
        const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[0].qs);
        const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[1].qs);
        const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)y[0].qs);
        const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)y[1].qs);
        const __m256i q4b_1 = _mm256_set_m128i(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
                                               _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
        const __m256i q4b_2 = _mm256_set_m128i(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
                                               _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
        const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
        const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
        const __m256i p_1 = _mm256_madd_epi16(p16_1, mone);
        const __m256i p_2 = _mm256_madd_epi16(p16_2, mone);
        accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[0].d)*GGML_FP16_TO_FP32(x[0].d)),
                _mm256_cvtepi32_ps(p_1), accum1);
        accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[1].d)*GGML_FP16_TO_FP32(x[1].d)),
                _mm256_cvtepi32_ps(p_2), accum2);

        y += 2;
        x += 2;
    }

    *s = hsum_float_8(_mm256_add_ps(accum1, accum2));

#else
    float sumf = 0;
    for (int ib = 0; ib < nb; ++ib) {
        const float d = GGML_FP16_TO_FP32(y[ib].d)*GGML_FP16_TO_FP32(x[ib].d);
        int sumi1 = 0, sumi2 = 0;
        for (int j = 0; j < QK4_NL/2; ++j) {
            sumi1 += y[ib].qs[j+       0] * kvalues_iq4nl[x[ib].qs[j] & 0xf];
            sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >>  4];
        }
        sumf += d * (sumi1 + sumi2);
    }
    *s = sumf;
#endif
}

void ggml_vec_dot_iq4_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);
    assert(n % QK_K == 0);
#if QK_K == 64
    ggml_vec_dot_iq4_nl_q8_0(n, s, bs, vx, bx, vy, by, nrc);
#else

    const block_iq4_xs * restrict x = vx;
    const block_q8_K   * restrict y = vy;

    const int nb = n / QK_K;

#if defined __ARM_NEON
    const int8x16_t values = vld1q_s8(kvalues_iq4nl);
    const uint8x16_t m4b = vdupq_n_u8(0x0f);
    uint8x16x2_t q4bits;
    int8x16x4_t q4b;
    int8x16x4_t q8b;
    int32x4_t prod_1, prod_2;

    float sumf = 0;

    for (int ibl = 0; ibl < nb; ++ibl) {

        const int8_t  * q8 = y[ibl].qs;
        const uint8_t * q4 = x[ibl].qs;
        uint16_t h = x[ibl].scales_h;

        int sumi1 = 0, sumi2 = 0;
        for (int ib = 0; ib < QK_K/64; ++ib) {

            q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
            q8b    = ggml_vld1q_s8_x4(q8); q8 += 64;

            q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8  (q4bits.val[0], m4b));
            q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
            q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8  (q4bits.val[1], m4b));
            q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));

            prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
            prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);

            int ls1 = ((x[ibl].scales_l[ib] & 0xf) | ((h << 4) & 0x30)) - 32;
            int ls2 = ((x[ibl].scales_l[ib] >>  4) | ((h << 2) & 0x30)) - 32;
            h >>= 4;
            sumi1 += vaddvq_s32(prod_1) * ls1;
            sumi2 += vaddvq_s32(prod_2) * ls2;

        }

        sumf += GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d * (sumi1 + sumi2);
    }

    *s = sumf;

#elif defined __AVX2__

    const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
    const __m128i m4b  = _mm_set1_epi8(0x0f);

    __m256 accum = _mm256_setzero_ps();
    for (int ibl = 0; ibl < nb; ++ibl) {
        const uint8_t * qs = x[ibl].qs;
        const int8_t  * q8 = y[ibl].qs;
        uint16_t sh = x[ibl].scales_h;
        __m256i sumi1 = _mm256_setzero_si256();
        __m256i sumi2 = _mm256_setzero_si256();
        for (int ib = 0; ib < QK_K/32; ib += 2) {
            const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)qs);  qs += 16;
            const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)qs);  qs += 16;
            const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
            const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
            const __m256i q4b_1 = _mm256_set_m128i(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
                                                   _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
            const __m256i q4b_2 = _mm256_set_m128i(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
                                                   _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
            const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
            const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
            const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
            const int16_t ls2 = ((x[ibl].scales_l[ib/2] >>  4) | ((sh << 2) & 0x30)) - 32;
            sh >>= 4;
            const __m256i p_1 = _mm256_madd_epi16(p16_1, _mm256_set1_epi16(ls1));
            const __m256i p_2 = _mm256_madd_epi16(p16_2, _mm256_set1_epi16(ls2));
            sumi1 = _mm256_add_epi32(p_1, sumi1);
            sumi2 = _mm256_add_epi32(p_2, sumi2);
        }
        accum = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
                _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accum);
    }

    *s = hsum_float_8(accum);

#else
    float sumf = 0;
    for (int ibl = 0; ibl < nb; ++ibl) {
        const float d4d8 = GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
        uint16_t h = x[ibl].scales_h;
        const uint8_t * qs = x[ibl].qs;
        const int8_t  * q8 = y[ibl].qs;
        for (int ib = 0; ib < QK_K/32; ib += 2) {
            const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30);
            const uint8_t ls2 = (x[ibl].scales_l[ib/2] >>  4) | ((h << 2) & 0x30);
            h >>= 4;
            const float d1 = d4d8*(ls1 - 32);
            const float d2 = d4d8*(ls2 - 32);
            int sumi1 = 0, sumi2 = 0;
            for (int j = 0; j < 16; ++j) {
                sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
                sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >>  4];
            }
            sumf += d1 * (sumi1 + sumi2);
            qs += 16;
            q8 += 32;
            sumi1 = sumi2 = 0;
            for (int j = 0; j < 16; ++j) {
                sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
                sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >>  4];
            }
            sumf += d2 * (sumi1 + sumi2);
            qs += 16;
            q8 += 32;
        }
    }
    *s = sumf;
#endif
#endif
}

// ================================ IQ2 quantization =============================================

typedef struct {
    uint64_t * grid;
    int      * map;
    uint16_t * neighbours;
} iq2_entry_t;

static iq2_entry_t iq2_data[4] = {
    {NULL, NULL, NULL},
    {NULL, NULL, NULL},
    {NULL, NULL, NULL},
    {NULL, NULL, NULL},
};

static inline int iq2_data_index(enum ggml_type type) {
    GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ2_S);
    return type == GGML_TYPE_IQ2_XXS ? 0 :
           type == GGML_TYPE_IQ2_XS  ? 1 :
           type == GGML_TYPE_IQ1_S   ? 2 : 3;
}

static inline int iq2_grid_size(enum ggml_type type) {
    GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ2_S);
    return type == GGML_TYPE_IQ2_XXS ? 256 :
           type == GGML_TYPE_IQ2_XS  ? 512 :
           type == GGML_TYPE_IQ1_S   ? 512 : 1024;
}

static int iq2_compare_func(const void * left, const void * right) {
    const int * l = (const int *)left;
    const int * r = (const int *)right;
    return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
}

