#!/usr/bin/env python import argparse import asyncio import os import sys from tempfile import gettempdir, NamedTemporaryFile shader_f32 = """ #define FLOAT_TYPE float """ shader_f16 = """ #extension GL_EXT_shader_explicit_arithmetic_types_float16 : require #define FLOAT_TYPE float16_t """ shader_int8_ext = """ #extension GL_EXT_shader_explicit_arithmetic_types_int8 : require """ # Type-specific defines shader_f16_defines = """ #define QUANT_K 1 #define QUANT_R 1 #define A_TYPE float16_t """ shader_q4_0_defines = """ #define QUANT_K 32 #define QUANT_R 2 struct block_q4_0 { float16_t d; uint8_t qs[16]; }; #define A_TYPE block_q4_0 """ shader_q4_1_defines = """ #define QUANT_K 32 #define QUANT_R 2 struct block_q4_1 { float16_t d; float16_t m; uint8_t qs[16]; }; #define A_TYPE block_q4_1 """ shader_q5_0_defines = """ #extension GL_EXT_shader_explicit_arithmetic_types_int16 : require #define QUANT_K 32 #define QUANT_R 2 struct block_q5_0 { float16_t d; uint16_t qh[2]; uint8_t qs[16]; }; #define A_TYPE block_q5_0 """ shader_q5_1_defines = """ #define QUANT_K 32 #define QUANT_R 2 struct block_q5_1 { float16_t d; float16_t m; uint qh; uint8_t qs[16]; }; #define A_TYPE block_q5_1 """ shader_q8_0_defines = """ #define QUANT_K 32 #define QUANT_R 1 struct block_q8_0 { float16_t d; int8_t qs[32]; }; #define A_TYPE block_q8_0 """ # K-quants shader_q2_K_defines = """ #define QUANT_K 256 struct block_q2_K { uint8_t scales[QUANT_K/16]; uint8_t qs[QUANT_K/4]; f16vec2 d; }; #define A_TYPE block_q2_K """ shader_q3_K_defines = """ #define QUANT_K 256 struct block_q3_K { uint8_t hmask[QUANT_K/8]; uint8_t qs[QUANT_K/4]; uint8_t scales[12]; float16_t d; }; #define A_TYPE block_q3_K """ shader_q4_K_defines = """ #define QUANT_K 256 struct block_q4_K { f16vec2 d; uint8_t scales[3*QUANT_K/64]; uint8_t qs[QUANT_K/2]; }; #define A_TYPE block_q4_K """ shader_q5_K_defines = """ #define QUANT_K 256 struct block_q5_K { f16vec2 d; uint8_t scales[12]; uint8_t qh[QUANT_K/8]; uint8_t qs[QUANT_K/2]; }; #define A_TYPE block_q5_K """ shader_q6_K_defines = """ #define QUANT_K 256 struct block_q6_K { uint8_t ql[QUANT_K/2]; uint8_t qh[QUANT_K/4]; int8_t scales[QUANT_K/16]; float16_t d; }; #define A_TYPE block_q6_K """ # Dequant functions shader_f16_dequant_func = """ #define DEQUANT_FUNC vec2 v = vec2(data_a[ib + 0], data_a[ib + 1]); """ shader_q4_0_dequant_func = """ #define DEQUANT_FUNC const float d = float(data_a[ib].d); \ const uint vui = uint(data_a[ib].qs[iqs]); \ vec2 v = vec2(vui & 0xF, vui >> 4); \ v = (v - 8.0f)*d; """ shader_q4_1_dequant_func = """ #define DEQUANT_FUNC const float d = float(data_a[ib].d); \ const float m = float(data_a[ib].m); \ const uint vui = uint(data_a[ib].qs[iqs]); \ vec2 v = vec2(vui & 0xF, vui >> 4); \ v = v*d + m; """ shader_q5_0_dequant_func = """ #define DEQUANT_FUNC const float d = float(data_a[ib].d); \ const uint uint_qh = uint(data_a[ib].qh[1]) << 16 | data_a[ib].qh[0]; \ const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10); \ const uint vui = uint(data_a[ib].qs[iqs]); \ vec2 v = vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y); \ v = (v - 16.0f) * d; """ shader_q5_1_dequant_func = """ #define DEQUANT_FUNC const float d = float(data_a[ib].d); \ const float m = float(data_a[ib].m); \ const ivec2 qh = ivec2(((data_a[ib].qh >> iqs) << 4) & 0x10, (data_a[ib].qh >> (iqs + 12)) & 0x10); \ const uint vui = uint(data_a[ib].qs[iqs]); \ vec2 v = vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y); \ v = v*d + m; """ shader_q8_0_dequant_func = """ #define DEQUANT_FUNC const float d = float(data_a[ib].d); \ vec2 v = vec2(int(data_a[ib].qs[iqs]), int(data_a[ib].qs[iqs + 1])); \ v = v * d; """ # MULMAT mulmat_head = """#version 450 #extension GL_EXT_control_flow_attributes : enable #extension GL_EXT_shader_16bit_storage : require #ifndef LOAD_VEC #define LOAD_VEC 1 #endif """ mulmat_body = """ layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 1) readonly buffer B {B_TYPE data_b[];}; layout (binding = 2) writeonly buffer D {D_TYPE data_d[];}; layout (push_constant) uniform parameter { uint M; uint N; uint K; uint stride_a; uint stride_b; uint stride_d; uint k_split; uint ne02; uint ne12; uint broadcast2; uint broadcast3; uint batch_stride_a; uint batch_stride_b; uint batch_stride_d; } p; layout (constant_id = 1) const uint BM = 64; layout (constant_id = 2) const uint BN = 64; layout (constant_id = 3) const uint BK = 16; layout (constant_id = 4) const uint WM = 32; layout (constant_id = 5) const uint WN = 32; layout (constant_id = 6) const uint WMITER = 2; layout (constant_id = 7) const uint TM = 4; layout (constant_id = 8) const uint TN = 2; layout (constant_id = 9) const uint WARP = 32; shared FLOAT_TYPE buf_a[BM * (BK+1)]; shared FLOAT_TYPE buf_b[BN * (BK+1)]; void main() { const uint i13 = gl_GlobalInvocationID.z / p.ne12; const uint i12 = gl_GlobalInvocationID.z % p.ne12; const uint i03 = i13 / p.broadcast3; const uint i02 = i12 / p.broadcast2; const uint batch_idx_a = i03 * p.ne02 + i02; const uint blocks_m = (p.M + BM - 1) / BM; const uint ir = gl_WorkGroupID.x % blocks_m; const uint ik = gl_WorkGroupID.x / blocks_m; const uint ic = gl_WorkGroupID.y; const uint warp_i = gl_LocalInvocationID.x / WARP; const uint warp_r = warp_i % (BM / WM); const uint warp_c = warp_i / (BM / WM); const uint WNITER = (WM * WN) / (WARP * TM * TN * WMITER); const uint WSUBM = WM / WMITER; const uint WSUBN = WN / WNITER; const uint tiw = gl_LocalInvocationID.x % WARP; const uint tiwr = tiw % (WSUBM / TM); const uint tiwc = tiw / (WSUBM / TM); const uint loadr = gl_LocalInvocationID.x % (BK / LOAD_VEC); const uint loadc = gl_LocalInvocationID.x / (BK / LOAD_VEC); const uint loadstride = gl_WorkGroupSize.x * LOAD_VEC / BK; const uint start_k = ik * p.k_split; const uint end_k = min(p.K, (ik + 1) * p.k_split); uint pos_a = (batch_idx_a * p.batch_stride_a + ir * BM * p.stride_a + start_k) / LOAD_VEC; uint pos_b = (gl_GlobalInvocationID.z * p.batch_stride_b + ic * BN * p.stride_b + start_k) / LOAD_VEC; float sums[WMITER * TM * WNITER * TN]; FLOAT_TYPE cache_a[WMITER * TM]; FLOAT_TYPE cache_b[WNITER * TN]; [[unroll]] for (uint i = 0; i < WMITER*TM*WNITER*TN; i++) { sums[i] = 0.0f; } [[unroll]] for (uint block = start_k; block < end_k; block += BK) { [[unroll]] for (uint l = 0; l < BM; l += loadstride) { #if LOAD_VEC == 8 const uint idx = pos_a + (loadc + l) * p.stride_a / LOAD_VEC + loadr; buf_a[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 0] = FLOAT_TYPE(data_a[idx][0].x); buf_a[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 1] = FLOAT_TYPE(data_a[idx][0].y); buf_a[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 2] = FLOAT_TYPE(data_a[idx][0].z); buf_a[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 3] = FLOAT_TYPE(data_a[idx][0].w); buf_a[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 4] = FLOAT_TYPE(data_a[idx][1].x); buf_a[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 5] = FLOAT_TYPE(data_a[idx][1].y); buf_a[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 6] = FLOAT_TYPE(data_a[idx][1].z); buf_a[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 7] = FLOAT_TYPE(data_a[idx][1].w); #elif LOAD_VEC == 4 const uint idx = pos_a + (loadc + l) * p.stride_a / LOAD_VEC + loadr; buf_a[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 0] = FLOAT_TYPE(data_a[idx].x); buf_a[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 1] = FLOAT_TYPE(data_a[idx].y); buf_a[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 2] = FLOAT_TYPE(data_a[idx].z); buf_a[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 3] = FLOAT_TYPE(data_a[idx].w); #else if (ir * BM + loadc + l < p.M && block + loadr < end_k) { buf_a[(loadc + l) * (BK+1) + loadr] = FLOAT_TYPE(data_a[pos_a + (loadc + l) * p.stride_a + loadr]); } else { buf_a[(loadc + l) * (BK+1) + loadr] = FLOAT_TYPE(0.0f); } #endif } [[unroll]] for (uint l = 0; l < BN; l += loadstride) { #if LOAD_VEC == 8 const uint idx = pos_b + (loadc + l) * p.stride_b / LOAD_VEC + loadr; buf_b[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 0] = FLOAT_TYPE(data_b[idx][0].x); buf_b[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 1] = FLOAT_TYPE(data_b[idx][0].y); buf_b[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 2] = FLOAT_TYPE(data_b[idx][0].z); buf_b[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 3] = FLOAT_TYPE(data_b[idx][0].w); buf_b[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 4] = FLOAT_TYPE(data_b[idx][1].x); buf_b[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 5] = FLOAT_TYPE(data_b[idx][1].y); buf_b[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 6] = FLOAT_TYPE(data_b[idx][1].z); buf_b[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 7] = FLOAT_TYPE(data_b[idx][1].w); #elif LOAD_VEC == 4 const uint idx = pos_b + (loadc + l) * p.stride_b / LOAD_VEC + loadr; buf_b[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 0] = FLOAT_TYPE(data_b[idx].x); buf_b[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 1] = FLOAT_TYPE(data_b[idx].y); buf_b[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 2] = FLOAT_TYPE(data_b[idx].z); buf_b[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 3] = FLOAT_TYPE(data_b[idx].w); #else if (ic * BN + loadc + l < p.N && block + loadr < end_k) { buf_b[(loadc + l) * (BK+1) + loadr] = FLOAT_TYPE(data_b[pos_b + (loadc + l) * p.stride_b + loadr]); } else { buf_b[(loadc + l) * (BK+1) + loadr] = FLOAT_TYPE(0.0f); } #endif } barrier(); pos_a += BK / LOAD_VEC; pos_b += BK / LOAD_VEC; for (uint i = 0; i < BK; i++) { // Load from shared into cache [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) { [[unroll]] for (uint j = 0; j < TM; j++) { cache_a[wsir * TM + j] = buf_a[(warp_r * WM + wsir * WSUBM + tiwr * TM + j) * (BK+1) + i]; } } [[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) { [[unroll]] for (uint j = 0; j < TN; j++) { cache_b[wsic * TN + j] = buf_b[(warp_c * WN + wsic * WSUBN + tiwc * TN + j) * (BK+1) + i]; } } [[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) { [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) { [[unroll]] for (uint cc = 0; cc < TN; cc++) { [[unroll]] for (uint cr = 0; cr < TM; cr++) { sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr] += float(cache_a[wsir * TM + cr]) * float(cache_b[wsic * TN + cc]); } } } } } barrier(); } const uint dr = ir * BM + warp_r * WM; const uint dc = ic * BN + warp_c * WN; const uint offsets = gl_GlobalInvocationID.z * p.batch_stride_d + ik * p.batch_stride_d * gl_NumWorkGroups.z; [[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) { [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) { const uint dr_warp = dr + wsir * WSUBM + tiwr * TM; const uint dc_warp = dc + wsic * WSUBN + tiwc * TN; [[unroll]] for (uint cc = 0; cc < TN; cc++) { [[unroll]] for (uint cr = 0; cr < TM; cr++) { if (dr_warp + cr < p.M && dc_warp + cc < p.N) { data_d[offsets + (dc_warp + cc) * p.stride_d + dr_warp + cr] = D_TYPE(sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr]); } } } } } } """ mulmat_split_k_reduce_src = """#version 450 #extension GL_EXT_control_flow_attributes : enable layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer A {float data_a[];}; layout (binding = 1) writeonly buffer D {float data_d[];}; layout (push_constant) uniform parameter { uint ne; uint k_num; } p; void main() { const uint idx = gl_GlobalInvocationID.x; if (idx >= p.ne) { return; } float result = 0.0f; [[unroll]] for (uint i = 0; i < p.k_num; i++) { result += data_a[i * p.ne + idx]; } data_d[idx] = result; } """ # DEQUANT SHADER dequant_head = """#version 450 #extension GL_EXT_control_flow_attributes : require #extension GL_EXT_shader_16bit_storage : require """ dequant_body = """ layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 1) writeonly buffer D {D_TYPE data_b[];}; layout (push_constant) uniform parameter { int M; int K; int stride_a; int stride_b; } p; void main() { const int i = int(gl_GlobalInvocationID.x); // Transposed const int row = i % (p.K / QUANT_K); const int col = i / (p.K / QUANT_K); if (row * QUANT_K >= p.K || col >= p.M) { return; } const int stride_a = p.stride_a / QUANT_K; const int ib = col * stride_a + row; const int y_offset = QUANT_R == 1 ? 1 : QUANT_K/2; const int step = QUANT_R == 1 ? 2 : 1; [[unroll]] for (int iqs = 0; iqs < QUANT_K/QUANT_R; iqs += step) { DEQUANT_FUNC data_b[col * p.stride_b + row*QUANT_K + iqs + 0 ] = D_TYPE(v.x); data_b[col * p.stride_b + row*QUANT_K + iqs + y_offset] = D_TYPE(v.y); } } """ # K-quants dequant_q2_K_body = """ layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 1) writeonly buffer D {D_TYPE data_b[];}; layout (push_constant) uniform parameter { int M; int K; int stride_a; int stride_b; } p; void main() { [[unroll]] for (int wgy = 0; wgy < 256; wgy++) { const int i = int(gl_WorkGroupID.x * 256 + wgy); if (i >= p.M * p.K / QUANT_K) { return; } const int tid = int(gl_LocalInvocationID.x); const int ip = tid / 32; const int il = tid - 32 * ip; const int is = 8 * ip + il / 16; const int y_idx = i * QUANT_K + 128 * ip + il; const int ql_idx = 32 * ip + il; const uint8_t qs = data_a[i].qs[32 * ip + il]; FLOAT_TYPE dall = FLOAT_TYPE(data_a[i].d.x); FLOAT_TYPE dmin = FLOAT_TYPE(data_a[i].d.y); data_b[y_idx + 0] = D_TYPE(dall * FLOAT_TYPE((data_a[i].scales[is+0] & 0xF) * ((qs >> 0) & 3)) - dmin * FLOAT_TYPE(data_a[i].scales[is+0] >> 4)); data_b[y_idx + 32] = D_TYPE(dall * FLOAT_TYPE((data_a[i].scales[is+2] & 0xF) * ((qs >> 2) & 3)) - dmin * FLOAT_TYPE(data_a[i].scales[is+2] >> 4)); data_b[y_idx + 64] = D_TYPE(dall * FLOAT_TYPE((data_a[i].scales[is+4] & 0xF) * ((qs >> 4) & 3)) - dmin * FLOAT_TYPE(data_a[i].scales[is+4] >> 4)); data_b[y_idx + 96] = D_TYPE(dall * FLOAT_TYPE((data_a[i].scales[is+6] & 0xF) * ((qs >> 6) & 3)) - dmin * FLOAT_TYPE(data_a[i].scales[is+6] >> 4)); } } """ dequant_q3_K_body = """ layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 1) writeonly buffer D {D_TYPE data_b[];}; layout (push_constant) uniform parameter { int M; int K; int stride_a; int stride_b; } p; void main() { [[unroll]] for (int wgy = 0; wgy < 256; wgy++) { const int i = int(gl_WorkGroupID.x * 256 + wgy); if (i >= p.M * p.K / QUANT_K) { return; } const int r = int(gl_LocalInvocationID.x) / 4; const int tid = r / 2; const int is0 = r % 2; const int l0 = 16 * is0 + 4 * (int(gl_LocalInvocationID.x) % 4); const int n = tid / 4; const int j = tid - 4*n; const uint8_t m = uint8_t(1 << (4*n + j)); const int is = 8*n + 2*j + is0; const int shift = 2*j; const int8_t us = int8_t(is < 4 ? (data_a[i].scales[is-0] & 0xF) | (((data_a[i].scales[is+8] >> 0) & 3) << 4) : is < 8 ? (data_a[i].scales[is-0] & 0xF) | (((data_a[i].scales[is+4] >> 2) & 3) << 4) : is < 12 ? (data_a[i].scales[is-8] >> 4) | (((data_a[i].scales[is+0] >> 4) & 3) << 4) : (data_a[i].scales[is-8] >> 4) | (((data_a[i].scales[is-4] >> 6) & 3) << 4)); const FLOAT_TYPE d_all = FLOAT_TYPE(data_a[i].d); const FLOAT_TYPE dl = d_all * FLOAT_TYPE(us - 32); const int y_idx = i * QUANT_K + 128 * n + 32 * j; const int qs_idx = 32*n; for (int l = l0; l < l0 + 4; ++l) { data_b[y_idx + l] = D_TYPE(dl * FLOAT_TYPE(int8_t((data_a[i].qs[qs_idx + l] >> shift) & 3) - (((data_a[i].hmask[l] & m) != 0) ? 0 : 4))); } } } """ dequant_q4_K_body = """ layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 1) writeonly buffer D {D_TYPE data_b[];}; layout (push_constant) uniform parameter { int M; int K; int stride_a; int stride_b; } p; void main() { [[unroll]] for (int wgy = 0; wgy < 256; wgy++) { const int i = int(gl_WorkGroupID.x * 256 + wgy); if (i >= p.M * p.K / QUANT_K) { return; } const int tid = int(gl_LocalInvocationID.x); const int il = tid / 8; const int ir = tid % 8; const int is = 2 * il; const int n = 4; const FLOAT_TYPE dall = FLOAT_TYPE(data_a[i].d.x); const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[i].d.y); const int y_idx = i * QUANT_K + 64 * il + n * ir; const int qs_idx = 32*il + n * ir; uint8_t sc; uint8_t m; if (is < 4) { sc = uint8_t(data_a[i].scales[is] & 63); m = uint8_t(data_a[i].scales[is + 4] & 63); } else { sc = uint8_t((data_a[i].scales[is + 4] & 0xF) | ((data_a[i].scales[is - 4] >> 6) << 4)); m = uint8_t((data_a[i].scales[is + 4] >> 4) | ((data_a[i].scales[is ] >> 6) << 4)); } const FLOAT_TYPE d1 = dall * sc; const FLOAT_TYPE m1 = dmin * m; if (is < 4) { sc = uint8_t(data_a[i].scales[is + 1] & 63); m = uint8_t(data_a[i].scales[is + 5] & 63); } else { sc = uint8_t((data_a[i].scales[is + 5] & 0xF) | ((data_a[i].scales[is - 3] >> 6) << 4)); m = uint8_t((data_a[i].scales[is + 5] >> 4) | ((data_a[i].scales[is + 1] >> 6) << 4)); } const FLOAT_TYPE d2 = dall * sc; const FLOAT_TYPE m2 = dmin * m; [[unroll]] for (int l = 0; l < n; ++l) { data_b[y_idx + l ] = D_TYPE(d1 * FLOAT_TYPE(data_a[i].qs[qs_idx + l] & 0xF) - m1); data_b[y_idx + l + 32] = D_TYPE(d2 * FLOAT_TYPE(data_a[i].qs[qs_idx + l] >> 4) - m2); } } } """ dequant_q5_K_body = """ layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 1) writeonly buffer D {D_TYPE data_b[];}; layout (push_constant) uniform parameter { int M; int K; int stride_a; int stride_b; } p; void main() { [[unroll]] for (int wgy = 0; wgy < 256; wgy++) { const int i = int(gl_WorkGroupID.x * 256 + wgy); if (i >= p.M * p.K / QUANT_K) { return; } const int tid = int(gl_LocalInvocationID.x); const int il = tid / 16; const int ir = tid % 16; const int is = 2 * il; const FLOAT_TYPE dall = FLOAT_TYPE(data_a[i].d.x); const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[i].d.y); const int y_idx = i * QUANT_K + 64 * il + 2 * ir; const int qs_idx = 32*il + 2 * ir; const int qh_idx = 2 * ir; uint8_t sc; uint8_t m; if (is < 4) { sc = uint8_t(data_a[i].scales[is] & 63); m = uint8_t(data_a[i].scales[is + 4] & 63); } else { sc = uint8_t((data_a[i].scales[is + 4] & 0xF) | ((data_a[i].scales[is - 4] >> 6) << 4)); m = uint8_t((data_a[i].scales[is + 4] >> 4) | ((data_a[i].scales[is ] >> 6) << 4)); } const FLOAT_TYPE d1 = dall * sc; const FLOAT_TYPE m1 = dmin * m; if (is < 4) { sc = uint8_t(data_a[i].scales[is + 1] & 63); m = uint8_t(data_a[i].scales[is + 5] & 63); } else { sc = uint8_t((data_a[i].scales[is + 5] & 0xF) | ((data_a[i].scales[is - 3] >> 6) << 4)); m = uint8_t((data_a[i].scales[is + 5] >> 4) | ((data_a[i].scales[is + 1] >> 6) << 4)); } const FLOAT_TYPE d2 = dall * sc; const FLOAT_TYPE m2 = dmin * m; const uint8_t hm1 = uint8_t(1 << (2 * il )); const uint8_t hm2 = uint8_t(1 << (2 * il + 1)); data_b[y_idx ] = D_TYPE(d1 * FLOAT_TYPE((data_a[i].qs[qs_idx ] & 0xF) + (((data_a[i].qh[qh_idx ] & hm1) != 0) ? 16 : 0)) - m1); data_b[y_idx + 1] = D_TYPE(d1 * FLOAT_TYPE((data_a[i].qs[qs_idx + 1] & 0xF) + (((data_a[i].qh[qh_idx + 1] & hm1) != 0) ? 