#include "ggml.h" #include "ggml-backend.h" #include "ggml-impl.h" #include "gguf.h" #include #include #include #include #include #include #include #include #include #include #include template struct type_to_gguf_type; template <> struct type_to_gguf_type { static constexpr enum gguf_type value = GGUF_TYPE_UINT8; }; template <> struct type_to_gguf_type { static constexpr enum gguf_type value = GGUF_TYPE_INT8; }; template <> struct type_to_gguf_type { static constexpr enum gguf_type value = GGUF_TYPE_UINT16; }; template <> struct type_to_gguf_type { static constexpr enum gguf_type value = GGUF_TYPE_INT16; }; template <> struct type_to_gguf_type { static constexpr enum gguf_type value = GGUF_TYPE_UINT32; }; template <> struct type_to_gguf_type { static constexpr enum gguf_type value = GGUF_TYPE_INT32; }; template <> struct type_to_gguf_type { static constexpr enum gguf_type value = GGUF_TYPE_FLOAT32; }; template <> struct type_to_gguf_type { static constexpr enum gguf_type value = GGUF_TYPE_BOOL; }; template <> struct type_to_gguf_type { static constexpr enum gguf_type value = GGUF_TYPE_STRING; }; template <> struct type_to_gguf_type { static constexpr enum gguf_type value = GGUF_TYPE_UINT64; }; template <> struct type_to_gguf_type { static constexpr enum gguf_type value = GGUF_TYPE_INT64; }; template <> struct type_to_gguf_type { static constexpr enum gguf_type value = GGUF_TYPE_FLOAT64; }; static const std::map GGUF_TYPE_SIZE = { {GGUF_TYPE_UINT8, sizeof(uint8_t)}, {GGUF_TYPE_INT8, sizeof(int8_t)}, {GGUF_TYPE_UINT16, sizeof(uint16_t)}, {GGUF_TYPE_INT16, sizeof(int16_t)}, {GGUF_TYPE_UINT32, sizeof(uint32_t)}, {GGUF_TYPE_INT32, sizeof(int32_t)}, {GGUF_TYPE_FLOAT32, sizeof(float)}, {GGUF_TYPE_BOOL, sizeof(int8_t)}, {GGUF_TYPE_STRING, 0}, // undefined {GGUF_TYPE_ARRAY, 0}, // undefined {GGUF_TYPE_UINT64, sizeof(uint64_t)}, {GGUF_TYPE_INT64, sizeof(int64_t)}, {GGUF_TYPE_FLOAT64, sizeof(double)}, }; static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13"); static const std::map GGUF_TYPE_NAME = { {GGUF_TYPE_UINT8, "u8"}, {GGUF_TYPE_INT8, "i8"}, {GGUF_TYPE_UINT16, "u16"}, {GGUF_TYPE_INT16, "i16"}, {GGUF_TYPE_UINT32, "u32"}, {GGUF_TYPE_INT32, "i32"}, {GGUF_TYPE_FLOAT32, "f32"}, {GGUF_TYPE_BOOL, "bool"}, {GGUF_TYPE_STRING, "str"}, {GGUF_TYPE_ARRAY, "arr"}, {GGUF_TYPE_UINT64, "u64"}, {GGUF_TYPE_INT64, "i64"}, {GGUF_TYPE_FLOAT64, "f64"}, }; static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13"); size_t gguf_type_size(enum gguf_type type) { auto it = GGUF_TYPE_SIZE.find(type); return it == GGUF_TYPE_SIZE.end() ? 0 : it->second; } struct gguf_kv { std::string key; bool is_array; enum gguf_type type; std::vector data; std::vector data_string; template gguf_kv(const std::string & key, const T value) : key(key), is_array(false), type(type_to_gguf_type::value) { GGML_ASSERT(!key.empty()); data.resize(sizeof(T)); memcpy(data.data(), &value, sizeof(T)); } template gguf_kv(const std::string & key, const std::vector & value) : key(key), is_array(true), type(type_to_gguf_type::value) { GGML_ASSERT(!key.empty()); data.resize(value.size()*sizeof(T)); for (size_t i = 0; i < value.size(); ++i) { const T tmp = value[i]; memcpy(data.data() + i*sizeof(T), &tmp, sizeof(T)); } } gguf_kv(const std::string & key, const std::string & value) : key(key), is_array(false), type(GGUF_TYPE_STRING) { GGML_ASSERT(!key.empty()); data_string.push_back(value); } gguf_kv(const std::string & key, const std::vector & value) : key(key), is_array(true), type(GGUF_TYPE_STRING) { GGML_ASSERT(!key.empty()); data_string = value; } const std::string & get_key() const { return key; } const enum gguf_type & get_type() const { return type; } size_t get_ne() const { if (type == GGUF_TYPE_STRING) { const size_t ne = data_string.size(); GGML_ASSERT(is_array || ne == 1); return ne; } const size_t type_size = gguf_type_size(type); GGML_ASSERT(data.size() % type_size == 0); const size_t ne = data.size() / type_size; GGML_ASSERT(is_array || ne == 1); return ne; } template const T & get_val(const size_t i = 0) const { GGML_ASSERT(type_to_gguf_type::value == type); if constexpr (std::is_same::value) { GGML_ASSERT(data_string.size() >= i+1); return data_string[i]; } const size_t type_size = gguf_type_size(type); GGML_ASSERT(data.size() % type_size == 0); GGML_ASSERT(data.size() >= (i+1)*type_size); return reinterpret_cast(data.data())[i]; } void cast(const enum gguf_type new_type) { const size_t new_type_size = gguf_type_size(new_type); GGML_ASSERT(data.size() % new_type_size == 0); type = new_type; } }; struct gguf_tensor_info { struct ggml_tensor t; // for holding the equivalent info uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT` }; struct gguf_context { uint32_t version = GGUF_VERSION; std::vector kv; std::vector info; size_t alignment = GGUF_DEFAULT_ALIGNMENT; size_t offset = 0; // offset of `data` from beginning of file size_t size = 0; // size of `data` in bytes void * data = nullptr; }; struct gguf_reader { FILE * file; gguf_reader(FILE * file) : file(file) {} template bool read(T & dst) const { return fread(&dst, 1, sizeof(dst), file) == sizeof(dst); } template bool read(std::vector & dst, const size_t n) const { dst.resize(n); for (size_t i = 0; i < dst.size(); ++i) { if constexpr (std::is_same::value) { bool tmp; if (!read(tmp)) { return false; } dst[i] = tmp; } else { if (!read(dst[i])) { return false; } } } return true; } bool read(bool & dst) const { int8_t tmp = -1; if (!read(tmp)) { return false; } dst = tmp != 0; return true; } bool read(enum ggml_type & dst) const { int32_t tmp = -1; if (!read(tmp)) { return false; } dst = ggml_type(tmp); return true; } bool read(enum gguf_type & dst) const { int32_t tmp = -1; if (!read(tmp)) { return false; } dst = gguf_type(tmp); return true; } bool read(std::string & dst) const { uint64_t size = -1; if (!read(size)) { return false; } dst.resize(size); return fread(dst.data(), 1, dst.length(), file) == dst.length(); } bool read(void * dst, const size_t size) const { return fread(dst, 1, size, file) == size; } }; struct gguf_context * gguf_init_empty(void) { return new gguf_context; } template bool gguf_read_emplace_helper(const struct gguf_reader & gr, std::vector & kv, const std::string & key, const bool is_array, const size_t n) { if (is_array) { std::vector value; try { if (!gr.read(value, n)) { return false; } } catch (std::length_error &) { fprintf(stderr, "%s: encountered length_error while reading value for key '%s'\n", __func__, key.c_str()); return false; } catch (std::bad_alloc &) { fprintf(stderr, "%s: encountered bad_alloc error while reading value for key '%s'\n", __func__, key.c_str()); return false; } kv.emplace_back(key, value); } else { T value; if (!gr.read(value)) { return false; } kv.emplace_back(key, value); } return true; } struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params) { const struct gguf_reader gr(file); struct gguf_context * ctx = new gguf_context; bool ok = true; // file magic { std::vector magic; ok = ok && gr.read(magic, 4); if (!ok) { fprintf(stderr, "%s: failed to read magic\n", __func__); gguf_free(ctx); return nullptr; } for (uint32_t i = 0; i < magic.size(); i++) { if (magic[i] != GGUF_MAGIC[i]) { fprintf(stderr, "%s: invalid magic characters: '%c%c%c%c', expected 'GGUF'\n", __func__, magic[0], magic[1], magic[2], magic[3]); gguf_free(ctx); return nullptr; } } } // header int64_t n_kv = 0; int64_t n_tensors = 0; if (ok && gr.read(ctx->version)) { if (ctx->version == 1) { fprintf(stderr, "%s: GGUFv1 is no longer supported, please use a more up-to-date version\n", __func__); ok = false; } if (ctx->version > GGUF_VERSION) { fprintf(stderr, "%s: this GGUF file is version %" PRIu32 " but this software only supports up to version %d\n", __func__, ctx->version, GGUF_VERSION); ok = false; } } else { ok = false; } if (ok && gr.read(n_tensors)) { static_assert(sizeof(size_t) <= 8 && sizeof(gguf_tensor_info) >= 2, "int64_t insufficient for indexing"); if (n_tensors < 0 || n_tensors > int64_t(SIZE_MAX/sizeof(gguf_tensor_info))) { fprintf(stderr, "%s: number of tensors is %" PRIi64 " but must be in [0, %zu]\n", __func__, n_tensors, SIZE_MAX/sizeof(gguf_tensor_info)); ok = false; } } else { ok = false; } if (ok && gr.read(n_kv)) { static_assert(sizeof(size_t) <= 8 && sizeof(gguf_tensor_info) >= 2, "int64_t insufficient for indexing"); if (n_kv < 0 || n_kv > int64_t(SIZE_MAX/sizeof(gguf_kv))) { fprintf(stderr, "%s: number of key value pairs is %" PRIi64 " but must be in [0, %zu]\n", __func__, n_kv, SIZE_MAX/sizeof(gguf_kv)); ok = false; } } else { ok = false; } if (!ok) { fprintf(stderr, "%s: failed to read header\n", __func__); gguf_free(ctx); return nullptr; } // KV pairs { for (int64_t i = 0; ok && i < n_kv; ++i) { std::string key; gguf_type type = gguf_type(-1); bool is_array = false; uint64_t n = 1; try { ok = ok && gr.read(key); } catch (std::length_error &) { fprintf(stderr, "%s: encountered length_error while reading key %" PRIi64 "\n", __func__, i); ok = false; } catch (std::bad_alloc &) { fprintf(stderr, "%s: encountered bad_alloc error while reading key %" PRIi64 "\n", __func__, i); ok = false; } for (size_t j = 0; ok && j < ctx->kv.size(); ++j) { if (key == ctx->kv[j].key) { fprintf(stderr, "%s: duplicate key '%s' for tensors %zu and %" PRIi64 " \n", __func__, key.c_str(), j, i); ok = false; } } if (!ok) { break; } ok = ok && gr.read(type); if (type == GGUF_TYPE_ARRAY) { is_array = true; ok = ok && gr.read(type); ok = ok && gr.read(n); } if (!ok) { break; } switch (type) { case GGUF_TYPE_UINT8: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; case GGUF_TYPE_INT8: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; case GGUF_TYPE_UINT16: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; case GGUF_TYPE_INT16: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; case GGUF_TYPE_UINT32: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; case GGUF_TYPE_INT32: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; case GGUF_TYPE_FLOAT32: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; case GGUF_TYPE_BOOL: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; case GGUF_TYPE_STRING: ok = ok && gguf_read_emplace_helper(gr, ctx->kv, key, is_array, n); break; case GGUF_TYPE_UINT64: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; case GGUF_TYPE_INT64: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; case GGUF_TYPE_FLOAT64: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; case GGUF_TYPE_ARRAY: default: { fprintf(stderr, "%s: key '%s' has invalid GGUF type %d\n", __func__, key.c_str(), type); ok = false; } break; } } if (!ok) { fprintf(stderr, "%s: failed to read key-value pairs\n", __func__); gguf_free(ctx); return nullptr; } GGML_ASSERT(int64_t(ctx->kv.size()) == n_kv); const int alignment_idx = gguf_find_key(ctx, GGUF_KEY_GENERAL_ALIGNMENT); ctx->alignment = alignment_idx == -1 ? GGUF_DEFAULT_ALIGNMENT : gguf_get_val_u32(ctx, alignment_idx); if (ctx->alignment == 0 || (ctx->alignment & (ctx->alignment - 1)) != 0) { fprintf(stderr, "%s: alignment %zu is not a power of 2\n", __func__, ctx->alignment); gguf_free(ctx); return nullptr; } } // read the tensor info for (int64_t i = 0; ok && i < n_tensors; ++i) { struct gguf_tensor_info info; // tensor name { std::string name; try { ok = ok && gr.read(name); } catch (std::length_error &) { fprintf(stderr, "%s: encountered length_error while reading tensor name %" PRIi64 "\n", __func__, i); ok = false; } catch (std::bad_alloc &) { fprintf(stderr, "%s: encountered bad_alloc error while reading tensor name %" PRIi64 "\n", __func__, i); ok = false; } if (name.length() >= GGML_MAX_NAME) { fprintf(stderr, "%s: tensor name %" PRIi64 " is too long: %zu >= %d\n", __func__, i, name.length(), GGML_MAX_NAME); ok = false; break; } ggml_set_name(&info.t, name.c_str()); // make sure there are no duplicate tensor names for (int64_t j = 0; ok && j < i; ++j) { if (strcmp(info.t.name, ctx->info[j].t.name) == 0) { fprintf(stderr, "%s: duplicate tensor name '%s' for tensors %" PRIi64 " and %" PRIi64 "\n", __func__, info.t.name, j, i); ok = false; break; } } } if (!ok) { break; } // tensor shape { uint32_t n_dims = -1; ok = ok && gr.read(n_dims); if (n_dims > GGML_MAX_DIMS) { fprintf(stderr, "%s: tensor '%s' has invalid number of dimensions: %" PRIu32 " > %" PRIu32 "\n", __func__, info.t.name, n_dims, GGML_MAX_DIMS); ok = false; break; } for (uint32_t j = 0; ok && j < GGML_MAX_DIMS; ++j) { info.t.ne[j] = 1; if (j < n_dims) { ok = ok && gr.read(info.t.ne[j]); } // check that all ne are non-negative if (info.t.ne[j] < 0) { fprintf(stderr, "%s: tensor '%s' dimension %" PRIu32 " has invalid number of elements: %" PRIi64 " < 0\n", __func__, info.t.name, j, info.t.ne[j]); ok = false; break; } } // check that the