void iq2xs_init_impl(enum ggml_type type) {
    const int gindex = iq2_data_index(type);
    const int grid_size = iq2_grid_size(type);
    if (iq2_data[gindex].grid) {
        return;
    }
    static const uint16_t kgrid_2bit_256[256] = {
            0,     2,     5,     8,    10,    17,    20,    32,    34,    40,    42,    65,    68,    80,    88,    97,
          100,   128,   130,   138,   162,   257,   260,   272,   277,   320,   388,   408,   512,   514,   546,   642,
         1025,  1028,  1040,  1057,  1060,  1088,  1090,  1096,  1120,  1153,  1156,  1168,  1188,  1280,  1282,  1288,
         1312,  1350,  1385,  1408,  1425,  1545,  1552,  1600,  1668,  1700,  2048,  2053,  2056,  2068,  2088,  2113,
         2116,  2128,  2130,  2184,  2308,  2368,  2562,  2580,  4097,  4100,  4112,  4129,  4160,  4192,  4228,  4240,
         4245,  4352,  4360,  4384,  4432,  4442,  4480,  4644,  4677,  5120,  5128,  5152,  5157,  5193,  5248,  5400,
         5474,  5632,  5654,  6145,  6148,  6160,  6208,  6273,  6400,  6405,  6560,  6737,  8192,  8194,  8202,  8260,
         8289,  8320,  8322,  8489,  8520,  8704,  8706,  9217,  9220,  9232,  9280,  9302,  9472,  9537,  9572,  9872,
        10248, 10272, 10388, 10820, 16385, 16388, 16400, 16408, 16417, 16420, 16448, 16456, 16470, 16480, 16513, 16516,
        16528, 16640, 16672, 16737, 16768, 16773, 16897, 16912, 16968, 16982, 17000, 17408, 17416, 17440, 17536, 17561,
        17682, 17700, 17920, 18433, 18436, 18448, 18496, 18501, 18688, 18776, 18785, 18818, 19013, 19088, 20480, 20488,
        20497, 20505, 20512, 20608, 20616, 20740, 20802, 20900, 21137, 21648, 21650, 21770, 22017, 22100, 22528, 22545,
        22553, 22628, 22848, 23048, 24580, 24592, 24640, 24680, 24832, 24917, 25112, 25184, 25600, 25605, 25872, 25874,
        25988, 26690, 32768, 32770, 32778, 32833, 32898, 33028, 33048, 33088, 33297, 33793, 33796, 33808, 33813, 33856,
        33888, 34048, 34118, 34196, 34313, 34368, 34400, 34818, 35076, 35345, 36868, 36880, 36900, 36928, 37025, 37142,
        37248, 37445, 37888, 37922, 37956, 38225, 39041, 39200, 40962, 41040, 41093, 41225, 41472, 42008, 43088, 43268,
    };
    static const uint16_t kgrid_2bit_512[512] = {
            0,     2,     5,     8,    10,    17,    20,    22,    25,    32,    34,    37,    40,    65,    68,    70,
           73,    80,    82,    85,    88,    97,   100,   128,   130,   133,   136,   145,   148,   153,   160,   257,
          260,   262,   265,   272,   274,   277,   280,   282,   289,   292,   320,   322,   325,   328,   337,   340,
          352,   360,   385,   388,   400,   512,   514,   517,   520,   529,   532,   544,   577,   580,   592,   597,
          640,   650,  1025,  1028,  1030,  1033,  1040,  1042,  1045,  1048,  1057,  1060,  1088,  1090,  1093,  1096,
         1105,  1108,  1110,  1120,  1153,  1156,  1168,  1280,  1282,  1285,  1288,  1297,  1300,  1312,  1345,  1348,
         1360,  1377,  1408,  1537,  1540,  1552,  1574,  1600,  1602,  1668,  2048,  2050,  2053,  2056,  2058,  2065,
         2068,  2080,  2085,  2113,  2116,  2128,  2136,  2176,  2208,  2218,  2305,  2308,  2320,  2368,  2433,  2441,
         2560,  2592,  2600,  2710,  2720,  4097,  4100,  4102,  4105,  4112,  4114,  4117,  4120,  4129,  4132,  4160,
         4162,  4165,  4168,  4177,  4180,  4192,  4202,  4225,  4228,  4240,  4352,  4354,  4357,  4360,  4369,  4372,
         4384,  4417,  4420,  4432,  4480,  4500,  4502,  4609,  4612,  4614,  4624,  4672,  4704,  5120,  5122,  5125,
         5128,  5137,  5140,  5152,  5185,  5188,  5193,  5200,  5220,  5248,  5377,  5380,  5392,  5440,  5632,  5652,
         5705,  6145,  6148,  6160,  6162,  6208,  6228,  6278,  6400,  6405,  6502,  6737,  6825,  8192,  8194,  8197,
         8200,  8202,  8209,  8212,  8224,  8257,  8260,  8272,  8320,  8352,  8449,  8452,  8464,  8512,  8520,  8549,
         8704,  8738,  8832,  8872,  9217,  9220,  9232,  9257,  9280,  9472,  9537,  9554,  9625,  9729,  9754,  9894,
        10240, 10248, 10250, 10272, 10325, 10376, 10402, 10600, 10640, 10760, 10784, 10882, 10888, 10890, 16385, 16388,
        16390, 16393, 16400, 16402, 16405, 16408, 16417, 16420, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16480,
        16485, 16513, 16516, 16528, 16640, 16642, 16645, 16648, 16657, 16660, 16672, 16705, 16708, 16720, 16768, 16773,
        16802, 16897, 16900, 16912, 16914, 16937, 16960, 17408, 17410, 17413, 17416, 17425, 17428, 17433, 17440, 17473,
        17476, 17488, 17536, 17556, 17665, 17668, 17680, 17700, 17728, 17818, 17920, 17930, 17988, 18000, 18433, 18436,
        18448, 18496, 18501, 18516, 18530, 18688, 18705, 18756, 18768, 18793, 18948, 20480, 20482, 20485, 20488, 20497,
        20500, 20512, 20520, 20545, 20548, 20560, 20608, 20737, 20740, 20752, 20757, 20800, 20802, 20992, 21060, 21162,
        21505, 21508, 21520, 21537, 21568, 21600, 21633, 21665, 21760, 21768, 21888, 21896, 22049, 22120, 22177, 22528,
        22548, 22593, 22608, 22681, 22810, 22848, 22850, 23173, 24577, 24580, 24592, 24640, 24660, 24674, 24710, 24745,
        24832, 25124, 25162, 25234, 25600, 25622, 25872, 25920, 25925, 26020, 26625, 26730, 26917, 27142, 27220, 27234,
        32768, 32770, 32773, 32776, 32785, 32788, 32800, 32810, 32833, 32836, 32848, 32896, 32898, 32936, 32938, 33025,
        33028, 33030, 33040, 33088, 33105, 33113, 33280, 33312, 33408, 33410, 33440, 33448, 33793, 33796, 33808, 33810,
        33813, 33856, 33888, 33929, 34048, 34116, 34213, 34328, 34410, 34816, 34824, 34853, 34906, 34944, 34946, 34984,
        35078, 35362, 35456, 35464, 35478, 35496, 36865, 36868, 36880, 36928, 36950, 36996, 37120, 37154, 37220, 37462,
        37513, 37888, 37893, 37956, 37968, 37976, 38185, 38288, 38290, 38465, 38993, 39078, 39241, 39445, 39520, 40960,
        40962, 40968, 40970, 40992, 41002, 41120, 41297, 41305, 41382, 41472, 41474, 41480, 41514, 41600, 41632, 42048,
        42133, 42597, 42648, 43018, 43040, 43042, 43048, 43168, 43176, 43268, 43396, 43398, 43560, 43562, 43665, 43690,
    };
    static const uint16_t kgrid_1bit_512[512] = {
           10,    33,    41,    85,   132,   134,   160,   162,   277,   337,   340,   345,   357,   405,   516,   545,
          553,   598,   641,   650,   681,  1042,  1044,  1097,  1169,  1176,  1320,  1345,  1365,  1378,  1434,  1444,
         1545,  1617,  1642,  1685,  2053,  2080,  2089,  2133,  2176,  2182,  2208,  2214,  2306,  2384,  2393,  2440,
         2453,  2581,  2664,  2690,  2721,  4117,  4161,  4182,  4184,  4261,  4357,  4369,  4372,  4377,  4390,  4422,
         4432,  4437,  4449,  4457,  4485,  4497,  4505,  4629,  4677,  4696,  4774,  5205,  5217,  5225,  5386,  5397,
         5409,  5445,  5457,  5460,  5461,  5462,  5465,  5472,  5477,  5525,  5545,  5650,  5668,  5717,  5729,  5769,
         5777,  6212,  6234,  6244,  6293,  6424,  6482,  6485,  6502,  6505,  6529,  6538,  6565,  6656,  6682,  6788,
         6806,  6820,  8218,  8224,  8226,  8232,  8277,  8326,  8354,  8469,  8521,  8530,  8549,  8596,  8737,  8794,
         9221,  9253,  9348,  9369,  9380,  9474,  9557,  9633,  9732,  9753,  9793,  9830,  9862,  9880, 10240, 10272,
        10282, 10321, 10406, 10517, 10530, 10566, 10585, 10645, 10896, 16466, 16468, 16473, 16485, 16646, 16660, 16665,
        16725, 16793, 16806, 16914, 16969, 16977, 16996, 17028, 17057, 17408, 17416, 17434, 17493, 17512, 17578, 17685,
        17696, 17733, 17745, 17748, 17749, 17750, 17753, 17765, 17794, 17813, 17946, 17984, 18005, 18072, 18453, 18529,
        18569, 18722, 18756, 18762, 18773, 18794, 18833, 18853, 18945, 19026, 19033, 19077, 20489, 20497, 20500, 20517,
        20565, 20586, 20610, 20633, 20757, 20769, 20776, 20805, 20817, 20820, 20821, 20822, 20825, 20837, 20864, 20872,
        20885, 20896, 21002, 21029, 21077, 21146, 21510, 21525, 21573, 21585, 21588, 21589, 21590, 21593, 21605, 21653,
        21665, 21765, 21777, 21780, 21781, 21782, 21785, 21797, 21825, 21828, 21829, 21830, 21833, 21840, 21841, 21842,
        21844, 21846, 21848, 21849, 21850, 21857, 21860, 21861, 21862, 21865, 21893, 21905, 21908, 21909, 21910, 21913,
        21925, 22024, 22037, 22085, 22097, 22100, 22101, 22102, 22105, 22117, 22165, 22545, 22566, 22568, 22594, 22608,
        22613, 22676, 22697, 22793, 22805, 22853, 22865, 22868, 22869, 22870, 22873, 22885, 22933, 22946, 23046, 23072,
        23125, 23209, 24597, 24640, 24665, 24673, 24725, 24833, 24840, 24869, 24917, 24934, 24965, 25001, 25108, 25110,
        25152, 25184, 25192, 25234, 25616, 25618, 25625, 25685, 25704, 25738, 25744, 25770, 25877, 25897, 25925, 25937,
        25940, 25941, 25942, 25945, 25957, 25986, 26005, 26186, 26197, 26276, 26632, 26634, 26725, 26757, 26770, 26885,
        26965, 26976, 26986, 27032, 27153, 27174, 27200, 27208, 27240, 27269, 27282, 27290, 32778, 32800, 32802, 32808,
        32810, 32853, 32904, 32922, 32930, 32932, 33105, 33110, 33112, 33125, 33157, 33280, 33288, 33301, 33312, 33320,
        33424, 33797, 33829, 33858, 34068, 34133, 34146, 34176, 34217, 34306, 34342, 34441, 34454, 34468, 34832, 34918,
        34965, 34984, 35094, 35137, 35161, 35208, 35232, 35332, 35338, 35368, 35429, 36932, 36934, 36953, 37009, 37125,
        37136, 37138, 37145, 37157, 37205, 37220, 37258, 37290, 37444, 37446, 37465, 37478, 37525, 37905, 37968, 37973,
        38040, 38054, 38145, 38154, 38165, 38180, 38186, 38213, 38225, 38228, 38229, 38230, 38233, 38245, 38293, 38485,
        38504, 38530, 38938, 38985, 38993, 39012, 39040, 39173, 39192, 39253, 39265, 39301, 39316, 39322, 39442, 39497,
        39504, 39590, 40970, 40984, 40992, 41002, 41045, 41120, 41128, 41237, 41289, 41297, 41317, 41364, 41366, 41514,
        41557, 41633, 41989, 42021, 42056, 42068, 42074, 42113, 42242, 42265, 42274, 42325, 42340, 42402, 42501, 42512,
        42533, 42624, 42632, 42666, 43040, 43093, 43106, 43168, 43176, 43264, 43286, 43345, 43429, 43590, 43618, 43680,
    };
    static const uint16_t kgrid_2bit_1024[1024] = {
            0,     2,     5,     8,    10,    17,    20,    22,    25,    32,    34,    37,    40,    65,    68,    70,
           73,    80,    82,    85,    88,    97,   100,   102,   105,   128,   130,   133,   136,   145,   148,   160,
          165,   170,   257,   260,   262,   265,   272,   274,   277,   280,   289,   292,   320,   322,   325,   328,
          337,   340,   342,   345,   352,   357,   360,   385,   388,   400,   402,   405,   417,   420,   512,   514,
          517,   520,   529,   532,   544,   554,   577,   580,   582,   585,   592,   597,   640,   645,   650,   660,
          674,  1025,  1028,  1030,  1033,  1040,  1042,  1045,  1048,  1057,  1060,  1062,  1065,  1088,  1090,  1093,
         1096,  1098,  1105,  1108,  1110,  1113,  1120,  1122,  1125,  1153,  1156,  1158,  1161,  1168,  1173,  1176,
         1185,  1188,  1280,  1282,  1285,  1288,  1290,  1297,  1300,  1302,  1305,  1312,  1317,  1320,  1345,  1348,
         1350,  1353,  1360,  1362,  1365,  1368,  1377,  1380,  1408,  1410,  1413,  1416,  1425,  1428,  1440,  1537,
         1540,  1542,  1545,  1552,  1557,  1600,  1605,  1608,  1617,  1620,  1632,  1665,  1668,  1680,  2048,  2050,
         2053,  2056,  2065,  2068,  2070,  2073,  2080,  2085,  2090,  2113,  2116,  2118,  2121,  2128,  2130,  2133,
         2136,  2145,  2148,  2176,  2181,  2196,  2218,  2305,  2308,  2320,  2322,  2325,  2328,  2337,  2368,  2373,
         2376,  2385,  2388,  2400,  2433,  2448,  2560,  2577,  2580,  2594,  2600,  2602,  2640,  2713,  4097,  4100,
         4102,  4105,  4112,  4114,  4117,  4120,  4129,  4132,  4134,  4160,  4162,  4165,  4168,  4177,  4180,  4182,
         4185,  4192,  4194,  4197,  4200,  4225,  4228,  4230,  4240,  4245,  4248,  4257,  4260,  4352,  4354,  4357,
         4360,  4362,  4369,  4372,  4374,  4377,  4384,  4386,  4389,  4392,  4417,  4420,  4422,  4425,  4432,  4434,
         4437,  4440,  4449,  4452,  4480,  4482,  4485,  4488,  4497,  4500,  4609,  4612,  4617,  4624,  4629,  4641,
         4644,  4672,  4677,  4689,  4692,  4737,  4740,  4752,  5120,  5122,  5125,  5128,  5137,  5140,  5142,  5145,
         5152,  5157,  5160,  5185,  5188,  5190,  5193,  5200,  5202,  5205,  5208,  5217,  5220,  5248,  5250,  5253,
         5256,  5265,  5268,  5280,  5377,  5380,  5382,  5385,  5392,  5394,  5397,  5400,  5409,  5412,  5440,  5442,
         5445,  5448,  5457,  5460,  5472,  5505,  5508,  5520,  5632,  5637,  5640,  5649,  5652,  5664,  5697,  5700,
         5712,  5760,  5802,  6145,  6148,  6150,  6153,  6160,  6165,  6168,  6177,  6208,  6210,  6213,  6216,  6225,
         6228,  6240,  6273,  6276,  6400,  6402,  6405,  6408,  6417,  6420,  6432,  6465,  6468,  6480,  6505,  6562,
         6660,  6672,  6720,  6742,  8192,  8194,  8197,  8200,  8209,  8212,  8214,  8217,  8224,  8229,  8234,  8257,
         8260,  8272,  8274,  8277,  8292,  8320,  8330,  8340,  8362,  8449,  8452,  8464,  8466,  8469,  8481,  8512,
         8514,  8517,  8529,  8532,  8544,  8577,  8580,  8592,  8704,  8714,  8738,  8744,  8746,  8772,  8784,  8840,
         8842,  8872,  9217,  9220,  9222,  9225,  9232,  9237,  9240,  9249,  9252,  9280,  9282,  9285,  9288,  9297,
         9300,  9312,  9345,  9348,  9360,  9472,  9477,  9480,  9489,  9492,  9504,  9537,  9540,  9552,  9574,  9600,
         9729,  9732,  9744,  9792,  9817, 10240, 10245, 10257, 10260, 10305, 10308, 10320, 10378, 10410, 10497, 10500,
        10512, 10645, 10762, 10786, 10852, 10888, 10890, 16385, 16388, 16390, 16393, 16400, 16402, 16405, 16408, 16410,
        16417, 16420, 16422, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16470, 16473, 16480, 16482, 16485, 16513,
        16516, 16528, 16533, 16536, 16545, 16548, 16640, 16642, 16645, 16648, 16657, 16660, 16662, 16665, 16672, 16674,
        16677, 16705, 16708, 16710, 16713, 16720, 16722, 16725, 16728, 16737, 16740, 16768, 16770, 16773, 16776, 16785,
        16788, 16800, 16897, 16900, 16912, 16914, 16917, 16920, 16932, 16960, 16965, 16968, 16977, 16980, 16992, 17025,
        17028, 17408, 17410, 17413, 17416, 17418, 17425, 17428, 17430, 17433, 17440, 17442, 17445, 17448, 17473, 17476,
        17478, 17481, 17488, 17490, 17493, 17496, 17505, 17508, 17536, 17538, 17541, 17544, 17553, 17556, 17568, 17665,
        17668, 17670, 17673, 17680, 17682, 17685, 17688, 17697, 17700, 17728, 17730, 17733, 17736, 17745, 17748, 17760,
        17770, 17793, 17796, 17808, 17920, 17922, 17925, 17928, 17937, 17940, 17952, 17985, 17988, 18000, 18048, 18085,
        18433, 18436, 18441, 18448, 18450, 18453, 18456, 18465, 18468, 18496, 18498, 18501, 18504, 18513, 18516, 18528,
        18564, 18576, 18688, 18690, 18693, 18696, 18705, 18708, 18720, 18753, 18756, 18768, 18816, 18838, 18945, 18948,
        18960, 19008, 20480, 20482, 20485, 20488, 20497, 20500, 20502, 20505, 20512, 20514, 20517, 20520, 20545, 20548,
        20550, 20553, 20560, 20562, 20565, 20568, 20577, 20580, 20608, 20610, 20613, 20616, 20625, 20628, 20737, 20740,
        20742, 20745, 20752, 20754, 20757, 20760, 20769, 20772, 20800, 20802, 20805, 20808, 20817, 20820, 20832, 20865,
        20868, 20880, 20992, 20997, 21000, 21009, 21012, 21024, 21057, 21060, 21072, 21097, 21120, 21505, 21508, 21510,
        21513, 21520, 21522, 21525, 21528, 21537, 21540, 21568, 21570, 21573, 21576, 21585, 21588, 21600, 21633, 21636,
        21648, 21760, 21762, 21765, 21768, 21777, 21780, 21792, 21825, 21828, 21840, 21888, 22017, 22020, 22032, 22054,
        22080, 22528, 22530, 22533, 22536, 22545, 22548, 22560, 22593, 22596, 22608, 22618, 22656, 22785, 22788, 22800,
        22848, 23040, 23065, 23173, 23208, 24577, 24580, 24582, 24592, 24594, 24597, 24600, 24609, 24612, 24640, 24645,
        24648, 24657, 24660, 24672, 24708, 24720, 24832, 24834, 24837, 24840, 24849, 24852, 24864, 24897, 24900, 24912,
        24960, 24985, 25092, 25104, 25152, 25174, 25249, 25600, 25605, 25608, 25617, 25620, 25632, 25665, 25668, 25680,
        25728, 25857, 25860, 25872, 25920, 25930, 25960, 26002, 26112, 26260, 26625, 26628, 26640, 26725, 26776, 26880,
        26922, 27202, 27297, 32768, 32770, 32773, 32776, 32785, 32788, 32793, 32800, 32805, 32833, 32836, 32848, 32850,
        32853, 32856, 32865, 32896, 32901, 32913, 32916, 33025, 33028, 33033, 33040, 33042, 33045, 33048, 33057, 33060,
        33088, 33090, 33093, 33096, 33105, 33108, 33153, 33156, 33168, 33193, 33280, 33285, 33290, 33297, 33300, 33345,
        33348, 33360, 33793, 33796, 33798, 33801, 33808, 33810, 33813, 33816, 33825, 33856, 33858, 33861, 33864, 33873,
        33876, 33888, 33921, 33924, 33936, 34048, 34050, 34053, 34056, 34065, 34068, 34080, 34113, 34116, 34128, 34176,
        34186, 34305, 34308, 34320, 34345, 34368, 34816, 34821, 34833, 34836, 34881, 34884, 34896, 34978, 35073, 35076,
        35136, 35173, 35362, 35416, 35418, 35458, 35490, 36865, 36868, 36873, 36880, 36882, 36885, 36888, 36900, 36928,
        36930, 36933, 36936, 36945, 36948, 36960, 36993, 36996, 37008, 37120, 37125, 37137, 37140, 37185, 37188, 37200,
        37210, 37377, 37380, 37392, 37440, 37542, 37888, 37890, 37893, 37896, 37905, 37908, 37920, 37953, 37956, 37968,
        38016, 38038, 38145, 38148, 38160, 38208, 38296, 38305, 38400, 38470, 38500, 38913, 38916, 38928, 38950, 38976,
        39081, 39168, 39241, 39250, 39568, 40960, 40965, 40970, 40980, 40994, 41002, 41025, 41028, 41040, 41122, 41130,
        41280, 41317, 41474, 41482, 41506, 41512, 41514, 41602, 41608, 41610, 41640, 41985, 41988, 42000, 42048, 42121,
        42148, 42240, 42265, 42577, 43018, 43048, 43170, 43348, 43398, 43528, 43530, 43552, 43554, 43560, 43656, 43690,
    };