16 : 0)) - m1); data_b[y_idx + 32] = D_TYPE(d2 * FLOAT_TYPE((data_a[i].qs[qs_idx ] >> 4) + (((data_a[i].qh[qh_idx ] & hm2) != 0) ? 16 : 0)) - m2); data_b[y_idx + 33] = D_TYPE(d2 * FLOAT_TYPE((data_a[i].qs[qs_idx + 1] >> 4) + (((data_a[i].qh[qh_idx + 1] & hm2) != 0) ? 16 : 0)) - m2); } } """ dequant_q6_K_body = """ layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 1) writeonly buffer D {D_TYPE data_b[];}; layout (push_constant) uniform parameter { int M; int K; int stride_a; int stride_b; } p; void main() { [[unroll]] for (int wgy = 0; wgy < 256; wgy++) { const int i = int(gl_WorkGroupID.x * 256 + wgy); if (i >= p.M * p.K / QUANT_K) { return; } const int tid = int(gl_LocalInvocationID.x); const int ip = tid / 32; const int il = tid - 32 * ip; const int is = 8 * ip + il / 16; const int y_idx = i * QUANT_K + 128 * ip + il; const int ql_idx = 64 * ip + il; const uint8_t qh = data_a[i].qh[32 * ip + il]; const FLOAT_TYPE d = FLOAT_TYPE(data_a[i].d); data_b[y_idx + 0] = D_TYPE(d * FLOAT_TYPE(data_a[i].scales[is + 0] * (int8_t((data_a[i].ql[ql_idx + 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32))); data_b[y_idx + 32] = D_TYPE(d * FLOAT_TYPE(data_a[i].scales[is + 2] * (int8_t((data_a[i].ql[ql_idx + 32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32))); data_b[y_idx + 64] = D_TYPE(d * FLOAT_TYPE(data_a[i].scales[is + 4] * (int8_t((data_a[i].ql[ql_idx + 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32))); data_b[y_idx + 96] = D_TYPE(d * FLOAT_TYPE(data_a[i].scales[is + 6] * (int8_t((data_a[i].ql[ql_idx + 32] >> 4) | (((qh >> 6) & 3) << 4)) - 32))); } } """ # Mul Mat Vec mul_mat_vec_head = """#version 450 #extension GL_EXT_control_flow_attributes : enable #extension GL_EXT_shader_16bit_storage : require #extension GL_EXT_shader_8bit_storage : require """ mul_mat_vec_body = """ layout(local_size_x = QUANT_K, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 1) readonly buffer B {B_TYPE data_b[];}; layout (binding = 2) writeonly buffer D {D_TYPE dst[];}; layout (push_constant) uniform parameter { int ncols; int b_offset; int d_offset; } p; shared FLOAT_TYPE tmp[QUANT_K]; void main() { const int block_size = int(gl_WorkGroupSize.x); const int row = int(gl_WorkGroupID.x); const int tid = int(gl_LocalInvocationID.x); const int y_offset = QUANT_R == 1 ? 1 : QUANT_K/2; tmp[tid] = FLOAT_TYPE(0.0f); [[unroll]] for (int i = 0; i < p.ncols/block_size; i += 2) { const int col = i*block_size + 2*tid; const int ib = (row*p.ncols + col)/QUANT_K; // block index const int iqs = (col%QUANT_K)/QUANT_R; // quant index const int iybs = col - col%QUANT_K; // y block start index DEQUANT_FUNC // matrix multiplication tmp[tid] += FLOAT_TYPE(v.x) * FLOAT_TYPE(data_b[p.b_offset + iybs + iqs + 0]); tmp[tid] += FLOAT_TYPE(v.y) * FLOAT_TYPE(data_b[p.b_offset + iybs + iqs + y_offset]); } // sum up partial sums and write back result barrier(); [[unroll]] for (int s = block_size/2; s > 0; s >>= 1) { if (tid < s) { tmp[tid] += tmp[tid + s]; } barrier(); } if (tid == 0) { dst[p.d_offset + row] = D_TYPE(tmp[0]); } } """ # K-quants mul_mat_vec_q2_K_body = """ layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 1) readonly buffer B {B_TYPE data_b[];}; layout (binding = 2) writeonly buffer D {D_TYPE dst[];}; layout (push_constant) uniform parameter { int ncols; int b_offset; int d_offset; } p; shared FLOAT_TYPE tmp[32]; void main() { const int row = int(gl_WorkGroupID.x); const int num_blocks_per_row = p.ncols / QUANT_K; const int ib0 = row*num_blocks_per_row; const int tid = int(gl_LocalInvocationID.x)/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 const int ix = int(gl_LocalInvocationID.x)%K_QUANTS_PER_ITERATION; // 0 or 0, 1 const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8 const int v_im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128... const int v_in = tid - step*v_im; // 0...15 or 0...7 const int l0 = K_QUANTS_PER_ITERATION*v_in; // 0...15 const int q_offset = 32*v_im + l0; const int s_offset = 8*v_im; const int y_offset = 128*v_im + l0; tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp [[unroll]] for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { const int y_idx = i * QUANT_K + y_offset; const FLOAT_TYPE dall = FLOAT_TYPE(data_a[ib0 + i].d.x); const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[ib0 + i].d.y); FLOAT_TYPE sum1 = FLOAT_TYPE(0.0); FLOAT_TYPE sum2 = FLOAT_TYPE(0.0); for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) { sum1 += FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 0) & 3) + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 16]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 1] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 0) & 3) + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 2) & 3) + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 48]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 3] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 2) & 3) + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 4) & 3) + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 80]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 5] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 4) & 3) + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 6) & 3) + FLOAT_TYPE(data_b[p.b_offset + y_idx + l +112]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 7] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 6) & 3); sum2 += FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 0]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 0] >> 4) & 0xF) + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 16]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 1] >> 4) & 0xF) + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 32]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 2] >> 4) & 0xF) + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 48]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 3] >> 4) & 0xF) + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 64]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 4] >> 4) & 0xF) + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 80]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 5] >> 4) & 0xF) + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 96]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 6] >> 4) & 0xF) + FLOAT_TYPE(data_b[p.b_offset + y_idx + l +112]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 7] >> 4) & 0xF); } tmp[16 * ix + tid] += dall * sum1 - dmin * sum2; } // sum up partial sums and write back result barrier(); [[unroll]] for (int s = 16; s > 0; s >>= 1) { if (tid < s) { tmp[tid] += tmp[tid + s]; } barrier(); } if (tid == 0) { dst[p.d_offset + row] = D_TYPE(tmp[0]); } } """ mul_mat_vec_q3_K_body = """ layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 1) readonly buffer B {B_TYPE data_b[];}; layout (binding = 2) writeonly buffer D {D_TYPE dst[];}; layout (push_constant) uniform parameter { int ncols; int b_offset; int d_offset; } p; shared FLOAT_TYPE tmp[32]; void main() { const int row = int(gl_WorkGroupID.x); const int num_blocks_per_row = p.ncols / QUANT_K; const int ib0 = row*num_blocks_per_row; const int tid = int(gl_LocalInvocationID.x)/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 const int ix = int(gl_LocalInvocationID.x)%K_QUANTS_PER_ITERATION; // 0 or 0, 1 const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8 const int v_im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128... const int v_in = tid - step*v_im; // 0...15 or 0...7 const uint8_t m = uint8_t(1 << (4 * v_im)); const int l0 = K_QUANTS_PER_ITERATION*v_in; // 0...15 const int q_offset = 32*v_im + l0; const int y_offset = 128*v_im + l0; tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp const uint s_shift = 4 * v_im; [[unroll]] for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { const int y_idx = i * QUANT_K + y_offset; const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d); FLOAT_TYPE sum = FLOAT_TYPE(0.0); for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) { sum += FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 0]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[0] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[ 8] >> (s_shift + 0) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 0)) != 0) ? 0 : 4)) + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 32]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[2] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[10] >> (s_shift + 0) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 1)) != 0) ? 0 : 4)) + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 64]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[4] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[ 8] >> (s_shift + 2) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 2)) != 0) ? 0 : 4)) + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 96]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[6] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[10] >> (s_shift + 2) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 3)) != 0) ? 0 : 4)) + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 16]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[1] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[ 9] >> (s_shift + 0) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 0)) != 0) ? 