total number of elements is representable if (ok && ((INT64_MAX/info.t.ne[1] <= info.t.ne[0]) || (INT64_MAX/info.t.ne[2] <= info.t.ne[0]*info.t.ne[1]) || (INT64_MAX/info.t.ne[3] <= info.t.ne[0]*info.t.ne[1]*info.t.ne[2]))) { fprintf(stderr, "%s: total number of elements in tensor '%s' with shape " "(%" PRIi64 ", %" PRIi64 ", %" PRIi64 ", %" PRIi64 ") is >= %" PRIi64 "\n", __func__, info.t.name, info.t.ne[0], info.t.ne[1], info.t.ne[2], info.t.ne[3], INT64_MAX); ok = false; break; } } if (!ok) { break; } // tensor type { ok = ok && gr.read(info.t.type); // check that tensor type is within defined range if (info.t.type < 0 || info.t.type >= GGML_TYPE_COUNT) { fprintf(stderr, "%s: tensor '%s' has invalid ggml type %d (%s)\n", __func__, info.t.name, info.t.type, ggml_type_name(info.t.type)); ok = false; break; } const size_t type_size = ggml_type_size(info.t.type); const int64_t blck_size = ggml_blck_size(info.t.type); // check that row size is divisible by block size if (blck_size == 0 || info.t.ne[0] % blck_size != 0) { fprintf(stderr, "%s: tensor '%s' of type %d (%s) has %" PRId64 " elements per row, " "not a multiple of block size (%" PRId64 ")\n", __func__, info.t.name, (int) info.t.type, ggml_type_name(info.t.type), info.t.ne[0], blck_size); ok = false; break; } // calculate byte offsets given the tensor shape and type info.t.nb[0] = type_size; info.t.nb[1] = info.t.nb[0]*(info.t.ne[0]/blck_size); for (int j = 2; j < GGML_MAX_DIMS; ++j) { info.t.nb[j] = info.t.nb[j - 1]*info.t.ne[j - 1]; } } if (!ok) { break; } // tensor data offset within buffer ok = ok && gr.read(info.offset); ctx->info.push_back(info); } if (!ok) { fprintf(stderr, "%s: failed to read tensor info\n", __func__); gguf_free(ctx); return nullptr; } GGML_ASSERT(int64_t(ctx->info.size()) == n_tensors); // we require the data section to be aligned, so take into account any padding if (fseek(file, GGML_PAD(ftell(file), ctx->alignment), SEEK_SET) != 0) { fprintf(stderr, "%s: failed to seek to beginning of data section\n", __func__); gguf_free(ctx); return nullptr; } // store the current file offset - this is where the data section starts ctx->offset = ftell(file); // compute the total size of the data section, taking into account the alignment { ctx->size = 0; for (size_t i = 0; i < ctx->info.size(); ++i) { const gguf_tensor_info & ti = ctx->info[i]; if (ti.offset != ctx->size) { fprintf(stderr, "%s: tensor '%s' has offset %" PRIu64 ", expected %zu\n", __func__, ti.t.name, ti.offset, ctx->size); fprintf(stderr, "%s: failed to read tensor data\n", __func__); gguf_free(ctx); return nullptr; } ctx->size += GGML_PAD(ggml_nbytes(&ti.t), ctx->alignment); } } // load the tensor data only if requested if (params.ctx != nullptr) { // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of // the ggml_tensor structs to the appropriate locations in the binary blob // compute the exact size needed for the new ggml_context const size_t mem_size = params.no_alloc ? (n_tensors )*ggml_tensor_overhead() : (n_tensors + 1)*ggml_tensor_overhead() + ctx->size; struct ggml_init_params pdata = { /*mem_size =*/ mem_size, /*mem_buffer =*/ nullptr, /*no_alloc =*/ params.no_alloc, }; *params.ctx = ggml_init(pdata); if (*params.ctx == nullptr) { fprintf(stderr, "%s: failed to initialize ggml context for storing tensors\n", __func__); gguf_free(ctx); return nullptr; } struct ggml_context * ctx_data = *params.ctx; struct ggml_tensor * data = nullptr; if (!params.no_alloc) { data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size); ok = ok && data != nullptr; // read the binary blob with the tensor data ok = ok && gr.read(data->data, ctx->size); if (!ok) { fprintf(stderr, "%s: failed to read tensor data binary blob\n", __func__); ggml_free(ctx_data); *params.ctx = nullptr; gguf_free(ctx); return nullptr; } ctx->data = data->data; } ggml_set_no_alloc(ctx_data, true); // create the tensors for (size_t i = 0; i < ctx->info.size(); ++i) { const struct gguf_tensor_info & info = ctx->info[i]; struct ggml_tensor * cur = ggml_new_tensor(ctx_data, info.t.type, GGML_MAX_DIMS, info.t.ne); ok = ok && cur != nullptr; if (!ok) { break; } ggml_set_name(cur, info.t.name); // point the data member to the appropriate location in the binary blob using the