    const int kmap_size = 43692;
    //const int nwant = type == GGML_TYPE_IQ1_S ? 3 : 2;
    const int nwant = type == GGML_TYPE_IQ1_S ? 3 : type == GGML_TYPE_IQ2_S ? 1 : 2;
    const uint16_t * kgrid = type == GGML_TYPE_IQ2_XXS ? kgrid_2bit_256 :
                             type == GGML_TYPE_IQ2_XS  ? kgrid_2bit_512 :
                             type == GGML_TYPE_IQ1_S   ? kgrid_1bit_512 : kgrid_2bit_1024;
    uint64_t * kgrid_q2xs;
    int      * kmap_q2xs;
    uint16_t * kneighbors_q2xs;

    printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
    uint64_t * the_grid = (uint64_t *)malloc(grid_size*sizeof(uint64_t));
    for (int k = 0; k < grid_size; ++k) {
        int8_t * pos = (int8_t *)(the_grid + k);
        for (int i = 0; i < 8; ++i) {
            int l = (kgrid[k] >> 2*i) & 0x3;
            pos[i] = 2*l + 1;
        }
    }
    kgrid_q2xs = the_grid;
    iq2_data[gindex].grid = the_grid;
    kmap_q2xs = (int *)malloc(kmap_size*sizeof(int));
    iq2_data[gindex].map = kmap_q2xs;
    for (int i = 0; i < kmap_size; ++i) kmap_q2xs[i] = -1;
    uint64_t aux64;
    uint8_t * aux8 = (uint8_t *)&aux64;
    for (int i = 0; i < grid_size; ++i) {
        aux64 = kgrid_q2xs[i];
        uint16_t index = 0;
        for (int k=0; k<8; ++k) {
            uint16_t q = (aux8[k] - 1)/2;
            index |= (q << 2*k);
        }
        kmap_q2xs[index] = i;
    }
    int8_t pos[8];
    int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
    int num_neighbors = 0, num_not_in_map = 0;
    for (int i = 0; i < kmap_size; ++i) {
        if (kmap_q2xs[i] >= 0) continue;
        ++num_not_in_map;
        for (int k = 0; k < 8; ++k) {
            int l = (i >> 2*k) & 0x3;
            pos[k] = 2*l + 1;
        }
        for (int j = 0; j < grid_size; ++j) {
            const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
            int d2 = 0;
            for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
            dist2[2*j+0] = d2;
            dist2[2*j+1] = j;
        }
        qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
        int n = 0; int d2 = dist2[0];
        int nhave = 1;
        for (int j = 0; j < grid_size; ++j) {
            if (dist2[2*j] > d2) {
                if (nhave == nwant) break;
                d2 = dist2[2*j];
                ++nhave;
            }
            ++n;
        }
        num_neighbors += n;
    }
    printf("%s: %d neighbours in total\n", __func__, num_neighbors);
    kneighbors_q2xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
    iq2_data[gindex].neighbours = kneighbors_q2xs;
    int counter = 0;
    for (int i = 0; i < kmap_size; ++i) {
        if (kmap_q2xs[i] >= 0) continue;
        for (int k = 0; k < 8; ++k) {
            int l = (i >> 2*k) & 0x3;
            pos[k] = 2*l + 1;
        }
        for (int j = 0; j < grid_size; ++j) {
            const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
            int d2 = 0;
            for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
            dist2[2*j+0] = d2;
            dist2[2*j+1] = j;
        }
        qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
        kmap_q2xs[i] = -(counter + 1);
        int d2 = dist2[0];
        uint16_t * start = &kneighbors_q2xs[counter++];
        int n = 0, nhave = 1;
        for (int j = 0; j < grid_size; ++j) {
            if (dist2[2*j] > d2) {
                if (nhave == nwant) break;
                d2 = dist2[2*j];
                ++nhave;
            }
            kneighbors_q2xs[counter++] = dist2[2*j+1];
            ++n;
        }
        *start = n;
    }
    free(dist2);
}

void iq2xs_free_impl(enum ggml_type type) {
    GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ2_S);
    const int gindex = iq2_data_index(type);
    if (iq2_data[gindex].grid) {
        free(iq2_data[gindex].grid);       iq2_data[gindex].grid = NULL;
        free(iq2_data[gindex].map);        iq2_data[gindex].map  = NULL;
        free(iq2_data[gindex].neighbours); iq2_data[gindex].neighbours = NULL;
    }
}

static int iq2_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
        const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
    int num_neighbors = neighbours[0];
    GGML_ASSERT(num_neighbors > 0);
    float best_d2 = FLT_MAX;
    int grid_index = -1;
    for (int j = 1; j <= num_neighbors; ++j) {
        const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
        float d2 = 0;
        for (int i = 0; i < 8; ++i) {
            float q = pg[i];
            float diff = scale*q - xval[i];
            d2 += weight[i]*diff*diff;
        }
        if (d2 < best_d2) {
            best_d2 = d2; grid_index = neighbours[j];
        }
    }
    GGML_ASSERT(grid_index >= 0);
    const int8_t * pg = (const int8_t *)(grid + grid_index);
    for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
    return grid_index;
}

static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {

    const int gindex = iq2_data_index(GGML_TYPE_IQ2_XXS);

    const uint64_t * kgrid_q2xs      = iq2_data[gindex].grid;
    const int      * kmap_q2xs       = iq2_data[gindex].map;
    const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;