0 : 4)) + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 48]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[3] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[11] >> (s_shift + 0) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 1)) != 0) ? 0 : 4)) + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 80]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[5] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[ 9] >> (s_shift + 2) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 2)) != 0) ? 0 : 4)) + FLOAT_TYPE(data_b[p.b_offset + y_idx + l +112]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[7] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[11] >> (s_shift + 2) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 3)) != 0) ? 0 : 4)); } tmp[16 * ix + tid] += d * sum; } // sum up partial sums and write back result barrier(); [[unroll]] for (int s = 16; s > 0; s >>= 1) { if (tid < s) { tmp[tid] += tmp[tid + s]; } barrier(); } if (tid == 0) { dst[p.d_offset + row] = D_TYPE(tmp[0]); } } """ mul_mat_vec_q4_K_body = """ layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 1) readonly buffer B {B_TYPE data_b[];}; layout (binding = 2) writeonly buffer D {D_TYPE dst[];}; layout (push_constant) uniform parameter { int ncols; int b_offset; int d_offset; } p; shared FLOAT_TYPE tmp[32]; void main() { const int row = int(gl_WorkGroupID.x); const int num_blocks_per_row = p.ncols / QUANT_K; const int ib0 = row*num_blocks_per_row; const int tid = int(gl_LocalInvocationID.x)/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 const int ix = int(gl_LocalInvocationID.x)%K_QUANTS_PER_ITERATION; // 0 or 0, 1 const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4 const int il = tid/step; // 0...3 const int ir = tid - step*il; // 0...7 or 0...3 const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4 const int v_im = il / 2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224 const int v_in = il % 2; const int l0 = n * (2 * ir + v_in); // 0...15 const int q_offset = 32*v_im + l0; const int y_offset = 64*v_im + l0; tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp [[unroll]] for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { const int y1_idx = i * QUANT_K + y_offset; const int y2_idx = y1_idx + 128; const FLOAT_TYPE dall = FLOAT_TYPE(data_a[ib0 + i].d.x); const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[ib0 + i].d.y); const uint8_t sc0 = uint8_t( data_a[ib0 + i].scales[v_im * 2 ] & 0x3f); const uint8_t sc1 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 1] & 0x3f); const uint8_t sc2 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 4] & 0x3f); const uint8_t sc3 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 5] & 0x3f); const uint8_t sc4 = uint8_t(( data_a[ib0 + i].scales[v_im * 2 + 8] & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 ] & 0xc0) >> 2)); const uint8_t sc5 = uint8_t(( data_a[ib0 + i].scales[v_im * 2 + 9] & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 1] & 0xc0) >> 2)); const uint8_t sc6 = uint8_t(((data_a[ib0 + i].scales[v_im * 2 + 8] >> 4) & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 4] & 0xc0) >> 2)); const uint8_t sc7 = uint8_t(((data_a[ib0 + i].scales[v_im * 2 + 9] >> 4) & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 5] & 0xc0) >> 2)); #if K_QUANTS_PER_ITERATION == 2 const uint8_t q4_0 = uint8_t(data_a[ib0 + i].qs[q_offset ] & 0xf); const uint8_t q4_1 = uint8_t(data_a[ib0 + i].qs[q_offset + 1] & 0xf); const uint8_t q4_2 = uint8_t(data_a[ib0 + i].qs[q_offset + 2] & 0xf); const uint8_t q4_3 = uint8_t(data_a[ib0 + i].qs[q_offset + 3] & 0xf); const uint8_t q4_4 = uint8_t(data_a[ib0 + i].qs[q_offset ] >> 4); const uint8_t q4_5 = uint8_t(data_a[ib0 + i].qs[q_offset + 1] >> 4); const uint8_t q4_6 = uint8_t(data_a[ib0 + i].qs[q_offset + 2] >> 4); const uint8_t q4_7 = uint8_t(data_a[ib0 + i].qs[q_offset + 3] >> 4); const uint8_t q4_8 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] & 0xf); const uint8_t q4_9 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] & 0xf); const uint8_t q4_10 = uint8_t(data_a[ib0 + i].qs[q_offset + 66] & 0xf); const uint8_t q4_11 = uint8_t(data_a[ib0 + i].qs[q_offset + 67] & 0xf); const uint8_t q4_12 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] >> 4); const uint8_t q4_13 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] >> 4); const uint8_t q4_14 = uint8_t(data_a[ib0 + i].qs[q_offset + 66] >> 4); const uint8_t q4_15 = uint8_t(data_a[ib0 + i].qs[q_offset + 67] >> 4); const FLOAT_TYPE sx = FLOAT_TYPE(data_b[p.b_offset + y1_idx] * q4_0 + data_b[p.b_offset + y1_idx + 1] * q4_1 + data_b[p.b_offset + y1_idx + 2] * q4_2 + data_b[p.b_offset + y1_idx + 3] * q4_3); const FLOAT_TYPE sy = FLOAT_TYPE(data_b[p.b_offset + y1_idx + 32] * q4_4 + data_b[p.b_offset + y1_idx + 33] * q4_5 + data_b[p.b_offset + y1_idx + 34] * q4_6 + data_b[p.b_offset + y1_idx + 35] * q4_7); const FLOAT_TYPE sz = FLOAT_TYPE(data_b[p.b_offset + y2_idx] * q4_8 + data_b[p.b_offset + y2_idx + 1] * q4_9 + data_b[p.b_offset + y2_idx + 2] * q4_10 + data_b[p.b_offset + y2_idx + 3] * q4_11); const FLOAT_TYPE sw = FLOAT_TYPE(data_b[p.b_offset + y2_idx + 32] * q4_12 + data_b[p.b_offset + y2_idx + 33] * q4_13 + data_b[p.b_offset + y2_idx + 34] * q4_14 + data_b[p.b_offset + y2_idx + 35] * q4_15); const FLOAT_TYPE smin = FLOAT_TYPE( data_b[p.b_offset + y1_idx ] * sc2 + data_b[p.b_offset + y1_idx + 32] * sc3 + data_b[p.b_offset + y2_idx ] * sc6 + data_b[p.b_offset + y2_idx + 32] * sc7 + data_b[p.b_offset + y1_idx + 1] * sc2 + data_b[p.b_offset + y1_idx + 33] * sc3 + data_b[p.b_offset + y2_idx + 1] * sc6 + data_b[p.b_offset + y2_idx + 33] * sc7 + data_b[p.b_offset + y1_idx + 2] * sc2 + data_b[p.b_offset + y1_idx + 34] * sc3 + data_b[p.b_offset + y2_idx + 2] * sc6 + data_b[p.b_offset + y2_idx + 34] * sc7 + data_b[p.b_offset + y1_idx + 3] * sc2 + data_b[p.b_offset + y1_idx + 35] * sc3 + data_b[p.b_offset + y2_idx + 3] * sc6 + data_b[p.b_offset + y2_idx + 35] * sc7 ); tmp[16 * ix + tid] += FLOAT_TYPE(dall * (sx * sc0 + sy * sc1 + sz * sc4 + sw * sc5) - dmin * smin); #else const uint8_t q4_0 = uint8_t(data_a[ib0 + i].qs[q_offset ] & 0xf); const uint8_t q4_1 = uint8_t(data_a[ib0 + i].qs[q_offset + 1] & 0xf); const uint8_t q4_2 = uint8_t(data_a[ib0 + i].qs[q_offset ] >> 4); const uint8_t q4_3 = uint8_t(data_a[ib0 + i].qs[q_offset + 1] >> 4); const uint8_t q4_4 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] & 0xf); const uint8_t q4_5 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] & 0xf); const uint8_t q4_6 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] >> 4); const uint8_t q4_7 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] >> 4); const FLOAT_TYPE sx = FLOAT_TYPE(data_b[p.b_offset + y1_idx ] * q4_0 + data_b[p.b_offset + y1_idx + 1] * q4_1); const FLOAT_TYPE sy = FLOAT_TYPE(data_b[p.b_offset + y1_idx + 32] * q4_2 + data_b[p.b_offset + y1_idx + 33] * q4_3); const FLOAT_TYPE sz = FLOAT_TYPE(data_b[p.b_offset + y2_idx ] * q4_4 + data_b[p.b_offset + y2_idx + 1] * q4_5); const FLOAT_TYPE sw = FLOAT_TYPE(data_b[p.b_offset + y2_idx + 32] * q4_6 + data_b[p.b_offset + y2_idx + 33] * q4_7); const FLOAT_TYPE smin = FLOAT_TYPE( data_b[p.b_offset + y1_idx] * sc2 + data_b[p.b_offset + y1_idx + 32] * sc3 + data_b[p.b_offset + y2_idx] * sc6 + data_b[p.b_offset + y2_idx + 32] * sc7 + data_b[p.b_offset + y1_idx + 1] * sc2 + data_b[p.b_offset + y1_idx + 33] * sc3 + data_b[p.b_offset + y2_idx + 1] * sc6 + data_b[p.b_offset + y2_idx + 33] * sc7 ); tmp[16 * ix + tid] += FLOAT_TYPE(dall * (sx * FLOAT_TYPE(data_a[ib0 + i].scales[v_im] & 0x3f) + sy * FLOAT_TYPE(data_a[ib0 + i].scales[v_im + 1] & 0x3f) + sz * FLOAT_TYPE((data_a[ib0 + i].scales[v_im + 4] & 0x0f) | ((data_a[ib0 + i].scales[v_im] & 0xc0) >> 2)) + sw * FLOAT_TYPE((data_a[ib0 + i].scales[v_im + 5] & 0x0f) | ((data_a[ib0 + i].scales[v_im + 1] & 0xc0) >> 2))) - dmin * smin); #endif } // sum up partial sums and write back result barrier(); [[unroll]] for (int s = 16; s > 0; s >>= 1) { if (tid < s) { tmp[tid] += tmp[tid + s]; } barrier(); } if (tid == 0) { dst[p.d_offset + row] = D_TYPE(tmp[0]); } } """ mul_mat_vec_q5_K_body = """ layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 1) readonly buffer B {B_TYPE data_b[];}; layout (binding = 2) writeonly buffer D {D_TYPE dst[];}; layout (push_constant) uniform parameter { int ncols; int b_offset; int d_offset; } p; shared FLOAT_TYPE tmp[32]; void main() { const int row = int(gl_WorkGroupID.x); const int num_blocks_per_row = p.ncols / QUANT_K; const int ib0 = row*num_blocks_per_row; const int tid = int(gl_LocalInvocationID.x)/2; // 0...31 or 0...16 const int ix = int(gl_LocalInvocationID.x)%2; // 0 or 0, 1 const int il = tid/4; // 0...3 const int ir = tid - 4*il; // 0...7 or 0...3 const int v_im = il / 2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224 const int v_in = il % 2; const int l0 = 4*ir + 2*v_in; // 0...15 const int q_offset = 32*v_im + l0; const int y_offset = 64*v_im + l0; const uint8_t hm1 = uint8_t(1 << (2*v_im)); const uint8_t hm2 = uint8_t(hm1 << 4); tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp [[unroll]] for (int i = ix; i < num_blocks_per_row; i += 2) { const int