tensor info if (!params.no_alloc) { cur->data = (char *) data->data + info.offset; } } if (!ok) { fprintf(stderr, "%s: failed to create tensors\n", __func__); ggml_free(ctx_data); *params.ctx = nullptr; gguf_free(ctx); return nullptr; } ggml_set_no_alloc(ctx_data, params.no_alloc); } return ctx; } struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) { FILE * file = ggml_fopen(fname, "rb"); if (!file) { fprintf(stderr, "%s: failed to open GGUF file '%s'\n", __func__, fname); return nullptr; } struct gguf_context * result = gguf_init_from_file_impl(file, params); fclose(file); return result; } void gguf_free(struct gguf_context * ctx) { if (ctx == nullptr) { return; } delete ctx; } const char * gguf_type_name(enum gguf_type type) { auto it = GGUF_TYPE_NAME.find(type); return it == GGUF_TYPE_NAME.end() ? nullptr : it->second; } uint32_t gguf_get_version(const struct gguf_context * ctx) { return ctx->version; } size_t gguf_get_alignment(const struct gguf_context * ctx) { return ctx->alignment; } size_t gguf_get_data_offset(const struct gguf_context * ctx) { return ctx->offset; } int64_t gguf_get_n_kv(const struct gguf_context * ctx) { return ctx->kv.size(); } int64_t gguf_find_key(const struct gguf_context * ctx, const char * key) { // return -1 if key not found int64_t keyfound = -1; const int64_t n_kv = gguf_get_n_kv(ctx); for (int64_t i = 0; i < n_kv; ++i) { if (strcmp(key, gguf_get_key(ctx, i)) == 0) { keyfound = i; break; } } return keyfound; } const char * gguf_get_key(const struct gguf_context * ctx, int64_t key_id) { GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); return ctx->kv[key_id].get_key().c_str(); } enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int64_t key_id) { GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); return ctx->kv[key_id].is_array ? GGUF_TYPE_ARRAY : ctx->kv[key_id].get_type(); } enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id) { GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); GGML_ASSERT(ctx->kv[key_id].is_array); return ctx->kv[key_id].get_type(); } const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id) { GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING); return ctx->kv[key_id].data.data(); } const char * gguf_get_arr_str(const struct gguf_context * ctx, int64_t key_id, size_t i) { GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); GGML_ASSERT(ctx->kv[key_id].get_type() == GGUF_TYPE_STRING); return ctx->kv[key_id].data_string[i].c_str(); } size_t gguf_get_arr_n(const struct gguf_context * ctx, int64_t key_id) { GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); if (ctx->kv[key_id].type == GGUF_TYPE_STRING) { return ctx->kv[key_id].data_string.size(); } const size_t type_size = gguf_type_size(ctx->kv[key_id].type); GGML_ASSERT(ctx->kv[key_id].data.size() % type_size == 0); return ctx->kv[key_id].data.size() / type_size; } uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int64_t key_id) { GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); return ctx->kv[key_id].get_val(); } int8_t gguf_get_val_i8(const struct gguf_context * ctx, int64_t key_id) { GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); return ctx->kv[key_id].get_val(); } uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int64_t key_id) { GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); return ctx->kv[key_id].get_val(); } int16_t gguf_get_val_i16(const struct gguf_context * ctx, int64_t key_id) { GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); return ctx->kv[key_id].get_val(); } uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int64_t key_id) { GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); return ctx->kv[key_id].get_val(); } int32_t gguf_get_val_i32(const struct gguf_context * ctx, int64_t key_id) { GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); return ctx->kv[key_id].get_val(); } float gguf_get_val_f32(const struct gguf_context * ctx, int64_t key_id) { GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); return ctx->kv[key_id].get_val(); } uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int64_t key_id) { GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); return ctx->kv[key_id].get_val(); } int64_t gguf_get_val_i64(const struct gguf_context * ctx, int64_t key_id) { GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); return ctx->kv[key_id].get_val(); } double gguf_get_val_f64(const struct gguf_context * ctx, int64_t key_id) { GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); return ctx->kv[key_id].get_val(); } bool gguf_get_val_bool(const struct gguf_context * ctx, int64_t key_id) { GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); return ctx->kv[key_id].get_val(); } const char * gguf_get_val_str(const struct gguf_context * ctx, int64_t key_id) { GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); return ctx->kv[key_id].get_val().c_str(); } const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id) { GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING); return ctx->kv[key_id].data.data(); } int64_t gguf_get_n_tensors(const struct gguf_context * ctx) { return ctx->info.size(); } int64_t gguf_find_tensor(const struct gguf_context * ctx, const char * name) { // return -1 if tensor not found int64_t tensor_id = -1; const int64_t n_tensors = gguf_get_n_tensors(ctx); for (int64_t i = 0; i < n_tensors; ++i) { if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) { tensor_id = i; break; } } return tensor_id; } size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int64_t tensor_id) { GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); return ctx->info[tensor_id].offset; } const char * gguf_get_tensor_name(const struct gguf_context * ctx, int64_t tensor_id) { GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); return ctx->info[tensor_id].t.name; } enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int64_t tensor_id) { GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); return ctx->info[tensor_id].t.type; } size_t gguf_get_tensor_size(const struct gguf_context * ctx, int64_t tensor_id) { GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); return ggml_nbytes(&ctx->info[tensor_id].t); } int64_t gguf_remove_key(struct gguf_context * ctx, const char * key) { const int64_t key_id = gguf_find_key(ctx, key); if (key_id >= 0) { ctx->kv.erase(ctx->kv.begin() + key_id); } return key_id; } template static void gguf_check_reserved_keys(const std::string & key, const T val) { if (key == GGUF_KEY_GENERAL_ALIGNMENT) { if constexpr (std::is_same::value) { GGML_ASSERT(val > 0 && (val & (val - 1)) == 0 && GGUF_KEY_GENERAL_ALIGNMENT " must be power of 2"); } else { GGML_ABORT(GGUF_KEY_GENERAL_ALIGNMENT " must be type u32"); } } } void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) { gguf_check_reserved_keys(key, val); gguf_remove_key(ctx, key); ctx->kv.emplace_back(key, val); } void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) { gguf_check_reserved_keys(key, val); gguf_remove_key(ctx, key); ctx->kv.emplace_back(key, val); } void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) { gguf_check_reserved_keys(key, val); gguf_remove_key(ctx, key); ctx->kv.emplace_back(key, val); } void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) { gguf_check_reserved_keys(key, val); gguf_remove_key(ctx, key); ctx->kv.emplace_back(key, val); } void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) { gguf_check_reserved_keys(key, val); gguf_remove_key(ctx, key); ctx->kv.emplace_back(key, val); } void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) { gguf_check_reserved_keys(key, val); gguf_remove_key(ctx, key); ctx->kv.emplace_back(key, val); } void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) { gguf_check_reserved_keys(key, val); gguf_remove_key(ctx, key); ctx->kv.emplace_back(key, val); } void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) { gguf_check_reserved_keys(key, val); gguf_remove_key(ctx, key); ctx->kv.emplace_back(key, val); } void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) { gguf_check_reserved_keys(key, val); gguf_remove_key(ctx, key); ctx->kv.emplace_back(key, val); } void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) { gguf_check_reserved_keys(key, val); gguf_remove_key(ctx, key); ctx->kv.emplace_back(key, val); } void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) { gguf_check_reserved_keys(key, val); gguf_remove_key(ctx, key); ctx->kv.emplace_back(key, val); } void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) { gguf_check_reserved_keys(key, val); gguf_remove_key(ctx, key); ctx->kv.emplace_back(key, std::string(val)); } void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, size_t