    GGML_ASSERT(quant_weights   && "missing quantization weights");
    GGML_ASSERT(kgrid_q2xs      && "forgot to call ggml_quantize_init()?");
    GGML_ASSERT(kmap_q2xs       && "forgot to call ggml_quantize_init()?");
    GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
    GGML_ASSERT(n%QK_K == 0);

    const int kMaxQ = 3;

    const int nbl = n/QK_K;

    block_iq2_xxs * y = vy;

    float scales[QK_K/32];
    float weight[32];
    float xval[32];
    int8_t L[32];
    int8_t Laux[32];
    float  waux[32];
    uint8_t block_signs[4];
    uint32_t q2[2*(QK_K/32)];

    for (int ibl = 0; ibl < nbl; ++ibl) {

        y[ibl].d = GGML_FP32_TO_FP16(0.f);
        memset(q2, 0, QK_K/4);

        float max_scale = 0;

        const float * xbl = x + QK_K*ibl;
        float sumx2 = 0;
        for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
        float sigma2 = sumx2/QK_K;

        for (int ib = 0; ib < QK_K/32; ++ib) {
            const float * xb = xbl + 32*ib;
            const float * qw = quant_weights + QK_K*ibl + 32*ib;
            for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
            for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
            for (int k = 0; k < 4; ++k) {
                int nflip = 0;
                uint8_t s = 0;
                for (int i = 0; i < 8; ++i) {
                    if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
                    else {
                        xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
                    }
                }
                if (nflip%2) {
                    int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
                    for (int i = 1; i < 8; ++i) {
                        float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
                        if (ax < min) {
                            min = ax; imin = i;
                        }
                    }
                    xval[8*k+imin] = -xval[8*k+imin];
                    s ^= (1 << imin);
                }
                block_signs[k] = s & 127;
            }
            float max = xval[0];
            for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
            if (!max) {
                scales[ib] = 0;
                memset(L, 0, 32);
                continue;
            }
            float scale = make_qp_quants(32, kMaxQ+1, xval, (uint8_t*)L, weight);
            float eff_max = scale*kMaxQ;
            float best = 0;
            for (int is = -6; is <= 6; ++is) {
                float id = (2*kMaxQ-1+is*0.1f)/eff_max;
                float this_scale = 1/id;
                for (int k = 0; k < 4; ++k) {
                    for (int i = 0; i < 8; ++i) {
                        int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
                        Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
                    }
                    uint16_t u = 0;
                    for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
                    int grid_index = kmap_q2xs[u];
                    if (grid_index < 0) {
                        const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
                        grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
                    }
                }
                float sumqx = 0, sumq2 = 0;
                for (int i = 0; i < 32; ++i) {
                    float w = weight[i];
                    float q = 2*Laux[i] + 1;
                    sumqx += w*xval[i]*q;
                    sumq2 += w*q*q;
                }
                if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
                    scale = sumqx/sumq2; best = scale*sumqx;
                    memcpy(L, Laux, 32);
                }
            }
            if (scale > 0) {
                float id = 1/scale;
                for (int k = 0; k < 4; ++k) {
                    uint16_t u = 0;
                    for (int i = 0; i < 8; ++i) {
                        int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
                        l = MAX(0, MIN(kMaxQ-1, l));
                        u |= (l << 2*i);
                    }
                    int grid_index = kmap_q2xs[u];
                    if (grid_index < 0) {
                        const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
                        grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
                    }
                    const int8_t * pg = (const int8_t *)(kgrid_q2xs + grid_index);
                    for (int i = 0; i < 8; ++i) L[8*k+i] = (pg[i] - 1)/2;
                }
                float sumqx = 0, sumq2 = 0;
                for (int i = 0; i < 32; ++i) {
                    float w = weight[i];
                    float q = 2*L[i] + 1;
                    sumqx += w*xval[i]*q;
                    sumq2 += w*q*q;
                }
                if (sumq2 > 0) scale = sumqx/sumq2;
            }
            if (scale < 0) {
                // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
                // and correspondingly flip quant signs.
                scale = -scale;
                for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
            }
            for (int k = 0; k < 4; ++k) {
                uint16_t u = 0;
                for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
                int grid_index = kmap_q2xs[u];
                if (grid_index < 0) {
                    printf("Oops: found point %u not on grid:", u);
                    for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
                    printf("\n");
                    GGML_ASSERT(false);
                }
                q2[2*ib+0] |= (grid_index << 8*k);
                q2[2*ib+1] |= (block_signs[k] << 7*k);
            }
            GGML_ASSERT(scale >= 0);
            scales[ib] = scale;
            max_scale = MAX(max_scale, scale);
        }

        if (!max_scale) {
            memset(y[ibl].qs, 0, QK_K/4);
            continue;
        }

        float d = max_scale/31;
        y[ibl].d = GGML_FP32_TO_FP16(d);
        float id = 1/d;
        for (int ib = 0; ib < QK_K/32; ++ib) {
            int l = nearest_int(0.5f*(id*scales[ib]-1));
            l = MAX(0, MIN(15, l));
            q2[2*ib+1] |= ((uint32_t)l << 28);
        }
        memcpy(y[ibl].qs, q2, QK_K/4);
    }
}

static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {

    const int gindex = iq2_data_index(GGML_TYPE_IQ2_XS);

    const uint64_t * kgrid_q2xs      = iq2_data[gindex].grid;
    const int      * kmap_q2xs       = iq2_data[gindex].map;
    const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;

    GGML_ASSERT(quant_weights   && "missing quantization weights");
    GGML_ASSERT(kmap_q2xs       && "forgot to call ggml_quantize_init()?");
    GGML_ASSERT(kgrid_q2xs      && "forgot to call ggml_quantize_init()?");
    GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
    GGML_ASSERT(n%QK_K == 0);

    const int kMaxQ = 3;

    const int nbl = n/QK_K;

    block_iq2_xs * y = vy;

    float scales[QK_K/16];
    float weight[16];
    float xval[16];
    int8_t L[16];
    int8_t Laux[16];
    float  waux[16];
    bool   is_on_grid[2];
    bool   is_on_grid_aux[2];
    uint8_t block_signs[2];
    uint16_t q2[2*(QK_K/16)];

    for (int ibl = 0; ibl < nbl; ++ibl) {

        y[ibl].d = GGML_FP32_TO_FP16(0.f);
        memset(q2, 0, QK_K/4);
        memset(y[ibl].scales, 0, QK_K/32);

        float max_scale = 0;

        const float * xbl = x + QK_K*ibl;
        float sumx2 = 0;
        for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
        float sigma2 = sumx2/QK_K;

        for (int ib = 0; ib < QK_K/16; ++ib) {
            const float * xb = xbl + 16*ib;
            const float * qw = quant_weights + QK_K*ibl + 16*ib;
            for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
            for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
            for (int k = 0; k < 2; ++k) {
                int nflip = 0;
                uint8_t s = 0;
                for (int i = 0; i < 8; ++i) {
                    if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
                    else {
                        xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
                    }
                }
                if (nflip%2) {
                    int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
                    for (int i = 1; i < 8; ++i) {
                        float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
                        if (ax < min) {
                            min = ax; imin = i;
                        }
                    }
                    xval[8*k+imin] = -xval[8*k+imin];
                    s ^= (1 << imin);
                }
                block_signs[k] = s & 127;
            }
            float max = xval[0];
            for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
            if (!max) {
                scales[ib] = 0;
                memset(L, 0, 16);
                continue;
            }
            float best = 0;
            float scale = max/(2*kMaxQ-1);
            is_on_grid[0] = is_on_grid[1] = true;
            for (int is = -9; is <= 9; ++is) {
                float id = (2*kMaxQ-1+is*0.1f)/max;
                float this_scale = 1/id;
                for (int k = 0; k < 2; ++k) {
                    for (int i = 0; i < 8; ++i) {
                        int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
                        Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
                    }
                    uint16_t u = 0;
                    for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
                    int grid_index = kmap_q2xs[u];
                    is_on_grid_aux[k] = true;
                    if (grid_index < 0) {
                        is_on_grid_aux[k] = false;
                        const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
                        grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
                    }
                }
                float sumqx = 0, sumq2 = 0;
                for (int i = 0; i < 16; ++i) {
                    float w = weight[i];
                    float q = 2*Laux[i] + 1;
                    sumqx += w*xval[i]*q;
                    sumq2 += w*q*q;
                }
                if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
                    scale = sumqx/sumq2; best = scale*sumqx;
                    for (int i = 0; i < 16; ++i) L[i] = Laux[i];
                    for (int k = 0; k <  2; ++k) is_on_grid[k] = is_on_grid_aux[k];
                }
            }
            int n_not_ongrid = 0;
            for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
            if (n_not_ongrid > 0 && scale > 0) {
                float id = 1/scale;
                for (int k = 0; k < 2; ++k) {
                    if (is_on_grid[k]) continue;
                    uint16_t u = 0;
                    for (int i = 0; i < 8; ++i) {
                        int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
                        l = MAX(0, MIN(kMaxQ-1, l));
                        u |= (l << 2*i);
                        L[8*k + i] = l;
                    }
                    int grid_index = kmap_q2xs[u];
                    if (grid_index < 0) {
                        const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
                        grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
                    }
                }
                float sumqx = 0, sumq2 = 0;
                for (int i = 0; i < 16; ++i) {
                    float w = weight[i];
                    float q = 2*L[i] + 1;
                    sumqx += w*xval[i]*q;
                    sumq2 += w*q*q;
                }
                if (sumq2 > 0) scale = sumqx/sumq2;
            }
            if (scale < 0) {
                scale = -scale;
                for (int k = 0; k < 2; ++k) block_signs[k] = (~block_signs[k]) & 127;
            }
            for (int k = 0; k < 2; ++k) {
                uint16_t u = 0;
                for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
                int grid_index = kmap_q2xs[u];
                if (grid_index < 0) {
                    printf("Oops: found point %u not on grid:", u);
                    for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
                    printf("\n");
                    GGML_ASSERT(false);
                }
                q2[2*ib+k] = grid_index | (block_signs[k] << 9);
            }
            GGML_ASSERT(scale >= 0);
            scales[ib] = scale;
            max_scale = MAX(max_scale, scale);
        }

        if (!max_scale) {
            memset(y[ibl].qs, 0, QK_K/4);
            continue;
        }

        float d = max_scale/31;
        y[ibl].d = GGML_FP32_TO_FP16(d);
        float id = 1/d;
        for (int ib = 0; ib < QK_K/16; ++ib) {
            int l = nearest_int(0.5f*(id*scales[ib]-1));
            l = MAX(0, MIN(15, l));
            if (ib%2 == 0) y[ibl].scales[ib/2] = l;
            else y[ibl].scales[ib/2] |= (l << 4);
        }
        memcpy(y[ibl].qs, q2, QK_K/4);

    }
}

size_t quantize_iq2_xxs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
    (void)hist;
    GGML_ASSERT(n_per_row%QK_K == 0);
    int nblock = n_per_row/QK_K;
    char * qrow = (char *)dst;
    for (int row = 0; row < nrow; ++row) {
        quantize_row_iq2_xxs_impl(src, qrow, n_per_row, quant_weights);
        src += n_per_row;
        qrow += nblock*sizeof(block_iq2_xxs);
    }
    return nrow * nblock * sizeof(block_iq2_xxs);
}

size_t quantize_iq2_xs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
    (void)hist;
    GGML_ASSERT(n_per_row%QK_K == 0);
    int nblock = n_per_row/QK_K;
    char * qrow = (char *)dst;
    for (int row = 0; row < nrow; ++row) {
        quantize_row_iq2_xs_impl(src, qrow, n_per_row, quant_weights);
        src += n_per_row;
        qrow += nblock*sizeof(block_iq2_xs);
    }
    return nrow * nblock * sizeof(block_iq2_xs);
}