y1_idx = i * QUANT_K + y_offset; const int y2_idx = y1_idx + 128; const FLOAT_TYPE dall = FLOAT_TYPE(data_a[ib0 + i].d.x); const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[ib0 + i].d.y); const uint8_t sc0 = uint8_t( data_a[ib0 + i].scales[v_im * 2 ] & 0x3f); const uint8_t sc1 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 1] & 0x3f); const uint8_t sc2 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 4] & 0x3f); const uint8_t sc3 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 5] & 0x3f); const uint8_t sc4 = uint8_t(( data_a[ib0 + i].scales[v_im * 2 + 8] & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 ] & 0xc0) >> 2)); const uint8_t sc5 = uint8_t(( data_a[ib0 + i].scales[v_im * 2 + 9] & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 1] & 0xc0) >> 2)); const uint8_t sc6 = uint8_t(((data_a[ib0 + i].scales[v_im * 2 + 8] >> 4) & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 4] & 0xc0) >> 2)); const uint8_t sc7 = uint8_t(((data_a[ib0 + i].scales[v_im * 2 + 9] >> 4) & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 5] & 0xc0) >> 2)); const uint8_t q4_0 = uint8_t(data_a[ib0 + i].qs[q_offset ] & 0xf); const uint8_t q4_1 = uint8_t(data_a[ib0 + i].qs[q_offset + 1] & 0xf); const uint8_t q4_2 = uint8_t(data_a[ib0 + i].qs[q_offset + 16] & 0xf); const uint8_t q4_3 = uint8_t(data_a[ib0 + i].qs[q_offset + 17] & 0xf); const uint8_t q4_4 = uint8_t(data_a[ib0 + i].qs[q_offset ] >> 4); const uint8_t q4_5 = uint8_t(data_a[ib0 + i].qs[q_offset + 1] >> 4); const uint8_t q4_6 = uint8_t(data_a[ib0 + i].qs[q_offset + 16] >> 4); const uint8_t q4_7 = uint8_t(data_a[ib0 + i].qs[q_offset + 17] >> 4); const uint8_t q4_8 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] & 0xf); const uint8_t q4_9 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] & 0xf); const uint8_t q4_10 = uint8_t(data_a[ib0 + i].qs[q_offset + 80] & 0xf); const uint8_t q4_11 = uint8_t(data_a[ib0 + i].qs[q_offset + 81] & 0xf); const uint8_t q4_12 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] >> 4); const uint8_t q4_13 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] >> 4); const uint8_t q4_14 = uint8_t(data_a[ib0 + i].qs[q_offset + 80] >> 4); const uint8_t q4_15 = uint8_t(data_a[ib0 + i].qs[q_offset + 81] >> 4); const FLOAT_TYPE sx = FLOAT_TYPE( data_b[p.b_offset + y1_idx ] * (q4_0 + (((data_a[ib0 + i].qh[l0 ] & hm1) != 0) ? 16 : 0)) + data_b[p.b_offset + y1_idx + 1] * (q4_1 + (((data_a[ib0 + i].qh[l0 + 1] & hm1) != 0) ? 16 : 0)) + data_b[p.b_offset + y1_idx + 16] * (q4_2 + (((data_a[ib0 + i].qh[l0 + 16] & hm1) != 0) ? 16 : 0)) + data_b[p.b_offset + y1_idx + 17] * (q4_3 + (((data_a[ib0 + i].qh[l0 + 17] & hm1) != 0) ? 16 : 0)) ); const FLOAT_TYPE sy = FLOAT_TYPE( data_b[p.b_offset + y1_idx + 32] * (q4_4 + (((data_a[ib0 + i].qh[l0 ] & (hm1 << 1)) != 0) ? 16 : 0)) + data_b[p.b_offset + y1_idx + 33] * (q4_5 + (((data_a[ib0 + i].qh[l0 + 1] & (hm1 << 1)) != 0) ? 16 : 0)) + data_b[p.b_offset + y1_idx + 48] * (q4_6 + (((data_a[ib0 + i].qh[l0 + 16] & (hm1 << 1)) != 0) ? 16 : 0)) + data_b[p.b_offset + y1_idx + 49] * (q4_7 + (((data_a[ib0 + i].qh[l0 + 17] & (hm1 << 1)) != 0) ? 16 : 0)) ); const FLOAT_TYPE sz = FLOAT_TYPE( data_b[p.b_offset + y2_idx ] * (q4_8 + (((data_a[ib0 + i].qh[l0 ] & hm2) != 0) ? 16 : 0)) + data_b[p.b_offset + y2_idx + 1] * (q4_9 + (((data_a[ib0 + i].qh[l0 + 1] & hm2) != 0) ? 16 : 0)) + data_b[p.b_offset + y2_idx + 16] * (q4_10 + (((data_a[ib0 + i].qh[l0 + 16] & hm2) != 0) ? 16 : 0)) + data_b[p.b_offset + y2_idx + 17] * (q4_11 + (((data_a[ib0 + i].qh[l0 + 17] & hm2) != 0) ? 16 : 0)) ); const FLOAT_TYPE sw = FLOAT_TYPE( data_b[p.b_offset + y2_idx + 32] * (q4_12 + (((data_a[ib0 + i].qh[l0 ] & (hm2 << 1)) != 0) ? 16 : 0)) + data_b[p.b_offset + y2_idx + 33] * (q4_13 + (((data_a[ib0 + i].qh[l0 + 1] & (hm2 << 1)) != 0) ? 16 : 0)) + data_b[p.b_offset + y2_idx + 48] * (q4_14 + (((data_a[ib0 + i].qh[l0 + 16] & (hm2 << 1)) != 0) ? 16 : 0)) + data_b[p.b_offset + y2_idx + 49] * (q4_15 + (((data_a[ib0 + i].qh[l0 + 17] & (hm2 << 1)) != 0) ? 16 : 0)) ); const FLOAT_TYPE smin = FLOAT_TYPE( (data_b[p.b_offset + y1_idx] + data_b[p.b_offset + y1_idx + 1] + data_b[p.b_offset + y1_idx + 16] + data_b[p.b_offset + y1_idx + 17]) * sc2 + (data_b[p.b_offset + y1_idx + 32] + data_b[p.b_offset + y1_idx + 33] + data_b[p.b_offset + y1_idx + 48] + data_b[p.b_offset + y1_idx + 49]) * sc3 + (data_b[p.b_offset + y2_idx] + data_b[p.b_offset + y2_idx + 1] + data_b[p.b_offset + y2_idx + 16] + data_b[p.b_offset + y2_idx + 17]) * sc6 + (data_b[p.b_offset + y2_idx + 32] + data_b[p.b_offset + y2_idx + 33] + data_b[p.b_offset + y2_idx + 48] + data_b[p.b_offset + y2_idx + 49]) * sc7 ); tmp[16 * ix + tid] += FLOAT_TYPE(dall * (sx * sc0 + sy * sc1 + sz * sc4 + sw * sc5) - dmin * smin); } // sum up partial sums and write back result barrier(); [[unroll]] for (int s = 16; s > 0; s >>= 1) { if (tid < s) { tmp[tid] += tmp[tid + s]; } barrier(); } if (tid == 0) { dst[p.d_offset + row] = D_TYPE(tmp[0]); } } """ mul_mat_vec_q6_K_body = """ layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 1) readonly buffer B {B_TYPE data_b[];}; layout (binding = 2) writeonly buffer D {D_TYPE dst[];}; layout (push_constant) uniform parameter { int ncols; int b_offset; int d_offset; } p; shared FLOAT_TYPE tmp[32]; void main() { const int row = int(gl_WorkGroupID.x); const int num_blocks_per_row = p.ncols / QUANT_K; const int ib0 = row*num_blocks_per_row; const int tid = int(gl_LocalInvocationID.x)/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 const int ix = int(gl_LocalInvocationID.x)%K_QUANTS_PER_ITERATION; // 0 or 0, 1 const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8 const int v_im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128... const int v_in = tid - step*v_im; // 0...15 or 0...7 #if K_QUANTS_PER_ITERATION == 1 const int l0 = K_QUANTS_PER_ITERATION*v_in; // 0...15 const int is = 0; #else const int l0 = 4 * v_in; // 0, 4, 8, ..., 28 const int is = v_in / 4; #endif const int ql_offset = 64*v_im + l0; const int qh_offset = 32*v_im + l0; const int s_offset = 8*v_im + is; const int y_offset = 128*v_im + l0; tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp [[unroll]] for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { const int y_idx = i * QUANT_K + y_offset; const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d); #if K_QUANTS_PER_ITERATION == 1 FLOAT_TYPE sum = FLOAT_TYPE(data_b[p.b_offset + y_idx + 0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 0] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0x03) << 4)) - 32) + FLOAT_TYPE(data_b[p.b_offset + y_idx + 16]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 1]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 16] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x03) << 4)) - 32) + FLOAT_TYPE(data_b[p.b_offset + y_idx + 32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 32] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0x0c) << 2)) - 32) + FLOAT_TYPE(data_b[p.b_offset + y_idx + 48]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 3]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 48] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x0c) << 2)) - 32) + FLOAT_TYPE(data_b[p.b_offset + y_idx + 64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 0] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0x30) >> 0)) - 32) + FLOAT_TYPE(data_b[p.b_offset + y_idx + 80]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 5]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 16] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x30) >> 0)) - 32) + FLOAT_TYPE(data_b[p.b_offset + y_idx + 96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 32] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0xc0) >> 2)) - 32) + FLOAT_TYPE(data_b[p.b_offset + y_idx +112]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 7]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 48] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0xc0) >> 2)) - 32); tmp[16 * ix + tid] += sum; #else FLOAT_TYPE sum = FLOAT_TYPE(0.0); [[unroll]] for (int l = 0; l < 4; ++l) { sum += FLOAT_TYPE(data_b[p.b_offset + y_idx + l+ 0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+ 0] & 0xF) | (((data_a[ib0 + i].qh[qh_offset + l] >> 0) & 3) << 4)) - 32) + FLOAT_TYPE(data_b[p.b_offset + y_idx + l+32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+32] & 0xF) | (((data_a[ib0 + i].qh[qh_offset + l] >> 2) & 3) << 4)) - 32) + FLOAT_TYPE(data_b[p.b_offset + y_idx + l+64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+ 0] >> 4) | (((data_a[ib0 + i].qh[qh_offset + l] >> 4) & 3) << 4)) - 32) + FLOAT_TYPE(data_b[p.b_offset + y_idx + l+96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+32] >> 4) | (((data_a[ib0 + i].qh[qh_offset + l] >> 6) & 3) << 4)) - 32); } tmp[16 * ix + tid] += sum; #endif } // sum up partial sums and write back result barrier(); [[unroll]] for (int s = 16; s > 0; s >>= 1) { if (tid < s) { tmp[tid] += tmp[tid + s]; } barrier(); } if (tid == 0) { dst[p.d_offset + row] = D_TYPE(tmp[0]); } } """ mul_mat_p021_src = """#version 450 #extension GL_EXT_control_flow_attributes : enable #extension GL_EXT_shader_16bit_storage : require #define BLOCK_SIZE 32 #define FLOAT_TYPE float layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 1) readonly