n) { gguf_check_reserved_keys(key, data); gguf_remove_key(ctx, key); const size_t nbytes = n*gguf_type_size(type); std::vector tmp(nbytes); if (!tmp.empty()) { memcpy(tmp.data(), data, nbytes); } ctx->kv.emplace_back(key, tmp); ctx->kv.back().cast(type); } void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, size_t n) { gguf_check_reserved_keys(key, data); gguf_remove_key(ctx, key); std::vector tmp(n); for (size_t i = 0; i < n; ++i) { tmp[i] = data[i]; } ctx->kv.emplace_back(key, tmp); } // set or add KV pairs from another context void gguf_set_kv(struct gguf_context * ctx, const struct gguf_context * src) { const int64_t n_kv = gguf_get_n_kv(src); for (int64_t i = 0; i < n_kv; ++i) { const struct gguf_kv & kv = src->kv[i]; if (!kv.is_array) { switch (kv.get_type()) { case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, kv.get_key().c_str(), kv.get_val()); break; case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, kv.get_key().c_str(), kv.get_val()); break; case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, kv.get_key().c_str(), kv.get_val()); break; case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, kv.get_key().c_str(), kv.get_val()); break; case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, kv.get_key().c_str(), kv.get_val()); break; case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, kv.get_key().c_str(), kv.get_val()); break; case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, kv.get_key().c_str(), kv.get_val()); break; case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, kv.get_key().c_str(), kv.get_val()); break; case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, kv.get_key().c_str(), kv.get_val()); break; case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, kv.get_key().c_str(), kv.get_val()); break; case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, kv.get_key().c_str(), kv.get_val()); break; case GGUF_TYPE_STRING: gguf_set_val_str (ctx, kv.get_key().c_str(), kv.get_val().c_str()); break; case GGUF_TYPE_ARRAY: default: GGML_ABORT("invalid type"); } continue; } const size_t ne = kv.get_ne(); switch (kv.get_type()) { case GGUF_TYPE_UINT8: case GGUF_TYPE_INT8: case GGUF_TYPE_UINT16: case GGUF_TYPE_INT16: case GGUF_TYPE_UINT32: case GGUF_TYPE_INT32: case GGUF_TYPE_FLOAT32: case GGUF_TYPE_UINT64: case GGUF_TYPE_INT64: case GGUF_TYPE_FLOAT64: case GGUF_TYPE_BOOL: { gguf_set_arr_data(ctx, kv.get_key().c_str(), kv.get_type(), kv.data.data(), ne); } break; case GGUF_TYPE_STRING: { std::vector tmp(ne); for (size_t j = 0; j < ne; ++j) { tmp[j] = kv.data_string[j].c_str(); } gguf_set_arr_str(ctx, kv.get_key().c_str(), tmp.data(), ne); } break; case GGUF_TYPE_ARRAY: default: GGML_ABORT("invalid type"); } } } void gguf_add_tensor( struct gguf_context * ctx, const struct ggml_tensor * tensor) { GGML_ASSERT(tensor); if (gguf_find_tensor(ctx, tensor->name) != -1) { GGML_ABORT("duplicate tensor name: %s", tensor->name); } struct gguf_tensor_info ti; ti.t = *tensor; ti.offset = ctx->info.empty() ? 0 : ctx->info.back().offset + GGML_PAD(ggml_nbytes(&ctx->info.back().t), ctx->alignment); ctx->info.push_back(ti); } void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) { const int64_t tensor_id = gguf_find_tensor(ctx, name); if (tensor_id < 0) { GGML_ABORT("tensor not found: %s", name); } struct ggml_tensor * tensor = &ctx->info[tensor_id].t; const size_t type_size = ggml_type_size(type); const int64_t blck_size = ggml_blck_size(type); tensor->type = type; GGML_ASSERT(tensor->ne[0] % blck_size == 0 && "tensor row size not divisible by block size of new type"); tensor->nb[0] = type_size; tensor->nb[1] = tensor->nb[0]*(tensor->ne[0]/blck_size); for (int i = 2; i < GGML_MAX_DIMS; i++) { tensor->nb[i] = tensor->nb[i - 1]*tensor->ne[i - 1]; } // update offsets const int64_t n_tensors = gguf_get_n_tensors(ctx); for (int64_t i = tensor_id + 1; i < n_tensors; ++i) { ctx->info[i].offset = ctx->info[i - 1].offset + GGML_PAD(ggml_nbytes(&ctx->info[i - 1].t), ctx->alignment); } } void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data) { const int64_t tensor_id = gguf_find_tensor(ctx, name); if (tensor_id < 0) { GGML_ABORT("tensor not found: %s", name); } ctx->info[tensor_id].t.data = (void *)(uintptr_t)data; // double cast suppresses warning about casting away const } struct gguf_writer { std::vector & buf; gguf_writer(std::vector & buf) : buf(buf) {} template void write(const T & val) const { for (size_t i = 0; i < sizeof(val); ++i) { buf.push_back(reinterpret_cast(&val)[i]); } } void write(const std::vector & val) const { buf.insert(buf.end(), val.begin(), val.end()); } void write(const bool & val) const { const int8_t val8 = val ? 