//
// ============================================= 3-bit using D4 lattice
//

typedef struct {
    uint32_t * grid;
    int      * map;
    uint16_t * neighbours;
} iq3_entry_t;

static iq3_entry_t iq3_data[2] = {
    {NULL, NULL, NULL},
    {NULL, NULL, NULL},
};

static inline int iq3_data_index(int grid_size) {
    (void)grid_size;
    GGML_ASSERT(grid_size == 256 || grid_size == 512);
    return grid_size == 256 ? 0 : 1;
}

static int iq3_compare_func(const void * left, const void * right) {
    const int * l = (const int *)left;
    const int * r = (const int *)right;
    return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
}

void iq3xs_init_impl(int grid_size) {
    const int gindex = iq3_data_index(grid_size);
    if (iq3_data[gindex].grid) {
        return;
    }
    static const uint16_t kgrid_256[256] = {
            0,     2,     4,     9,    11,    15,    16,    18,    25,    34,    59,    61,    65,    67,    72,    74,
           81,    85,    88,    90,    97,   108,   120,   128,   130,   132,   137,   144,   146,   153,   155,   159,
          169,   175,   189,   193,   199,   200,   202,   213,   248,   267,   287,   292,   303,   315,   317,   321,
          327,   346,   362,   413,   436,   456,   460,   462,   483,   497,   513,   515,   520,   522,   529,   531,
          536,   538,   540,   551,   552,   576,   578,   585,   592,   594,   641,   643,   648,   650,   657,   664,
          698,   704,   706,   720,   729,   742,   758,   769,   773,   808,   848,   852,   870,   889,   901,   978,
          992,  1024,  1026,  1033,  1035,  1040,  1042,  1046,  1049,  1058,  1089,  1091,  1093,  1096,  1098,  1105,
         1112,  1139,  1143,  1144,  1152,  1154,  1161,  1167,  1168,  1170,  1183,  1184,  1197,  1217,  1224,  1228,
         1272,  1276,  1309,  1323,  1347,  1367,  1377,  1404,  1473,  1475,  1486,  1509,  1537,  1544,  1546,  1553,
         1555,  1576,  1589,  1594,  1600,  1602,  1616,  1625,  1636,  1638,  1665,  1667,  1672,  1685,  1706,  1722,
         1737,  1755,  1816,  1831,  1850,  1856,  1862,  1874,  1901,  1932,  1950,  1971,  2011,  2032,  2052,  2063,
         2077,  2079,  2091,  2095,  2172,  2192,  2207,  2208,  2224,  2230,  2247,  2277,  2308,  2345,  2356,  2389,
         2403,  2424,  2501,  2504,  2506,  2520,  2570,  2593,  2616,  2624,  2630,  2646,  2669,  2700,  2714,  2746,
         2754,  2795,  2824,  2835,  2839,  2874,  2882,  2905,  2984,  3028,  3042,  3092,  3108,  3110,  3124,  3153,
         3185,  3215,  3252,  3288,  3294,  3364,  3397,  3434,  3483,  3523,  3537,  3587,  3589,  3591,  3592,  3610,
         3626,  3670,  3680,  3722,  3749,  3754,  3776,  3789,  3803,  3824,  3857,  3873,  3904,  3906,  3924,  3992,
    };
    static const uint16_t kgrid_512[512] = {
            0,     1,     2,     5,     7,     8,     9,    10,    12,    14,    16,    17,    21,    27,    32,    34,
           37,    39,    41,    43,    48,    50,    57,    60,    63,    64,    65,    66,    68,    72,    73,    77,
           80,    83,    87,    89,    93,   100,   113,   117,   122,   128,   129,   133,   135,   136,   139,   142,
          145,   149,   152,   156,   162,   165,   167,   169,   171,   184,   187,   195,   201,   205,   208,   210,
          217,   219,   222,   228,   232,   234,   247,   249,   253,   256,   267,   271,   273,   276,   282,   288,
          291,   297,   312,   322,   324,   336,   338,   342,   347,   353,   357,   359,   374,   379,   390,   393,
          395,   409,   426,   441,   448,   450,   452,   464,   466,   470,   475,   488,   492,   512,   513,   514,
          516,   520,   521,   523,   525,   527,   528,   530,   537,   540,   542,   556,   558,   561,   570,   576,
          577,   579,   582,   584,   588,   593,   600,   603,   609,   616,   618,   632,   638,   640,   650,   653,
          655,   656,   660,   666,   672,   675,   685,   688,   698,   705,   708,   711,   712,   715,   721,   727,
          728,   732,   737,   754,   760,   771,   773,   778,   780,   793,   795,   802,   806,   808,   812,   833,
          840,   843,   849,   856,   858,   873,   912,   916,   919,   932,   934,   961,   963,   968,   970,   977,
          989,   993,  1010,  1016,  1024,  1025,  1027,  1029,  1031,  1032,  1034,  1036,  1038,  1041,  1043,  1047,
         1048,  1050,  1057,  1059,  1061,  1064,  1066,  1079,  1080,  1083,  1085,  1088,  1090,  1096,  1099,  1103,
         1106,  1109,  1113,  1116,  1122,  1129,  1153,  1156,  1159,  1169,  1171,  1176,  1183,  1185,  1195,  1199,
         1209,  1212,  1216,  1218,  1221,  1225,  1234,  1236,  1241,  1243,  1250,  1256,  1270,  1281,  1287,  1296,
         1299,  1306,  1309,  1313,  1338,  1341,  1348,  1353,  1362,  1375,  1376,  1387,  1400,  1408,  1410,  1415,
         1425,  1453,  1457,  1477,  1481,  1494,  1496,  1507,  1512,  1538,  1545,  1547,  1549,  1551,  1554,  1561,
         1563,  1565,  1570,  1572,  1575,  1577,  1587,  1593,  1601,  1603,  1605,  1612,  1617,  1619,  1632,  1648,
         1658,  1662,  1664,  1674,  1680,  1690,  1692,  1704,  1729,  1736,  1740,  1745,  1747,  1751,  1752,  1761,
         1763,  1767,  1773,  1787,  1795,  1801,  1806,  1810,  1817,  1834,  1840,  1844,  1857,  1864,  1866,  1877,
         1882,  1892,  1902,  1915,  1934,  1953,  1985,  1987,  2000,  2002,  2013,  2048,  2052,  2058,  2064,  2068,
         2071,  2074,  2081,  2088,  2104,  2114,  2119,  2121,  2123,  2130,  2136,  2141,  2147,  2153,  2157,  2177,
         2179,  2184,  2189,  2193,  2203,  2208,  2223,  2226,  2232,  2244,  2249,  2251,  2256,  2258,  2265,  2269,
         2304,  2306,  2324,  2335,  2336,  2361,  2373,  2375,  2385,  2418,  2443,  2460,  2480,  2504,  2509,  2520,
         2531,  2537,  2562,  2568,  2572,  2578,  2592,  2596,  2599,  2602,  2614,  2620,  2625,  2627,  2629,  2634,
         2641,  2650,  2682,  2688,  2697,  2707,  2712,  2718,  2731,  2754,  2759,  2760,  2775,  2788,  2793,  2805,
         2811,  2817,  2820,  2832,  2842,  2854,  2890,  2902,  2921,  2923,  2978,  3010,  3012,  3026,  3081,  3083,
         3085,  3097,  3099,  3120,  3136,  3152,  3159,  3188,  3210,  3228,  3234,  3245,  3250,  3256,  3264,  3276,
         3281,  3296,  3349,  3363,  3378,  3392,  3395,  3420,  3440,  3461,  3488,  3529,  3531,  3584,  3588,  3591,
         3600,  3602,  3614,  3616,  3628,  3634,  3650,  3657,  3668,  3683,  3685,  3713,  3716,  3720,  3726,  3729,
         3736,  3753,  3778,  3802,  3805,  3819,  3841,  3845,  3851,  3856,  3880,  3922,  3938,  3970,  3993,  4032,
    };

    const int kmap_size = 4096;
    const int nwant = grid_size == 256 ? 2 : 3;
    const uint16_t * kgrid = grid_size == 256 ? kgrid_256 : kgrid_512;
    uint32_t * kgrid_q3xs;
    int      * kmap_q3xs;
    uint16_t * kneighbors_q3xs;

    printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
    uint32_t * the_grid = (uint32_t *)malloc(grid_size*sizeof(uint32_t));
    for (int k = 0; k < grid_size; ++k) {
        int8_t * pos = (int8_t *)(the_grid + k);
        for (int i = 0; i < 4; ++i) {
            int l = (kgrid[k] >> 3*i) & 0x7;
            pos[i] = 2*l + 1;
        }
    }
    kgrid_q3xs = the_grid;
    iq3_data[gindex].grid = the_grid;
    kmap_q3xs = (int *)malloc(kmap_size*sizeof(int));
    iq3_data[gindex].map = kmap_q3xs;
    for (int i = 0; i < kmap_size; ++i) kmap_q3xs[i] = -1;
    uint32_t aux32;
    uint8_t * aux8 = (uint8_t *)&aux32;
    for (int i = 0; i < grid_size; ++i) {
        aux32 = kgrid_q3xs[i];
        uint16_t index = 0;
        for (int k=0; k<4; ++k) {
            uint16_t q = (aux8[k] - 1)/2;
            index |= (q << 3*k);
        }
        kmap_q3xs[index] = i;
    }
    int8_t pos[4];
    int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
    int num_neighbors = 0, num_not_in_map = 0;
    for (int i = 0; i < kmap_size; ++i) {
        if (kmap_q3xs[i] >= 0) continue;
        ++num_not_in_map;
        for (int k = 0; k < 4; ++k) {
            int l = (i >> 3*k) & 0x7;
            pos[k] = 2*l + 1;
        }
        for (int j = 0; j < grid_size; ++j) {
            const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
            int d2 = 0;
            for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
            dist2[2*j+0] = d2;
            dist2[2*j+1] = j;
        }
        qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
        int n = 0; int d2 = dist2[0];
        int nhave = 1;
        for (int j = 0; j < grid_size; ++j) {
            if (dist2[2*j] > d2) {
                if (nhave == nwant) break;
                d2 = dist2[2*j];
                ++nhave;
            }
            ++n;
        }
        num_neighbors += n;
    }
    printf("%s: %d neighbours in total\n", __func__, num_neighbors);
    kneighbors_q3xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
    iq3_data[gindex].neighbours = kneighbors_q3xs;
    int counter = 0;
    for (int i = 0; i < kmap_size; ++i) {
        if (kmap_q3xs[i] >= 0) continue;
        for (int k = 0; k < 4; ++k) {
            int l = (i >> 3*k) & 0x7;
            pos[k] = 2*l + 1;
        }
        for (int j = 0; j < grid_size; ++j) {
            const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
            int d2 = 0;
            for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
            dist2[2*j+0] = d2;
            dist2[2*j+1] = j;
        }
        qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
        kmap_q3xs[i] = -(counter + 1);
        int d2 = dist2[0];
        uint16_t * start = &kneighbors_q3xs[counter++];
        int n = 0, nhave = 1;
        for (int j = 0; j < grid_size; ++j) {
            if (dist2[2*j] > d2) {
                if (nhave == nwant) break;
                d2 = dist2[2*j];
                ++nhave;
            }
            kneighbors_q3xs[counter++] = dist2[2*j+1];
            ++n;
        }
        *start = n;
    }
    free(dist2);
}

void iq3xs_free_impl(int grid_size) {
    GGML_ASSERT(grid_size == 256 || grid_size == 512);
    const int gindex = iq3_data_index(grid_size);
    if (iq3_data[gindex].grid) {
        free(iq3_data[gindex].grid);       iq3_data[gindex].grid = NULL;
        free(iq3_data[gindex].map);        iq3_data[gindex].map  = NULL;
        free(iq3_data[gindex].neighbours); iq3_data[gindex].neighbours = NULL;
    }
}

static int iq3_find_best_neighbour(const uint16_t * restrict neighbours, const uint32_t * restrict grid,
        const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
    int num_neighbors = neighbours[0];
    GGML_ASSERT(num_neighbors > 0);
    float best_d2 = FLT_MAX;
    int grid_index = -1;
    for (int j = 1; j <= num_neighbors; ++j) {
        const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
        float d2 = 0;
        for (int i = 0; i < 4; ++i) {
            float q = pg[i];
            float diff = scale*q - xval[i];
            d2 += weight[i]*diff*diff;
        }
        if (d2 < best_d2) {
            best_d2 = d2; grid_index = neighbours[j];
        }
    }
    GGML_ASSERT(grid_index >= 0);
    const int8_t * pg = (const int8_t *)(grid + grid_index);
    for (int i = 0; i < 4; ++i) L[i] = (pg[i] - 1)/2;
    return grid_index;
}

static void quantize_row_iq3_xxs_impl(int grid_size, const float * restrict x, void * restrict vy, int n,
        const float * restrict quant_weights) {

    const int gindex = iq3_data_index(grid_size);

    const uint32_t * kgrid_q3xs      = iq3_data[gindex].grid;
    const int      * kmap_q3xs       = iq3_data[gindex].map;
    const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;