buffer B {B_TYPE data_b[];}; layout (binding = 2) writeonly buffer D {D_TYPE dst[];}; layout (push_constant) uniform parameter { uint ncols_x; uint nrows_x; uint nchannels_x; uint nchannels_y; uint b_offset; uint d_offset; } p; shared FLOAT_TYPE tmp[BLOCK_SIZE]; void main() { const uint tid = gl_LocalInvocationID.x; const uint row_x = gl_GlobalInvocationID.y; const uint channel = gl_GlobalInvocationID.z; const uint channel_x = channel / (p.nchannels_y / p.nchannels_x); const uint nrows_y = p.ncols_x; const uint nrows_dst = p.nrows_x; const uint row_dst = row_x; tmp[tid] = FLOAT_TYPE(0.0f); for (uint col_x0 = 0; col_x0 < p.ncols_x; col_x0 += BLOCK_SIZE) { const uint col_x = col_x0 + tid; if (col_x >= p.ncols_x) { break; } // x is transposed and permuted const uint ix = row_x*p.nchannels_x*p.ncols_x + channel_x*p.ncols_x + col_x; const FLOAT_TYPE xi = FLOAT_TYPE(data_a[ix]); const uint row_y = col_x; // y is not transposed but permuted const uint iy = channel*nrows_y + row_y; tmp[tid] += xi * FLOAT_TYPE(data_b[iy]); } // dst is not transposed and not permuted const uint idst = channel*nrows_dst + row_dst; // sum up partial sums and write back result barrier(); [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) { if (tid < s) { tmp[tid] += tmp[tid + s]; } barrier(); } if (tid == 0) { dst[idst] = tmp[0]; } } """ mul_mat_nc_src = """#version 450 #extension GL_EXT_control_flow_attributes : enable #extension GL_EXT_shader_16bit_storage : require #define BLOCK_SIZE 32 #define FLOAT_TYPE float layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 1) readonly buffer B {B_TYPE data_b[];}; layout (binding = 2) writeonly buffer D {D_TYPE dst[];}; layout (push_constant) uniform parameter { uint ncols_x; uint nrows_x; uint row_stride_x; uint channel_stride_x; uint channel_x_divisor; uint b_offset; uint d_offset; } p; shared FLOAT_TYPE tmp[BLOCK_SIZE]; void main() { const uint tid = gl_LocalInvocationID.x; const uint row_x = gl_GlobalInvocationID.y; const uint channel = gl_GlobalInvocationID.z; const uint channel_x = channel / p.channel_x_divisor; const uint nrows_y = p.ncols_x; const uint nrows_dst = p.nrows_x; const uint row_dst = row_x; const uint idst = channel*nrows_dst + row_dst; tmp[tid] = 0.0f; for (uint col_x0 = 0; col_x0 < p.ncols_x; col_x0 += BLOCK_SIZE) { const uint col_x = col_x0 + tid; if (col_x >= p.ncols_x) { break; } const uint row_y = col_x; const uint ix = channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x; const uint iy = channel*nrows_y + row_y; const FLOAT_TYPE xi = FLOAT_TYPE(data_a[ix]); tmp[tid] += xi * FLOAT_TYPE(data_b[iy]); } // sum up partial sums and write back result barrier(); [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) { if (tid < s) { tmp[tid] += tmp[tid + s]; } barrier(); } if (tid == 0) { dst[idst] = tmp[0]; } } """ # F16 to F32 f32_to_f16_src = """#version 450 #extension GL_EXT_shader_16bit_storage : require layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer A {float data_a[];}; layout (binding = 1) writeonly buffer D {float16_t data_b[];}; layout (push_constant) uniform parameter { int M; int K; int stride_a; int stride_b; } p; void main() { const int row = int(gl_GlobalInvocationID.x % p.K); const int col = int(gl_GlobalInvocationID.x / p.K); if (row < p.K && col < p.M) { data_b[col * p.stride_b + row] = float16_t(data_a[col * p.stride_a + row]); } } """ generic_head = """ #version 450 #extension GL_EXT_shader_16bit_storage : require layout (push_constant) uniform parameter { uint KX; uint KY; float param1; float param2; } p; """ # MUL F32 mul_body = """layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; layout (binding = 1) readonly buffer Y {B_TYPE data_b[];}; layout (binding = 2) writeonly buffer D {D_TYPE data_d[];}; void main() { const uint idx = gl_GlobalInvocationID.x; if (idx >= p.KX) { return; } data_d[idx] = D_TYPE(FLOAT_TYPE(data_a[idx]) * FLOAT_TYPE(data_b[idx % p.KY])); } """ # ADD add_body = """ layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; layout (binding = 1) readonly buffer Y {B_TYPE data_b[];}; layout (binding = 2) writeonly buffer D {D_TYPE data_d[];}; void main() { const uint idx = gl_GlobalInvocationID.x; if (idx >= p.KX) { return; } data_d[idx] = D_TYPE(FLOAT_TYPE(data_a[idx]) + FLOAT_TYPE(data_b[idx % p.KY])); } """ # SCALE scale_body = """layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; void main() { const uint idx = gl_GlobalInvocationID.x; if (idx >= p.KX) { return; } data_d[idx] = D_TYPE(FLOAT_TYPE(data_a[idx]) * FLOAT_TYPE(p.param1)); } """ # SQR sqr_body = """layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; void main() { const uint idx = gl_GlobalInvocationID.x; if (idx >= p.KX) { return; } const FLOAT_TYPE val = FLOAT_TYPE(data_a[idx]); data_d[idx] = D_TYPE(val * val); } """ # CLAMP clamp_body = """layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; void main() { const uint idx = gl_GlobalInvocationID.x; if (idx >= p.KX) { return; } const FLOAT_TYPE val = FLOAT_TYPE(data_a[idx]); data_d[idx] = D_TYPE(val < p.param1 ? p.param1 : (val > p.param2 ? p.param2 : val)); } """ # CPY cpy_src = """#version 450 #extension GL_EXT_shader_16bit_storage : require layout (push_constant) uniform parameter { uint ne; uint ne00; uint ne01; uint nb00; uint nb01; uint nb02; uint ne10; uint ne11; uint nb10; uint nb11; uint nb12; uint d_offset; } p; layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; void main() { if (gl_GlobalInvocationID.x >= p.ne) { return; } const uint i02 = gl_GlobalInvocationID.x / (p.ne00*p.ne01); const uint i01 = (gl_GlobalInvocationID.x - i02*p.ne01*p.ne00) / p.ne00; const uint i00 = gl_GlobalInvocationID.x - i02*p.ne01*p.ne00 - i01*p.ne00; const uint a_idx = i00*p.nb00 + i01*p.nb01 + i02*p.nb02; const uint i12 = gl_GlobalInvocationID.x / (p.ne10*p.ne11); const uint i11 = (gl_GlobalInvocationID.x - i12*p.ne11*p.ne10) / p.ne10; const uint i10 = gl_GlobalInvocationID.x - i12*p.ne11*p.ne10 - i11*p.ne10; const uint d_idx = i10*p.nb10 + i11*p.nb11 + i12*p.nb12; """ cpy_end = """ data_d[p.d_offset + d_idx] = D_TYPE(data_a[a_idx]); } """ # Causes an optimization error otherwise cpy_f16_f16_end = """ data_d[p.d_offset + d_idx] = data_a[a_idx]; } """ # GET_ROWS get_rows_body = """ #extension GL_EXT_control_flow_attributes : enable #extension GL_EXT_shader_8bit_storage : require layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; layout (binding = 1) readonly buffer Y {int data_b[];}; layout (binding = 2) writeonly buffer D {D_TYPE dst[];}; void main() { const uint col = int(gl_GlobalInvocationID.x) * 2; const uint row = int(gl_GlobalInvocationID.y); if (col >= p.KY) { return; } const uint r = uint(data_b[row]); // copy data_a[r*p.KY + col] to dst[row*p.KX + col] const uint xi = r*p.KY + col; const uint di = row*p.KY + col; const uint ib = xi/QUANT_K; // block index const uint iqs = (xi%QUANT_K)/QUANT_R; // quant index const uint iybs = di - di%QUANT_K; // y block start index const uint y_offset = QUANT_R == 1 ? 1 : QUANT_K/2; DEQUANT_FUNC dst[iybs + iqs + 0] = D_TYPE(v.x); dst[iybs + iqs + y_offset] = D_TYPE(v.y); } """ # UNARY gelu_body = """ #extension GL_EXT_control_flow_attributes : enable layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; void main() { const float GELU_COEF_A = 0.044715f; const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f; const uint i = gl_GlobalInvocationID.x; if (i >= p.KX) { return; } const float xi = float(data_a[i]); const float val = SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi); data_d[i] = D_TYPE(0.5f*xi*(2.0f - 2.0f / (exp(2 * val) + 1))); } """ silu_body = """ #extension GL_EXT_control_flow_attributes : enable layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; void main() { const uint i = gl_GlobalInvocationID.x; if (i >= p.KX) { return; } const float xi = float(data_a[i]); data_d[i] = D_TYPE(xi / (1.0f + exp(-xi))); } """ relu_body = """ #extension GL_EXT_control_flow_attributes : enable layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; void main() { const uint i = gl_GlobalInvocationID.x; if (i >= p.KX) { return; } data_d[i] = max(float(data_a[i]), 0); } """ # DIAG_MASK_INF diag_mask_inf_head = """#version 450 #extension GL_EXT_shader_16bit_storage : require layout (push_constant) uniform parameter { uint ncols; uint rows_per_channel; uint n_past; } p; """ diag_mask_inf_body = """ #extension GL_EXT_control_flow_attributes : enable layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; void main() { const uint col = gl_GlobalInvocationID.y; const uint row = gl_GlobalInvocationID.x; if (col >= p.ncols) { return; } const uint i = row*p.ncols + col; data_d[i] = D_TYPE(data_a[i] - float(uint(col > p.n_past + row % p.rows_per_channel) * 0xFFFFFFFF)); } """ # NORMS norm_body = """ #extension GL_EXT_control_flow_attributes : enable #define BLOCK_SIZE 512 layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; shared vec2 sum[BLOCK_SIZE]; void main() { const uint row = gl_WorkGroupID.x; const uint tid = gl_LocalInvocationID.x; const float eps = 1e-5f; sum[tid] = vec2(0.0f, 0.0f); [[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) { const float xi = float(data_a[row*p.KX + col]); sum[tid].x += xi; sum[tid].y += xi * xi; } // sum up partial sums and write back result barrier(); [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) { if (tid < s) { sum[tid] += sum[tid + s]; } barrier(); } const float mean = sum[0].x / p.KX; const float var = sum[0].y / p.KX - mean * mean; const float inv_std = inversesqrt(var + 1e-5f); [[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) { data_d[row*p.KX + col] = D_TYPE((float(data_a[row*p.KX + col]) - mean) * inv_std); } } """ rms_norm_body = """ #extension GL_EXT_control_flow_attributes : enable #define BLOCK_SIZE 512 layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; shared FLOAT_TYPE sum[BLOCK_SIZE]; void main() { const uint row = gl_WorkGroupID.x; const uint tid = gl_LocalInvocationID.x; sum[tid] = FLOAT_TYPE(0.0f); // partial sum for thread in warp [[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) { const FLOAT_TYPE xi = FLOAT_TYPE(data_a[row*p.KX + col]); sum[tid] += xi * xi; } // sum up partial sums and write back result barrier(); [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) { if (tid < s) { sum[tid] += sum[tid + s]; } barrier(); } const FLOAT_TYPE mean = sum[0] / FLOAT_TYPE(p.KX); const FLOAT_TYPE scale = inversesqrt(mean + FLOAT_TYPE(p.param1)); [[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) { data_d[row*p.KX + col] = D_TYPE(scale * FLOAT_TYPE(data_a[row*p.KX + col])); } } """ # SOFT_MAX soft_max_body = """ #extension GL_EXT_control_flow_attributes : enable #define BLOCK_SIZE 512 layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; layout (binding = 1) readonly buffer Y {B_TYPE data_b[];}; layout (binding = 2) buffer D {D_TYPE data_d[];}; shared FLOAT_TYPE vals[BLOCK_SIZE]; void main() { const uint tid = gl_LocalInvocationID.x; const uint rowx = gl_WorkGroupID.x; const uint rowy = rowx % p.KY; // Find max vals[tid] = uintBitsToFloat(0xFF800000); [[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) { vals[tid] = max(vals[tid], FLOAT_TYPE(data_a[rowx * p.KX + col]) * p.param1 + (p.KY > 0 ? FLOAT_TYPE(data_b[rowy * p.KX + col]) : FLOAT_TYPE(0.0f))); } barrier(); [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) { if (tid < s) { vals[tid] = max(vals[tid], vals[tid + s]); } barrier(); } const FLOAT_TYPE max_val = vals[0]; barrier(); // Sum up values vals[tid] = FLOAT_TYPE(0.0f); [[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) { const uint i = rowx * p.KX + col; const FLOAT_TYPE val = exp(FLOAT_TYPE(data_a[i]) * p.param1 + (p.KY > 0 ? FLOAT_TYPE(data_b[rowy * p.KX + col]) : FLOAT_TYPE(0.0f)) - max_val); vals[tid] += val; data_d[i] = D_TYPE(val); } barrier(); [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) { if (tid < s) { vals[tid] += vals[tid + s]; } barrier(); } const D_TYPE divisor = D_TYPE(vals[0]); [[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) { data_d[rowx*p.KX + col] /= divisor; } } """ # ROPE rope_src = """ #version 450 #extension GL_EXT_shader_16bit_storage : require layout(local_size_x = 1, local_size_y = 256, local_size_z = 1) in; layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; layout (binding = 1) readonly buffer Y {int data_b[];}; layout (binding = 2) writeonly buffer D {D_TYPE data_d[];}; layout (push_constant) uniform parameter { uint ncols; float freq_scale; uint p_delta_rows; float freq_base; float ext_factor; float attn_factor; float corr_dims[4]; } p; float rope_yarn_ramp(const float low, const float high, const uint i0) { const float y = (i0 / 2 - low) / max(0.001f, high - low); return 1.0f - min(1.0f, max(0.0f, y)); } void rope_yarn(const float theta_extrap, const uint i0, out float cos_theta, out float sin_theta) { float mscale = p.attn_factor; // Get n-d rotational scaling corrected for extrapolation float theta_interp = p.freq_scale * theta_extrap; float theta = theta_interp; if (p.ext_factor != 0.0f) { float ramp_mix = rope_yarn_ramp(p.corr_dims[0], p.corr_dims[1], i0) * p.ext_factor; theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix; // Get n-d magnitude scaling corrected for interpolation mscale *= 1.0f + 0.1f * log(1.0f / p.freq_scale); } cos_theta = cos(theta) * mscale; sin_theta = sin(theta) * mscale; } void main() { const uint col = gl_GlobalInvocationID.y * 2; const uint row = gl_GlobalInvocationID.x; if (col >= p.ncols) { return; } const uint i = row*p.ncols + col; const uint i2 = row/p.p_delta_rows; const int pos = data_b[i2]; const float theta_base = pos * pow(p.freq_base, -float(col)/p.ncols); float cos_theta, sin_theta; rope_yarn(theta_base, col, cos_theta, sin_theta); const float x0 = float(data_a[i + 0]); const float x1 = float(data_a[i + 1]); data_d[i + 0] = D_TYPE(x0*cos_theta - x1*sin_theta); data_d[i + 1] = D_TYPE(x0*sin_theta + x1*cos_theta); } """ rope_neox_src = """ #version 450 #extension GL_EXT_shader_16bit_storage : require layout(local_size_x = 1, local_size_y = 256, local_size_z = 1) in; layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; layout (binding = 1) readonly buffer Y {int data_b[];}; layout (binding = 2) writeonly buffer D {D_TYPE data_d[];}; layout (push_constant) uniform parameter { uint ncols; uint ndims; float freq_scale; uint p_delta_rows; float freq_base; float ext_factor; float attn_factor; float corr_dims[4]; float theta_scale; float inv_ndims; } p; float rope_yarn_ramp(const float low, const float high, const uint i0) { const float y = (i0 / 2 - low) / max(0.001f, high - low); return 1.0f - min(1.0f, max(0.0f, y)); } void rope_yarn(const float theta_extrap, const uint i0, out float cos_theta, out float sin_theta) { float mscale = p.attn_factor; // Get n-d rotational scaling corrected for extrapolation float theta_interp = p.freq_scale * theta_extrap; float theta = theta_interp; if (p.ext_factor != 0.0f) { float ramp_mix = rope_yarn_ramp(p.corr_dims[0], p.corr_dims[1], i0) * p.ext_factor; theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix; // Get n-d magnitude scaling corrected for interpolation mscale *= 1.0f + 0.1f * log(1.0f / p.freq_scale); } cos_theta = cos(theta) * mscale; sin_theta = sin(theta) * mscale; } void main() { const uint col = gl_GlobalInvocationID.y * 2; const uint row = gl_GlobalInvocationID.x; if (col >= p.ncols) { return; } const uint ib = col / p.ndims; const uint ic = col % p.ndims; if (ib > 0) { const uint i = row*p.ncols + ib*p.ndims + ic; data_d[i + 0] = data_a[i + 0]; data_d[i + 1] = data_a[i + 1]; return; } const uint i = row*p.ncols + ib*p.ndims + ic/2; const uint i2 = row/p.p_delta_rows; const float cur_rot = p.inv_ndims * ic - ib; const int pos = data_b[i2]; const float theta_base = pos*p.freq_scale*pow(p.theta_scale, col/2.0f); float cos_theta, sin_theta; rope_yarn(theta_base, uint(cur_rot), cos_theta, sin_theta); const float x0 = float(data_a[i + 0]); const float x1 = float(data_a[i + p.ndims/2]); data_d[i + 0] = D_TYPE(x0*cos_theta - x1*sin_theta); data_d[i + p.ndims/2] = D_TYPE(x0*sin_theta + x1*cos_theta); } """ GLSLC = "glslc" VK_NUM_TYPES = 16 GGML_TYPE_F32 = 0 GGML_TYPE_F16 = 1 GGML_TYPE_Q4_0 = 2 GGML_TYPE_Q4_1 = 3 GGML_TYPE_Q5_0 = 6 GGML_TYPE_Q5_1 = 7 GGML_TYPE_Q8_0 = 8 GGML_TYPE_Q8_1 = 9 GGML_TYPE_Q2_K = 10 GGML_TYPE_Q3_K = 11 GGML_TYPE_Q4_K = 12 GGML_TYPE_Q5_K = 13 GGML_TYPE_Q6_K = 14 GGML_TYPE_Q8_K = 15 type_names = { GGML_TYPE_F32: "f32", GGML_TYPE_F16: "f16", GGML_TYPE_Q4_0: "q4_0", GGML_TYPE_Q4_1: "q4_1", GGML_TYPE_Q5_0: "q5_0", GGML_TYPE_Q5_1: "q5_1", GGML_TYPE_Q8_0: "q8_0", GGML_TYPE_Q8_1: "q8_1", GGML_TYPE_Q2_K: "q2_K", GGML_TYPE_Q3_K: "q3_K", GGML_TYPE_Q4_K: "q4_K", GGML_TYPE_Q5_K: "q5_K", GGML_TYPE_Q6_K: "q6_K", GGML_TYPE_Q8_K: "q8_K", } K_QUANTS_PER_ITERATION = 2 ASYNCIO_CONCURRENCY = 64 output_dir = gettempdir() lock = asyncio.Lock() shader_fnames = [] async def string_to_spv(name, code, defines, fp16=True): f = NamedTemporaryFile(mode="w", delete=False) f.write(code) f.flush() name = f"{name}{'_fp32' if not fp16 else ''}" fname = os.path.join(output_dir, f"{name}.comp") cmd = [GLSLC, "-fshader-stage=compute", "--target-env=vulkan1.2", "-O", f.name, "-o", fname] cmd.extend([f"-D{key}={value}" for key, value in defines.items()]) proc = await asyncio.create_subprocess_exec(*cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE) stdout, stderr = await proc.communicate() stdout = stdout.decode() error = stderr.decode() if proc.returncode: # Generate preprocessed code cmd = [GLSLC, "-E", f.name] cmd.extend([f"-D{key}={value}" for key, value in defines.items()]) proc = await asyncio.create_subprocess_exec(*cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE) stdout, stderr = await proc.communicate() print(" ".join(cmd)) if proc.returncode: raise RuntimeError(f"{name=} {f.name=} {stdout=} {stderr=}") preprocessed_code = stdout.decode() cmd.extend([f"-D{key}={value}" for key, value in defines.items()]) code_with_lines = "\n".join([f"{i + 1}: {line}" for i, line in enumerate(preprocessed_code.splitlines())]) print(f"ERROR compiling {name}\n\n{code_with_lines}\n\n{error}") f.close() os.remove(f.name) sys.exit(proc.returncode) f.close() os.remove(f.name) async with lock: shader_fnames.append((name, fname)) async def main(): print("ggml_vulkan: Generating and compiling shaders to SPIR-V") tasks = [] for fp16 in (False, True): # mulmat if fp16: shader_float_type = shader_f16 load_vec = "8" vec_type_f16 = "f16mat2x4" vec_type = "mat2x4" else: shader_float_type = shader_f32 load_vec = "4" vec_type_f16 = "f16vec4" vec_type = "vec4" stream = [] stream.extend((mulmat_head, shader_float_type, mulmat_body)) tasks.append(string_to_spv("matmul_f32_l", "".join(stream), {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv("matmul_f32_m", "".join(stream), {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv("matmul_f32_s", "".join(stream), {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv("matmul_f32_aligned_l", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv("matmul_f32_aligned_m", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv("matmul_f32_aligned_s", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv("matmul_f16_l", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float16_t", "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv("matmul_f16_m", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float16_t", "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv("matmul_f16_s", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float16_t", "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv("matmul_f16_aligned_l", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type_f16, "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv("matmul_f16_aligned_m", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type_f16, "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv("matmul_f16_aligned_s", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type_f16, "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv("matmul_f16_f32_l", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv("matmul_f16_f32_m", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv("matmul_f16_f32_s", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv("matmul_f16_f32_aligned_l", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv("matmul_f16_f32_aligned_m", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv("matmul_f16_f32_aligned_s", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16)) # Shaders where precision is needed, so no fp16 version # mul mat vec for i in range(0, VK_NUM_TYPES): stream.clear() stream.extend((mul_mat_vec_head, shader_int8_ext, shader_f32)) if i == GGML_TYPE_F16: stream.extend((shader_f16_defines, shader_f16_dequant_func, mul_mat_vec_body)) elif i == GGML_TYPE_Q4_0: stream.extend((shader_q4_0_defines, shader_q4_0_dequant_func, mul_mat_vec_body)) elif i == GGML_TYPE_Q4_1: stream.extend((shader_q4_1_defines, shader_q4_1_dequant_func, mul_mat_vec_body)) elif i == GGML_TYPE_Q5_0: stream.extend((shader_q5_0_defines, shader_q5_0_dequant_func, mul_mat_vec_body)) elif i == GGML_TYPE_Q5_1: stream.extend((shader_q5_1_defines, shader_q5_1_dequant_func, mul_mat_vec_body)) elif i == GGML_TYPE_Q8_0: stream.extend((shader_q8_0_defines, shader_q8_0_dequant_func, mul_mat_vec_body)) elif i == GGML_TYPE_Q2_K: stream.extend((shader_q2_K_defines, mul_mat_vec_q2_K_body)) elif i == GGML_TYPE_Q3_K: stream.extend((shader_q3_K_defines, mul_mat_vec_q3_K_body)) elif i == GGML_TYPE_Q4_K: stream.extend((shader_q4_K_defines, mul_mat_vec_q4_K_body)) elif i == GGML_TYPE_Q5_K: stream.extend((shader_q5_K_defines, mul_mat_vec_q5_K_body)) elif i == GGML_TYPE_Q6_K: stream.extend((shader_q6_K_defines, mul_mat_vec_q6_K_body)) else: continue tasks.append(string_to_spv(f"mul_mat_vec_{type_names[i]}_f32", "".join(stream), {"B_TYPE": "float", "D_TYPE": "float", "K_QUANTS_PER_ITERATION": K_QUANTS_PER_ITERATION})) # Dequant shaders for i in range(0, VK_NUM_TYPES): stream.clear() stream.extend((dequant_head, shader_int8_ext, shader_f32)) if i == GGML_TYPE_F16: stream.extend((shader_f16_defines, shader_f16_dequant_func, dequant_body)) elif i == GGML_TYPE_Q4_0: stream.extend((shader_q4_0_defines, shader_q4_0_dequant_func, dequant_body)) elif i == GGML_TYPE_Q4_1: stream.extend((shader_q4_1_defines, shader_q4_1_dequant_func, dequant_body)) elif i == GGML_TYPE_Q5_0: stream.extend((shader_q5_0_defines, shader_q5_0_dequant_func, dequant_body)) elif i == GGML_TYPE_Q5_1: stream.extend((shader_q5_1_defines, shader_q5_1_dequant_func, dequant_body)) elif i == GGML_TYPE_Q8_0: stream.extend((shader_q8_0_defines, shader_q8_0_dequant_func, dequant_body)) elif i == GGML_TYPE_Q2_K: stream.extend((shader_q2_K_defines, dequant_q2_K_body)) elif i == GGML_TYPE_Q3_K: stream.extend((shader_q3_K_defines, dequant_q3_K_body)) elif i == GGML_TYPE_Q4_K: stream.extend((shader_q4_K_defines, dequant_q4_K_body)) elif i == GGML_TYPE_Q5_K: stream.extend((shader_q5_K_defines, dequant_q5_K_body)) elif i == GGML_TYPE_Q6_K: stream.extend((shader_q6_K_defines, dequant_q6_K_body)) else: continue tasks.append(string_to_spv(f"dequant_{type_names[i]}", "".join(stream), {"D_TYPE": "float16_t"})) tasks.append(string_to_spv("f32_to_f16", f32_to_f16_src, {})) # get_rows for i in range(0, VK_NUM_TYPES): stream.clear() stream.extend((generic_head, shader_int8_ext, shader_f32)) if i == GGML_TYPE_F16: stream.extend((shader_f16_defines, shader_f16_dequant_func, get_rows_body)) elif i == GGML_TYPE_Q4_0: stream.extend((shader_q4_0_defines, shader_q4_0_dequant_func, get_rows_body)) elif i == GGML_TYPE_Q4_1: stream.extend((shader_q4_1_defines, shader_q4_1_dequant_func, get_rows_body)) elif i == GGML_TYPE_Q5_0: stream.extend((shader_q5_0_defines, shader_q5_0_dequant_func, get_rows_body)) elif i == GGML_TYPE_Q5_1: stream.extend((shader_q5_1_defines, shader_q5_1_dequant_func, get_rows_body)) elif i == GGML_TYPE_Q8_0: stream.extend((shader_q8_0_defines, shader_q8_0_dequant_func, get_rows_body)) else: continue tasks.append(string_to_spv(f"get_rows_{type_names[i]}", "".join(stream), {"B_TYPE": "float", "D_TYPE": "float16_t"})) tasks.append(string_to_spv(f"get_rows_{type_names[i]}_f32", "".join(stream), {"B_TYPE": "float", "D_TYPE": "float"})) tasks.append(string_to_spv("mul_mat_vec_p021_f16_f32", mul_mat_p021_src, {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"})) tasks.append(string_to_spv("mul_mat_vec_nc_f16_f32", mul_mat_nc_src, {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"})) # Norms tasks.append(string_to_spv("norm_f32", f"{generic_head}\n{shader_f32}\n{norm_body}", {"A_TYPE": "float", "D_TYPE": "float"})) tasks.append(string_to_spv("rms_norm_f32", f"{generic_head}\n{shader_f32}\n{rms_norm_body}", {"A_TYPE": "float", "D_TYPE": "float"})) tasks.append(string_to_spv("cpy_f32_f32", f"{cpy_src}\n{cpy_end}", {"A_TYPE": "float", "D_TYPE": "float"})) tasks.append(string_to_spv("cpy_f32_f16", f"{cpy_src}\n{cpy_end}", {"A_TYPE": "float", "D_TYPE": "float16_t"})) tasks.append(string_to_spv("cpy_f16_f16", f"{cpy_src}\n{cpy_f16_f16_end}", {"A_TYPE": "float16_t", "D_TYPE": "float16_t"})) tasks.append(string_to_spv("add_f32", f"{generic_head}\n{shader_f32}\n{add_body}", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"})) tasks.append(string_to_spv("split_k_reduce", mulmat_split_k_reduce_src, {})) tasks.append(string_to_spv("mul_f32", f"{generic_head}\n{shader_f32}\n{mul_body}", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"})) tasks.append(string_to_spv("scale_f32", f"{generic_head}\n{shader_f32}\n{scale_body}", {"A_TYPE": "float", "D_TYPE": "float"})) tasks.append(string_to_spv("sqr_f32", f"{generic_head}\n{shader_f32}\n{sqr_body}", {"A_TYPE": "float", "D_TYPE": "float"})) tasks.append(string_to_spv("clamp_f32", f"{generic_head}\n{shader_f32}\n{clamp_body}", {"A_TYPE": "float", "D_TYPE": "float"})) tasks.append(string_to_spv("gelu_f32", f"{generic_head}\n{shader_f32}\n{gelu_body}", {"A_TYPE": "float", "D_TYPE": "float"})) tasks.append(string_to_spv("silu_f32", f"{generic_head}\n{shader_f32}\n{silu_body}", {"A_TYPE": "float", "D_TYPE": "float"})) tasks.append(string_to_spv("relu_f32", f"{generic_head}\n{shader_f32}\n{relu_body}", {"A_TYPE": "float", "D_TYPE": "float"})) tasks.append(string_to_spv("diag_mask_inf_f32", f"{diag_mask_inf_head}\n{shader_f32}\n{diag_mask_inf_body}", {"A_TYPE": "float", "D_TYPE": "float"})) tasks.append(string_to_spv("soft_max_f32", f"{generic_head}\n{shader_f32}\n{soft_max_body}", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"})) tasks.append(string_to_spv("rope_f32", rope_src, {"A_TYPE": "float", "D_TYPE": "float"})) tasks.append(string_to_spv("rope_f16", rope_src, {"A_TYPE": "float16_t", "D_TYPE": "float16_t"})) tasks.append(string_to_spv("rope_neox_f32", rope_neox_src, {"A_TYPE": "float", "D_TYPE": "float"})) tasks.append(string_to_spv("rope_neox_f16", rope_neox_src, {"A_TYPE": "float16_t", "D_TYPE": "float16_t"})) # Helper to decorate tasks with semaphore acquisition. async def withSemaphore(sem, task): async with sem: return await task # Run tasks concurrently guarded by a concurrency limit. sem = asyncio.Semaphore(ASYNCIO_CONCURRENCY) await asyncio.gather(*(withSemaphore(sem, task) for task in tasks)) with open("ggml-vulkan-shaders.hpp", "w") as f: f.write("#include <cstdint>\n\n") for name, path in sorted(shader_fnames): with open(path, "rb") as spv: counter = 0 newline_counter = 0 f.write(f"unsigned char {name}_data[] = {{\n") for val in spv.read(): f.write(f"0x{val:02x},") newline_counter += 1 counter += 1 if newline_counter >= 12: newline_counter = 0 f.write("\n") f.write("\n};\n") f.write(f"const uint64_t {name}_len = {counter};\n\n") os.remove(path) if __name__ == "__main__": parser = argparse.ArgumentParser(description="GGML Vulkan Shader Generator") parser.add_argument("--glslc", help="Path to glslc") args = parser.parse_args() if args.glslc: GLSLC = args.glslc asyncio.run(main())