1 : 0; write(val8); } void write(const std::string & val) const { { const uint64_t n = val.length(); write(n); } for (size_t i = 0; i < val.length(); ++i) { buf.push_back(reinterpret_cast(val.data())[i]); } } void write(const char * val) const { write(std::string(val)); } void write(const enum ggml_type & val) const { write(int32_t(val)); } void write(const enum gguf_type & val) const { write(int32_t(val)); } void write(const struct gguf_kv & kv) const { const uint64_t ne = kv.get_ne(); write(kv.get_key()); if (kv.is_array) { write(GGUF_TYPE_ARRAY); write(kv.get_type()); write(ne); } else { write(kv.get_type()); } switch (kv.get_type()) { case GGUF_TYPE_UINT8: case GGUF_TYPE_INT8: case GGUF_TYPE_UINT16: case GGUF_TYPE_INT16: case GGUF_TYPE_UINT32: case GGUF_TYPE_INT32: case GGUF_TYPE_FLOAT32: case GGUF_TYPE_UINT64: case GGUF_TYPE_INT64: case GGUF_TYPE_FLOAT64: { write(kv.data); } break; case GGUF_TYPE_BOOL: { for (size_t i = 0; i < ne; ++i) { write(kv.get_val(i)); } } break; case GGUF_TYPE_STRING: { for (size_t i = 0; i < ne; ++i) { write(kv.get_val(i)); } } break; case GGUF_TYPE_ARRAY: default: GGML_ABORT("invalid type"); } } void write_tensor_meta(const struct gguf_tensor_info & info) const { write(info.t.name); const uint32_t n_dims = ggml_n_dims(&info.t); write(n_dims); for (uint32_t j = 0; j < n_dims; ++j) { write(info.t.ne[j]); } write(info.t.type); write(info.offset); } void pad(const size_t alignment) const { while (buf.size() % alignment != 0) { const int8_t zero = 0; write(zero); } } void write_tensor_data(const struct gguf_tensor_info & info, const size_t offset_data, const size_t alignment) const { GGML_ASSERT(buf.size() - offset_data == info.offset); GGML_ASSERT(ggml_is_contiguous(&info.t)); const size_t offset = buf.size(); const size_t nbytes = ggml_nbytes(&info.t); buf.resize(offset + nbytes); if (info.t.buffer) { ggml_backend_tensor_get(&info.t, buf.data() + offset, 0, nbytes); } else { GGML_ASSERT(info.t.data); memcpy(buf.data() + offset, info.t.data, nbytes); } pad(alignment); } }; void gguf_write_to_buf(const struct gguf_context * ctx, std::vector & buf, bool only_meta) { const struct gguf_writer gw(buf); const int64_t n_kv = gguf_get_n_kv(ctx); const int64_t n_tensors = gguf_get_n_tensors(ctx); // write header gw.write(GGUF_MAGIC[0]); gw.write(GGUF_MAGIC[1]); gw.write(GGUF_MAGIC[2]); gw.write(GGUF_MAGIC[3]); gw.write(ctx->version); gw.write(n_tensors); gw.write(n_kv); // write key-value pairs for (int64_t i = 0; i < n_kv; ++i) { gw.write(ctx->kv[i]); } // write tensor info for (int64_t i = 0; i < n_tensors; ++i) { gw.write_tensor_meta(ctx->info[i]); } // we require the data section to be aligned gw.pad(ctx->alignment); if (only_meta) { return; } const size_t offset_data = gw.buf.size(); // write tensor data for (int64_t i = 0; i < n_tensors; ++i) { gw.write_tensor_data(ctx->info[i], offset_data, ctx->alignment); } } bool gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) { FILE * file = ggml_fopen(fname, "wb"); if (!file) { fprintf(stderr, "%s: failed to open file '%s' for writing GGUF data\n", __func__, fname); return false; } std::vector buf; gguf_write_to_buf(ctx, buf, only_meta); const bool ok = fwrite(buf.data(), 1, buf.size(), file) == buf.size(); fclose(file); return ok; } size_t gguf_get_meta_size(const struct gguf_context * ctx) { // only return size std::vector buf; gguf_write_to_buf(ctx, buf, /*only_meta =*/ true); return buf.size(); } void gguf_get_meta_data(const struct gguf_context * ctx, void * data) { std::vector buf; gguf_write_to_buf(ctx, buf, /*only_meta =*/ true); memcpy(data, buf.data(), buf.size()); }