    //GGML_ASSERT(quant_weights   && "missing quantization weights");
    GGML_ASSERT(kgrid_q3xs      && "forgot to call ggml_quantize_init()?");
    GGML_ASSERT(kmap_q3xs       && "forgot to call ggml_quantize_init()?");
    GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
    GGML_ASSERT(n%QK_K == 0);

    const int kMaxQ = 8;

    const int nbl = n/QK_K;

    ggml_fp16_t * dh;
    uint8_t * qs;
    int block_size;
    if (grid_size == 256) {
        block_iq3_xxs * y = vy;
        dh = &y->d;
        qs = y->qs;
        block_size = sizeof(block_iq3_xxs);
    } else {
        block_iq3_s * y = vy;
        dh = &y->d;
        qs = y->qs;
        block_size = sizeof(block_iq3_s);
    }
    int quant_size = block_size - sizeof(ggml_fp16_t);

    float scales[QK_K/32];
    float weight[32];
    float xval[32];
    int8_t L[32];
    int8_t Laux[32];
    float  waux[32];
    bool   is_on_grid[8];
    bool   is_on_grid_aux[8];
    uint8_t block_signs[8];
    uint8_t q3[3*(QK_K/8)+QK_K/32];
    uint32_t * scales_and_signs = (uint32_t *)(q3 + QK_K/4);
    uint8_t  * qh = q3 + 3*(QK_K/8);

    for (int ibl = 0; ibl < nbl; ++ibl) {

        dh[0] = GGML_FP32_TO_FP16(0.f);
        memset(q3, 0, 3*QK_K/8+QK_K/32);

        float max_scale = 0;

        const float * xbl = x + QK_K*ibl;
        float sumx2 = 0;
        for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
        float sigma2 = 2*sumx2/QK_K;

        for (int ib = 0; ib < QK_K/32; ++ib) {
            const float * xb = xbl + 32*ib;
            if (quant_weights) {
                const float * qw = quant_weights + QK_K*ibl + 32*ib;
                for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
            } else {
                for (int i = 0; i < 32; ++i) weight[i] = xb[i]*xb[i];
            }
            for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
            for (int k = 0; k < 4; ++k) {
                int nflip = 0;
                uint8_t s = 0;
                for (int i = 0; i < 8; ++i) {
                    if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
                    else {
                        xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
                    }
                }
                if (nflip%2) {
                    int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
                    for (int i = 1; i < 8; ++i) {
                        float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
                        if (ax < min) {
                            min = ax; imin = i;
                        }
                    }
                    xval[8*k+imin] = -xval[8*k+imin];
                    s ^= (1 << imin);
                }
                block_signs[k] = s & 127;
            }
            float max = xval[0];
            for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
            if (!max) {
                scales[ib] = 0;
                memset(L, 0, 32);
                continue;
            }
            float best = 0;
            float scale = max/(2*kMaxQ-1);
            for (int is = -15; is <= 15; ++is) {
                float id = (2*kMaxQ-1+is*0.2f)/max;
                float this_scale = 1/id;
                for (int k = 0; k < 8; ++k) {
                    for (int i = 0; i < 4; ++i) {
                        int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
                        Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
                    }
                    uint16_t u = 0;
                    for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
                    int grid_index = kmap_q3xs[u];
                    is_on_grid_aux[k] = true;
                    if (grid_index < 0) {
                        is_on_grid_aux[k] = false;
                        const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
                        grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
                    }
                }
                float sumqx = 0, sumq2 = 0;
                for (int i = 0; i < 32; ++i) {
                    float w = weight[i];
                    float q = 2*Laux[i] + 1;
                    sumqx += w*xval[i]*q;
                    sumq2 += w*q*q;
                }
                if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
                    scale = sumqx/sumq2; best = scale*sumqx;
                    for (int i = 0; i < 32; ++i) L[i] = Laux[i];
                    for (int k = 0; k <  8; ++k) is_on_grid[k] = is_on_grid_aux[k];
                }
            }
            int n_not_ongrid = 0;
            for (int k = 0; k < 8; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
            if (n_not_ongrid > 0 && scale > 0) {
                float id = 1/scale;
                for (int k = 0; k < 8; ++k) {
                    if (is_on_grid[k]) continue;
                    uint16_t u = 0;
                    for (int i = 0; i < 4; ++i) {
                        int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
                        l = MAX(0, MIN(kMaxQ-1, l));
                        u |= (l << 3*i);
                    }
                    int grid_index = kmap_q3xs[u];
                    if (grid_index < 0) {
                        const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
                        grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
                    }
                    const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
                    for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
                }
                float sumqx = 0, sumq2 = 0;
                for (int i = 0; i < 32; ++i) {
                    float w = weight[i];
                    float q = 2*L[i] + 1;
                    sumqx += w*xval[i]*q;
                    sumq2 += w*q*q;
                }
                if (sumq2 > 0) scale = sumqx/sumq2;
            }
            if (scale < 0) {
                // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
                // and correspondingly flip quant signs.
                scale = -scale;
                for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
            }
            for (int k = 0; k < 8; ++k) {
                uint16_t u = 0;
                for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
                int grid_index = kmap_q3xs[u];
                if (grid_index < 0) {
                    printf("Oops: found point %u not on grid:", u);
                    for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
                    printf("\n");
                    GGML_ASSERT(false);
                }
                if (grid_size == 256) {
                    q3[8*ib+k] = grid_index;
                } else {
                    q3[8*ib+k] = grid_index & 255;
                    qh[ib] |= ((grid_index >> 8) << k);
                }

            }
            scales_and_signs[ib] = block_signs[0] | (block_signs[1] << 7) | (block_signs[2] << 14) | (block_signs[3] << 21);
            GGML_ASSERT(scale >= 0);
            scales[ib] = scale;
            max_scale = MAX(max_scale, scale);
        }

        if (!max_scale) {
            memset(qs, 0, quant_size);
            dh += block_size/sizeof(ggml_fp16_t);
            qs += block_size;
            continue;
        }

        float d = max_scale/31;
        dh[0] = GGML_FP32_TO_FP16(d * 1.0125f);  // small improvement via this fudge factor
        float id = 1/d;
        for (int ib = 0; ib < QK_K/32; ++ib) {
            int l = nearest_int(0.5f*(id*scales[ib]-1));
            l = MAX(0, MIN(15, l));
            scales_and_signs[ib] |= ((uint32_t)l << 28);
        }
        memcpy(qs, q3, quant_size);

        dh += block_size/sizeof(ggml_fp16_t);
        qs += block_size;

    }
}

size_t quantize_iq3_xxs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
    (void)hist;
    GGML_ASSERT(n_per_row%QK_K == 0);
    int nblock = n_per_row/QK_K;
    char * qrow = (char *)dst;
    for (int row = 0; row < nrow; ++row) {
        quantize_row_iq3_xxs_impl(256, src, qrow, n_per_row, quant_weights);
        src += n_per_row;
        qrow += nblock*sizeof(block_iq3_xxs);
    }
    return nrow * nblock * sizeof(block_iq3_xxs);
}

void quantize_row_iq3_xxs(const float * restrict x, void * restrict vy, int k) {
    assert(k % QK_K == 0);
    block_iq3_xxs * restrict y = vy;
    quantize_row_iq3_xxs_reference(x, y, k);
}

void quantize_row_iq3_xxs_reference(const float * restrict x, block_iq3_xxs * restrict y, int k) {
    assert(k % QK_K == 0);
    quantize_row_iq3_xxs_impl(256, x, y, k, NULL);
}

static void quantize_row_iq3_s_impl(int block_size, const float * restrict x, void * restrict vy, int n,
        const float * restrict quant_weights,
        float   * scales,
        float   * weight,
        float   * xval,
        int8_t  * L,
        int8_t  * Laux,
        float   * waux,
        bool    * is_on_grid,
        bool    * is_on_grid_aux,
        uint8_t * block_signs) {

    const int gindex = iq3_data_index(512);

    const uint32_t * kgrid_q3xs      = iq3_data[gindex].grid;
    const int      * kmap_q3xs       = iq3_data[gindex].map;
    const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;

    //GGML_ASSERT(quant_weights   && "missing quantization weights");
    GGML_ASSERT(kgrid_q3xs      && "forgot to call ggml_quantize_init()?");
    GGML_ASSERT(kmap_q3xs       && "forgot to call ggml_quantize_init()?");
    GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
    GGML_ASSERT(n%QK_K == 0);

    const int kMaxQ = 8;

    const int nbl = n/QK_K;

    block_iq3_s * y = vy;

    const int bs4 = block_size/4;
    const int bs8 = block_size/8;

    for (int ibl = 0; ibl < nbl; ++ibl) {

        memset(&y[ibl], 0, sizeof(block_iq3_s));
        y[ibl].d = GGML_FP32_TO_FP16(0.f);

        uint8_t * qs = y[ibl].qs;
        uint8_t * qh = y[ibl].qh;
        uint8_t * signs = y[ibl].signs;

        float max_scale = 0;

        const float * xbl = x + QK_K*ibl;
        float sumx2 = 0;
        for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
        float sigma2 = 2*sumx2/QK_K;

        for (int ib = 0; ib < QK_K/block_size; ++ib) {
            const float * xb = xbl + block_size*ib;
            if (quant_weights) {
                const float * qw = quant_weights + QK_K*ibl + block_size*ib;
                for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
            } else {
                for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
            }
            for (int i = 0; i < block_size; ++i) waux[i] = sqrtf(weight[i]);
            for (int k = 0; k < bs8; ++k) {
                uint8_t s = 0;
                for (int i = 0; i < 8; ++i) {
                    if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
                    else {
                        xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
                    }
                }
                block_signs[k] = s;
            }
            float max = xval[0];
            for (int i = 1; i < block_size; ++i) max = MAX(max, xval[i]);
            if (!max) {
                scales[ib] = 0;
                continue;
            }
            float best = 0;
            float scale = max/(2*kMaxQ-1);
            for (int is = -15; is <= 15; ++is) {
                float id = (2*kMaxQ-1+is*0.2f)/max;
                float this_scale = 1/id;
                for (int k = 0; k < bs4; ++k) {
                    for (int i = 0; i < 4; ++i) {
                        int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
                        Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
                    }
                    uint16_t u = 0;
                    for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
                    int grid_index = kmap_q3xs[u];
                    is_on_grid_aux[k] = true;
                    if (grid_index < 0) {
                        is_on_grid_aux[k] = false;
                        const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
                        grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
                    }
                }
                float sumqx = 0, sumq2 = 0;
                for (int i = 0; i < block_size; ++i) {
                    float w = weight[i];
                    float q = 2*Laux[i] + 1;
                    sumqx += w*xval[i]*q;
                    sumq2 += w*q*q;
                }
                if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
                    scale = sumqx/sumq2; best = scale*sumqx;
                    for (int i = 0; i < block_size; ++i) L[i] = Laux[i];
                    for (int k = 0; k < bs4; ++k) is_on_grid[k] = is_on_grid_aux[k];
                }
            }
            int n_not_ongrid = 0;
            for (int k = 0; k < bs4; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
            if (n_not_ongrid > 0 && scale > 0) {
                float id = 1/scale;
                for (int k = 0; k < bs4; ++k) {
                    if (is_on_grid[k]) continue;
                    uint16_t u = 0;
                    for (int i = 0; i < 4; ++i) {
                        int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
                        l = MAX(0, MIN(kMaxQ-1, l));
                        u |= (l << 3*i);
                    }
                    int grid_index = kmap_q3xs[u];
                    if (grid_index < 0) {
                        const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
                        grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
                    }
                    const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
                    for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
                }
                float sumqx = 0, sumq2 = 0;
                for (int i = 0; i < block_size; ++i) {
                    float w = weight[i];
                    float q = 2*L[i] + 1;
                    sumqx += w*xval[i]*q;
                    sumq2 += w*q*q;
                }
                if (sumq2 > 0) scale = sumqx/sumq2;
            }
            if (scale < 0) {
                // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
                // and correspondingly flip quant signs.
                scale = -scale;
                for (int k = 0; k < bs8; ++k) block_signs[k] = ~block_signs[k];
            }
            for (int k = 0; k < bs4; ++k) {
                uint16_t u = 0;
                for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
                int grid_index = kmap_q3xs[u];
                if (grid_index < 0) {
                    printf("Oops: found point %u not on grid:", u);
                    for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
                    printf("\n");
                    GGML_ASSERT(false);
                }
                qs[k] = grid_index & 255;
                qh[(ib*bs4+k)/8] |= ((grid_index >> 8) << ((ib*bs4+k)%8));
            }
            qs += bs4;
            for (int k = 0; k < bs8; ++k) signs[k] = block_signs[k];
            signs += bs8;
            GGML_ASSERT(scale >= 0);
            scales[ib] = scale;
            max_scale = MAX(max_scale, scale);
        }

        if (!max_scale) {
            continue;
        }

        float d = max_scale/31;
        y[ibl].d = GGML_FP32_TO_FP16(d);
        float id = 1/d;
        for (int ib = 0; ib < QK_K/block_size; ib += 2) {
            int l1 = nearest_int(0.5f*(id*scales[ib+0]-1));
            l1 = MAX(0, MIN(15, l1));
            int l2 = nearest_int(0.5f*(id*scales[ib+1]-1));
            l2 = MAX(0, MIN(15, l2));
            y[ibl].scales[ib/2] = l1 | (l2 << 4);
        }

    }
}

#define IQ3S_BLOCK_SIZE 32
size_t quantize_iq3_s(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
    (void)hist;
    GGML_ASSERT(n_per_row%QK_K == 0);
    int nblock = n_per_row/QK_K;
    float scales[QK_K/IQ3S_BLOCK_SIZE];
    float weight[IQ3S_BLOCK_SIZE];
    float xval[IQ3S_BLOCK_SIZE];
    int8_t L[IQ3S_BLOCK_SIZE];
    int8_t Laux[IQ3S_BLOCK_SIZE];
    float  waux[IQ3S_BLOCK_SIZE];
    bool   is_on_grid[IQ3S_BLOCK_SIZE/4];
    bool   is_on_grid_aux[IQ3S_BLOCK_SIZE/4];
    uint8_t block_signs[IQ3S_BLOCK_SIZE/8];
    char * qrow = (char *)dst;
    for (int row = 0; row < nrow; ++row) {
        quantize_row_iq3_s_impl(IQ3S_BLOCK_SIZE, src, qrow, n_per_row, quant_weights,
                scales, weight, xval, L, Laux, waux, is_on_grid, is_on_grid_aux, block_signs);
        src += n_per_row;
        qrow += nblock*sizeof(block_iq3_s);
    }
    return nrow * nblock * sizeof(block_iq3_s);
}

void quantize_row_iq3_s(const float * restrict x, void * restrict vy, int k) {
    assert(k % QK_K == 0);
    block_iq3_s * restrict y = vy;
    quantize_row_iq3_s_reference(x, y, k);
}

void quantize_row_iq3_s_reference(const float * restrict x, block_iq3_s * restrict y, int k) {
    assert(k % QK_K == 0);
    quantize_iq3_s(x, y, 1, k, NULL, NULL);
}


// =================================== 1.5 bpw ===================================================

static int iq1_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
        const float * restrict xval, const float * restrict weight, float * scale, int8_t * restrict L, int ngrid) {
    int num_neighbors = neighbours[0];
    GGML_ASSERT(num_neighbors > 0);
    float best_score = 0;
    int grid_index = -1;
    for (int j = 1; j <= num_neighbors; ++j) {
        const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
        float sumqx = 0, sumq2 = 0;
        for (int i = 0; i < 8; ++i) {
            float q = (pg[i] - 3)/2;
            float w = weight[i];
            sumqx += w*q*xval[i];
            sumq2 += w*q*q;
        }
        if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
            *scale = sumqx/sumq2; best_score = *scale * sumqx;
            grid_index = neighbours[j];
        }
    }
    if (grid_index < 0) {
        for (int i = 0; i < ngrid; ++i) {
            const int8_t * grid_i = (const int8_t *)(grid + i);
            float sumqx = 0, sumq2 = 0;
            for (int j = 0; j < 8; ++j) {
                float w = weight[j];
                float q = (grid_i[j] - 3)/2;
                sumqx += w*q*xval[j];
                sumq2 += w*q*q;
            }
            if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
                *scale = sumqx/sumq2; best_score = *scale*sumqx;
                grid_index = i;
            }
        }
    }
    if (grid_index < 0) {
        printf("Oops, did not find grid point\n");
        printf("Have %d neighbours\n", num_neighbors);
        for (int j = 1; j <= num_neighbors; ++j) {
            const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
            float sumqx = 0, sumq2 = 0;
            for (int i = 0; i < 8; ++i) {
                float q = (pg[i] - 3)/2;
                float w = weight[i];
                sumqx += w*q*xval[i];
                sumq2 += w*q*q;
            }
            printf("    neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2);
        }
    }
    GGML_ASSERT(grid_index >= 0);
    //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    *scale *= 1.05f;  // This is a fudge factor. Don't ask me why it improves the result.
    //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    const int8_t * pg = (const int8_t *)(grid + grid_index);
    for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
    return grid_index;
}

static int iq1_sort_helper(const void * left, const void * right) {
    const float * l = left;
    const float * r = right;
    return *l < *r ? -1 : *l > *r ? 1 : 0;
}

static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {

    const int gindex = iq2_data_index(GGML_TYPE_IQ1_S);

    const uint64_t * kgrid_q2xs      = iq2_data[gindex].grid;
    const int      * kmap_q2xs       = iq2_data[gindex].map;
    const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;

    GGML_ASSERT(quant_weights   && "missing quantization weights");
    GGML_ASSERT(kgrid_q2xs      && "forgot to call ggml_quantize_init()?");
    GGML_ASSERT(kmap_q2xs       && "forgot to call ggml_quantize_init()?");
    GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
    GGML_ASSERT(n%QK_K == 0);

    const int nbl = n/QK_K;

    block_iq1_s * y = vy;

    float  scales[QK_K/8];
    float  weight[8];
    int8_t L[8];
    float  sumx[9];
    float  sumw[9];
    float  pairs[16];
    int * idx = (int *)(pairs + 1);
    uint8_t hbit[QK_K/8];

    for (int ibl = 0; ibl < nbl; ++ibl) {

        y[ibl].d = GGML_FP32_TO_FP16(0.f);
        memset(y[ibl].qs, 0, QK_K/8);
        memset(y[ibl].scales, 0, QK_K/16);

        float max_scale = 0;

        const float * xbl = x + QK_K*ibl;
        float sumx2 = 0;
        for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
        float sigma2 = sumx2/QK_K;

        for (int ib = 0; ib < QK_K/8; ++ib) {
            const float * xb = xbl + 8*ib;
            const float * qw = quant_weights + QK_K*ibl + 8*ib;
            for (int i = 0; i < 8; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
            float max = fabsf(xb[0]);
            for (int i = 1; i < 8; ++i) max = MAX(max, fabsf(xb[i]));
            if (!max) {
                scales[ib] = 0;
                memset(L, 1, 8);
                continue;
            }
            // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
            // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
            // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
            // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
            // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
            // for each possible and score for each split.
            for (int j = 0; j < 8; ++j) {
                pairs[2*j] = xb[j];
                idx[2*j] = j;
            }
            qsort(pairs, 8, 2*sizeof(float), iq1_sort_helper);
            {
                sumx[0] = sumw[0] = 0;
                for (int j = 0; j < 8; ++j) {
                    int i = idx[2*j];
                    sumx[j+1] = sumx[j] + weight[i]*xb[i];
                    sumw[j+1] = sumw[j] + weight[i];
                }
            }
            float best_score = 0, scale = max;
            int besti1 = 0, besti2 = 0;
            for (int i1 = 0; i1 <= 8; ++i1) {
                for (int i2 = i1; i2 <= 8; ++i2) {
                    float sumqx = -(sumx[i1] - sumx[0]) + (sumx[8] - sumx[i2]);
                    float sumq2 =  (sumw[i1] - sumw[0]) + (sumw[8] - sumw[i2]);
                    if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
                        scale = sumqx/sumq2; best_score = scale*sumqx;
                        besti1 = i1; besti2 = i2;
                    }
                }
            }
            for (int j =      0; j < besti1; ++j) L[idx[2*j]] = 0;
            for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
            for (int j = besti2; j <      8; ++j) L[idx[2*j]] = 2;
            if (scale < 0) {
                for (int j = 0; j < 8; ++j) L[j] = 2 - L[j];
                scale = -scale;
            }
            // Now we check if the solution found above corresponds to a grid point and, if not, use a neighbouring
            // grid point that minimizes SSD.
            uint16_t u = 0;
            for (int j = 0; j < 8; ++j) u |= (L[j] << 2*j);
            int grid_index = kmap_q2xs[u];
            if (grid_index < 0) {
                const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
                grid_index = iq1_find_best_neighbour(neighbours, kgrid_q2xs, xb, weight, &scale, L, NGRID_IQ2XXS);
                GGML_ASSERT(grid_index >= 0);
            }
            y[ibl].qs[ib] = grid_index & 255;
            hbit[ib] = grid_index >> 8;
            GGML_ASSERT(scale >= 0);
            scales[ib] = scale;
            max_scale = MAX(max_scale, scale);
        }

        if (!max_scale) {
            memset(y[ibl].qs, 0, QK_K/8);
            continue;
        }

        float d = max_scale/15;
        y[ibl].d = GGML_FP32_TO_FP16(d*1.085f); // 1.085f is another fudge factor. Don't ask me why it is needed.
        float id = 1/d;
        for (int ib = 0; ib < QK_K/8; ++ib) {
            int l = nearest_int(0.5f*(id*scales[ib]-1));
            l = MAX(0, MIN(7, l));
            if (hbit[ib]) l |= 8;
            y[ibl].scales[ib/2] |= (l << 4*(ib%2));
        }
    }
}

size_t quantize_iq1_s(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
    (void)hist;
    GGML_ASSERT(n_per_row%QK_K == 0);
    int nblock = n_per_row/QK_K;
    char * qrow = (char *)dst;
    for (int row = 0; row < nrow; ++row) {
        quantize_row_iq1_s_impl(src, qrow, n_per_row, quant_weights);
        src += n_per_row;
        qrow += nblock*sizeof(block_iq1_s);
    }
    return nrow * nblock * sizeof(block_iq1_s);
}

// ============================ 4-bit non-linear quants

static inline int best_index_int8(int n, const int8_t * val, float x) {
    if (x <= val[0]) return 0;
    if (x >= val[n-1]) return n-1;
    int ml = 0, mu = n-1;
    while (mu-ml > 1) {
        int mav = (ml+mu)/2;
        if (x < val[mav]) mu = mav; else ml = mav;
    }
    return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
}

static void quantize_row_iq4_nl_impl(const int super_block_size, const int block_size, const float * GGML_RESTRICT x,
        ggml_fp16_t * dh, uint8_t * q4, uint16_t * scales_h, uint8_t * scales_l,
        float * scales, float * weight, uint8_t * L,
        const int8_t * values,
        const float * quant_weights) {

    const int ntry = 7;

    float sigma2 = 0;
    for (int j = 0; j < super_block_size; ++j) sigma2 += x[j]*x[j];
    sigma2 *= 2.f/super_block_size;

    memset(q4, 0, super_block_size/2);
    dh[0] = GGML_FP32_TO_FP16(0.f);

    float max_scale = 0, amax_scale = 0;
    for (int ib = 0; ib < super_block_size/block_size; ++ib) {
        const float * xb = x + ib*block_size;
        if (quant_weights) {
            const float * qw = quant_weights + ib*block_size;
            for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
        } else {
            for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j];
        }
        float amax = 0, max = 0;
        for (int j = 0; j < block_size; ++j) {
            float ax = fabsf(xb[j]);
            if (ax > amax) {
                amax = ax; max = xb[j];
            }
        }
        if (!amax) {
            scales[ib] = 0;
            continue;
        }
        float d = -max/values[0];
        float id = 1/d;
        float sumqx = 0, sumq2 = 0;
        for (int j = 0; j < block_size; ++j) {
            float al = id*xb[j];
            int l = best_index_int8(16, values, al);
            float q = values[l];
            float w = weight[j];
            sumqx += w*q*xb[j];
            sumq2 += w*q*q;
        }
        d = sumqx/sumq2;
        float best = d*sumqx;
        for (int itry = -ntry; itry <= ntry; ++itry) {
            id = (itry + values[0])/max;
            sumqx = sumq2 = 0;
            for (int j = 0; j < block_size; ++j) {
                float al = id*xb[j];
                int l = best_index_int8(16, values, al);
                float q = values[l];
                float w = weight[j];
                sumqx += w*q*xb[j];
                sumq2 += w*q*q;
            }
            if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
                d = sumqx/sumq2; best = d * sumqx;
            }
        }
        scales[ib] = d;
        float abs_d = fabsf(d);
        if (abs_d > amax_scale) {
            amax_scale = abs_d; max_scale = d;
        }
    }

    if (super_block_size/block_size > 1) {
        int nb = super_block_size/block_size;
        memset(scales_h, 0, ((nb+7)/8)*sizeof(uint16_t));
        float d = -max_scale/32;
        dh[0] = GGML_FP32_TO_FP16(d);
        float id = d ? 1/d : 0.f;
        for (int ib = 0; ib < super_block_size/block_size; ++ib) {
            int l = nearest_int(id*scales[ib]);
            l = MAX(-32, MIN(31, l));
            float dl = d * l;
            float idl = dl ? 1/dl : 0.f;
            uint8_t * Lb = L + ib*block_size;
            const float * xb = x + ib*block_size;
            for (int j = 0; j < block_size; ++j) {
                Lb[j] = best_index_int8(16, values, idl*xb[j]);
            }
            l += 32;
            uint8_t l_l = l & 0xf;
            uint8_t l_h = l >>  4;
            if (ib%2 == 0) scales_l[ib/2] = l_l;
            else scales_l[ib/2] |= (l_l << 4);
            scales_h[ib/8] |= (l_h << 2*(ib%8));
        }
    } else {
        dh[0] = GGML_FP32_TO_FP16(scales[0]);
        float id = scales[0] ? 1/scales[0] : 0;
        for (int j = 0; j < super_block_size; ++j) {
            L[j] = best_index_int8(16, values, id*x[j]);
        }
    }

    for (int i = 0; i < super_block_size/32; ++i) {
        for (int j = 0; j < 16; ++j) {
            q4[16*i + j] = L[32*i + j] | (L[32*i + 16 + j] << 4);
        }
    }
}

size_t quantize_iq4_nl(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
    (void)hist;
    GGML_ASSERT(n_per_row%QK4_NL == 0);
    int nblock = n_per_row/QK4_NL;
    char * qrow = (char *)dst;
    uint8_t L[QK4_NL];
    float weight[QK4_NL];
    uint16_t unused_h;
    uint8_t * unused_l = NULL;
    float scale;
    for (int row = 0; row < nrow; ++row) {
        block_iq4_nl * iq4 = (block_iq4_nl *)qrow;
        for (int ibl = 0; ibl < nblock; ++ibl) {
            const float * qw = quant_weights ? quant_weights + QK4_NL*ibl : NULL;
            quantize_row_iq4_nl_impl(QK4_NL, 32, src + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l,
                    &scale, weight, L, kvalues_iq4nl, qw);
        }
        src += n_per_row;
        qrow += nblock*sizeof(block_iq4_nl);
    }
    return nrow * nblock * sizeof(block_iq4_nl);
}

void quantize_row_iq4_nl(const float * restrict x, void * restrict vy, int k) {
    assert(k % QK4_NL == 0);
    block_iq4_nl * restrict y = vy;
    quantize_row_iq4_nl_reference(x, y, k);
}

void quantize_row_iq4_nl_reference(const float * restrict x, block_iq4_nl * restrict y, int k) {
    assert(k % QK4_NL == 0);
    quantize_iq4_nl(x, y, 1, k, NULL, NULL);
}

size_t quantize_iq4_xs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
#if QK_K == 64
    return quantize_iq4_nl(src, dst, nrow, n_per_row, hist, quant_weights);
#else
    (void)hist;
    GGML_ASSERT(n_per_row%QK_K == 0);
    int nblock = n_per_row/QK_K;
    char * qrow = (char *)dst;
    uint8_t L[QK_K];
    float weight[32];
    float scales[QK_K/32];
    for (int row = 0; row < nrow; ++row) {
        block_iq4_xs * iq4 = (block_iq4_xs *)qrow;
        for (int ibl = 0; ibl < nblock; ++ibl) {
            const float * qw = quant_weights ? quant_weights + QK_K*ibl : NULL;
            quantize_row_iq4_nl_impl(QK_K, 32, src + QK_K*ibl, &iq4[ibl].d, iq4[ibl].qs, &iq4[ibl].scales_h, iq4[ibl].scales_l,
                    scales, weight, L, kvalues_iq4nl, qw);
        }
        src += n_per_row;
        qrow += nblock*sizeof(block_iq4_xs);
    }
    return nrow * nblock * sizeof(block_iq4_xs);
#endif
}

void quantize_row_iq4_xs(const float * restrict x, void * restrict vy, int k) {
    assert(k % QK_K == 0);
    block_iq4_xs * restrict y = vy;
    quantize_row_iq4_xs_reference(x, y, k);
}

void quantize_row_iq4_xs_reference(const float * restrict x, block_iq4_xs * restrict y, int k) {
    assert(k % QK_K == 0);
    quantize_iq4_xs(x, y, 1, k, NULL, NULL);
}

// =============================== 2.5625 bpw

static void quantize_row_iq2_s_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {

    const int gindex = iq2_data_index(GGML_TYPE_IQ2_S);

    const uint64_t * kgrid_q2xs      = iq2_data[gindex].grid;
    const int      * kmap_q2xs       = iq2_data[gindex].map;
    const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;

    GGML_ASSERT(kmap_q2xs       && "forgot to call ggml_quantize_init()?");
    GGML_ASSERT(kgrid_q2xs      && "forgot to call ggml_quantize_init()?");
    GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
    GGML_ASSERT(n%QK_K == 0);

    const int kMaxQ = 3;

    const int nbl = n/QK_K;

    block_iq2_s * y = vy;

    float scales[QK_K/16];
    float weight[16];
    float xval[16];
    int8_t L[16];
    int8_t Laux[16];
    float  waux[16];
    bool   is_on_grid[2];
    bool   is_on_grid_aux[2];
    uint8_t block_signs[2];

    for (int ibl = 0; ibl < nbl; ++ibl) {

        memset(&y[ibl], 0, sizeof(block_iq2_s));
        y[ibl].d = GGML_FP32_TO_FP16(0.f);

        float max_scale = 0;

        const float * xbl = x + QK_K*ibl;
        float sumx2 = 0;
        for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
        float sigma2 = 2*sumx2/QK_K;

        for (int ib = 0; ib < QK_K/16; ++ib) {
            const float * xb = xbl + 16*ib;
            if (quant_weights) {
                const float * qw = quant_weights + QK_K*ibl + 16*ib;
                for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
            } else {
                for (int i = 0; i < 16; ++i) weight[i] = 0.25f*sigma2 + xb[i]*xb[i];
            }
            for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
            for (int k = 0; k < 2; ++k) {
                uint8_t s = 0;
                for (int i = 0; i < 8; ++i) {
                    if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
                    else {
                        xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
                    }
                }
                block_signs[k] = s;
            }
            float max = xval[0];
            for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
            if (!max) {
                scales[ib] = 0;
                continue;
            }
            float best = 0;
            float scale = max/(2*kMaxQ-1);
            is_on_grid[0] = is_on_grid[1] = true;
            for (int is = -9; is <= 9; ++is) {
                float id = (2*kMaxQ-1+is*0.1f)/max;
                float this_scale = 1/id;
                for (int k = 0; k < 2; ++k) {
                    for (int i = 0; i < 8; ++i) {
                        int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
                        Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
                    }
                    uint16_t u = 0;
                    for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
                    int grid_index = kmap_q2xs[u];
                    is_on_grid_aux[k] = true;
                    if (grid_index < 0) {
                        is_on_grid_aux[k] = false;
                        const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
                        grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
                    }
                }
                float sumqx = 0, sumq2 = 0;
                for (int i = 0; i < 16; ++i) {
                    float w = weight[i];
                    float q = 2*Laux[i] + 1;
                    sumqx += w*xval[i]*q;
                    sumq2 += w*q*q;
                }
                if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
                    scale = sumqx/sumq2; best = scale*sumqx;
                    for (int i = 0; i < 16; ++i) L[i] = Laux[i];
                    for (int k = 0; k <  2; ++k) is_on_grid[k] = is_on_grid_aux[k];
                }
            }
            int n_not_ongrid = 0;
            for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
            if (n_not_ongrid > 0 && scale > 0) {
                float id = 1/scale;
                for (int k = 0; k < 2; ++k) {
                    if (is_on_grid[k]) continue;
                    uint16_t u = 0;
                    for (int i = 0; i < 8; ++i) {
                        int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
                        l = MAX(0, MIN(kMaxQ-1, l));
                        u |= (l << 2*i);
                        L[8*k + i] = l;
                    }
                    int grid_index = kmap_q2xs[u];
                    if (grid_index < 0) {
                        const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
                        grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
                    }
                }
                float sumqx = 0, sumq2 = 0;
                for (int i = 0; i < 16; ++i) {
                    float w = weight[i];
                    float q = 2*L[i] + 1;
                    sumqx += w*xval[i]*q;
                    sumq2 += w*q*q;
                }
                if (sumq2 > 0) scale = sumqx/sumq2;
            }
            if (scale < 0) {
                scale = -scale;
                for (int k = 0; k < 2; ++k) block_signs[k] = ~block_signs[k];
            }
            for (int k = 0; k < 2; ++k) {
                uint16_t u = 0;
                for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
                int grid_index = kmap_q2xs[u];
                if (grid_index < 0) {
                    printf("Oops: found point %u not on grid:", u);
                    for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
                    printf("\n");
                    GGML_ASSERT(false);
                }
                const int i8 = 2*ib + k;
                y[ibl].qs[i8] = grid_index & 255;
                y[ibl].qh[i8/4] |= ((grid_index >> 8) << 2*(i8%4));
                y[ibl].qs[QK_K/8 + i8] = block_signs[k];
            }
            GGML_ASSERT(scale >= 0);
            scales[ib] = scale;
            max_scale = MAX(max_scale, scale);
        }

        if (!max_scale) {
            continue;
        }

        float d = max_scale/31;
        y[ibl].d = GGML_FP32_TO_FP16(d * 0.9875f);
        float id = 1/d;
        for (int ib = 0; ib < QK_K/16; ++ib) {
            int l = nearest_int(0.5f*(id*scales[ib]-1));
            l = MAX(0, MIN(15, l));
            if (ib%2 == 0) y[ibl].scales[ib/2] = l;
            else y[ibl].scales[ib/2] |= (l << 4);
        }
    }
}

size_t quantize_iq2_s(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
    (void)hist;
    GGML_ASSERT(n_per_row%QK_K == 0);
    int nblock = n_per_row/QK_K;
    char * qrow = (char *)dst;
    for (int row = 0; row < nrow; ++row) {
        quantize_row_iq2_s_impl(src, qrow, n_per_row, quant_weights);
        src += n_per_row;
        qrow += nblock*sizeof(block_iq2_s);
    }
    return nrow * nblock * sizeof(block_iq2_s);
}

void quantize_row_iq2_s_reference(const float * restrict x, block_iq2_s * restrict y, int k) {
    assert(k % QK_K == 0);
    quantize_iq2_s(x, y, 1, k, NULL, NULL);
}

void quantize_row_iq2_s(const float * restrict x, void * restrict vy, int k) {
    assert(k % QK_K == 0);
    block_iq2_s * restrict y = vy;
    quantize_row_iq2_s_reference(x, y, k);
}