#include "ggml-blas.h" #include "ggml-backend-impl.h" #include #include #include #include #if defined(GGML_USE_ACCELERATE) # include #elif defined(GGML_BLAS_USE_MKL) # include #else # include # ifdef BLIS_ENABLE_CBLAS # include # endif #endif struct ggml_backend_blas_context { int n_threads = GGML_DEFAULT_N_THREADS; std::unique_ptr work_data; size_t work_size = 0; #ifndef GGML_USE_OPENMP std::vector> tasks; #endif std::atomic current_chunk; }; // helper function to determine if it is better to use BLAS or not // for large matrices, BLAS is faster static bool ggml_backend_blas_use_blas(const struct ggml_tensor * dst) { const struct ggml_tensor * src0 = dst->src[0]; const struct ggml_tensor * src1 = dst->src[1]; const int64_t ne10 = src1->ne[0]; const int64_t ne0 = dst->ne[0]; const int64_t ne1 = dst->ne[1]; // TODO: find the optimal values for these if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && src1->type == GGML_TYPE_F32 && (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) { /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/ return true; } return false; } static void ggml_compute_forward_mul_mat_one_chunk( ggml_backend_blas_context * ctx, struct ggml_tensor * dst, const int64_t num_rows_per_vec_dot, const int64_t ir0_start, const int64_t ir0_end, const int64_t ir1_start, const int64_t ir1_end) { const struct ggml_tensor * src0 = dst->src[0]; const struct ggml_tensor * src1 = dst->src[1]; GGML_TENSOR_BINARY_OP_LOCALS const enum ggml_type type = src0->type; const bool src1_cont = ggml_is_contiguous(src1); const ggml_type_traits_t * type_traits = ggml_internal_get_type_traits_ptr(type); ggml_vec_dot_t const vec_dot = type_traits->vec_dot; enum ggml_type const vec_dot_type = type_traits->vec_dot_type; // broadcast factors const int64_t r2 = ne12 / ne02; const int64_t r3 = ne13 / ne03; //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end); // threads with no work simply yield (not sure if it helps) if (ir0_start >= ir0_end || ir1_start >= ir1_end) { return; } const void * wdata = (src1->type == vec_dot_type) ? src1->data : ctx->work_data.get(); const size_t row_size = ggml_row_size(vec_dot_type, ne10); assert(ne12 % ne02 == 0); assert(ne13 % ne03 == 0); // block-tiling attempt const int64_t blck_0 = 16; const int64_t blck_1 = 16; const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11; // attempt to reduce false-sharing (does not seem to make a difference) // 16 * 2, accounting for mmla kernels float tmp[32]; for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) { for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) { for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) { const int64_t i13 = (ir1 / (ne12 * ne1)); const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1; const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1); // broadcast src0 into src1 const int64_t i03 = i13 / r3; const int64_t i02 = i12 / r2; const int64_t i1 = i11; const int64_t i2 = i12; const int64_t i3 = i13; const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03); // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using // the original src1 data pointer, so we should index using the indices directly // TODO: this is a bit of a hack, we should probably have a better way to handle this const char * src1_col = (const char*)wdata + (src1_cont || src1->type != vec_dot_type ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size : (i11 * nb11 + i12 * nb12 + i13 * nb13)); float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3)); //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) { // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col); //} for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) { vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot); } for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) { memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (std::min(iir0 + blck_0, ir0_end) - iir0) * sizeof(float)); } } } } } static void ggml_compute_forward_mul_mat( ggml_backend_blas_context * ctx, struct ggml_tensor * dst) { const struct ggml_tensor * src0 = dst->src[0]; const struct ggml_tensor * src1 = dst->src[1]; GGML_TENSOR_BINARY_OP_LOCALS const enum ggml_type type = src0->type; const ggml_type_traits_t * type_traits = ggml_internal_get_type_traits_ptr(type); const ggml_type_traits_t * type_traits_vec_dot = ggml_internal_get_type_traits_ptr(type_traits->vec_dot_type); enum ggml_type const vec_dot_type = type_traits->vec_dot_type; ggml_from_float_t const from_float_to_vec_dot = type_traits_vec_dot->from_float; int64_t const vec_dot_num_rows = type_traits->nrows; GGML_ASSERT(ne0 == ne01); GGML_ASSERT(ne1 == ne11); GGML_ASSERT(ne2 == ne12); GGML_ASSERT(ne3 == ne13); // we don't support permuted src0 or src1 GGML_ASSERT(nb00 == ggml_type_size(type)); GGML_ASSERT(nb10 == ggml_type_size(src1->type)); // dst cannot be transposed or permuted GGML_ASSERT(nb0 == sizeof(float)); GGML_ASSERT(nb0 <= nb1); GGML_ASSERT(nb1 <= nb2); GGML_ASSERT(nb2 <= nb3); // broadcast factors const int64_t r2 = ne12 / ne02; const int64_t r3 = ne13 / ne03; GGML_UNUSED(r2); GGML_UNUSED(r3); // nb01 >= nb00 - src0 is not transposed // compute by src0 rows if (src1->type != vec_dot_type) { const size_t row_size = ggml_row_size(vec_dot_type, ne10); if (ctx->work_size < ne13*ne12*ne11*row_size) { ctx->work_data.reset(new char[ne13*ne12*ne11*row_size]); ctx->work_size = ne13*ne12*ne11*row_size; } char * wdata = ctx->work_data.get(); GGML_ASSERT(src1->type == GGML_TYPE_F32); int block_size = ggml_blck_size(vec_dot_type); int type_size = ggml_type_size(vec_dot_type); for (int64_t i13 = 0; i13 < ne13; ++i13) { for (int64_t i12 = 0; i12 < ne12; ++i12) { for (int64_t i11 = 0; i11 < ne11; ++i11) { //from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10); //#pragma omp parallel num_threads(ctx->n_threads) { int nth = omp_get_num_threads(); int ith = omp_get_thread_num(); int blocks_per_thread = (ne10 + block_size - 1) / block_size / nth; int i10_start = ith * blocks_per_thread * block_size; int i10_end = std::min(i10_start + blocks_per_thread * block_size, (int)ne10); //printf("thread %d/%d: i10_start = %d, i10_end = %d\n", ith, nth, i10_start, i10_end); from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10_start*nb10), (void *) ((char *) wdata + (type_size*i10_start/block_size)), i10_end - i10_start); } wdata += row_size; } } } } // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers) const int64_t nr0 = ne0; // This is the size of the rest of the dimensions of the result const int64_t nr1 = ne1 * ne2 * ne3; // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols int64_t num_rows_per_vec_dot = vec_dot_num_rows; // TODO: currently the mmla kernels support only even numbered rows/cols. // this check can be removed once they are extended to support odd numbered rows/cols too if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) { num_rows_per_vec_dot = 1; } // Now select a reasonable chunk size. int chunk_size = 16; // We need to step up the size if it's small if (nr0 == 1 || nr1 == 1) { chunk_size = 64; } // distribute the work across the inner or outer loop based on which one is larger // The number of chunks in the 0/1 dim. // CEIL(nr0/chunk_size) int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size; int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size; // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915 // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that. //const int ith = 0; // params->ith; const int nth = ctx->n_threads; // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start. ctx->current_chunk.store(nth); if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) { // distribute the thread work across the inner or outer loop based on which one is larger nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows } // The number of elements in each chunk const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0; const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1; //if (ith == 0) // printf("MUL_MAT = [%d, %d, %d, %d] x [%d, %d, %d, %d] = %d x %d = %d. Fp Ops/Ch %d\n", ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nchunk0, nchunk1, nchunk0 * nchunk1, ne00 * nr0 * nr1 / nchunk0 / nchunk1); // The first chunk comes from our thread_id, the rest will get auto-assigned. if (nth > 1) { #pragma omp parallel num_threads(nth) { int current_chunk = omp_get_thread_num(); while (current_chunk < nchunk0 * nchunk1) { const int64_t ith0 = current_chunk % nchunk0; const int64_t ith1 = current_chunk / nchunk0; const int64_t ir0_start = dr0 * ith0; const int64_t ir0_end = std::min(ir0_start + dr0, nr0); const int64_t ir1_start = dr1 * ith1; const int64_t ir1_end = std::min(ir1_start + dr1, nr1); ggml_compute_forward_mul_mat_one_chunk(ctx, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end); if (nth >= nchunk0 * nchunk1) { break; } current_chunk = ctx->current_chunk.fetch_add(1); } } } else { ggml_compute_forward_mul_mat_one_chunk(ctx, dst, num_rows_per_vec_dot, 0, nr0, 0, nr1); } #ifdef GGML_PERF // These numbers are useful when trying to measure how well the threading scheduling works. //int64_t workSize = (ne01 * ne11 * ne12 * ne13 * ne00) / nchunk0 / nchunk1; //float time = (ggml_perf_time_us() - t0); //printf("MUL_MAT = %f ms, [%d, %d, %d, %d] x [%d, %d, %d, %d] = %I64u, %f ops/usec in %d chunks.\n", time / 1000.0, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, workSize, (float)workSize/time, chunks_executed); #endif } static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) { const struct ggml_tensor * src0 = dst->src[0]; const struct ggml_tensor * src1 = dst->src[1]; GGML_TENSOR_BINARY_OP_LOCALS const enum ggml_type type = src0->type; GGML_ASSERT(ne0 == ne01); GGML_ASSERT(ne1 == ne11); GGML_ASSERT(ne2 == ne12); GGML_ASSERT(ne3 == ne13); // we don't support permuted src0 or src1 GGML_ASSERT(nb00 == ggml_type_size(type)); GGML_ASSERT(nb10 == ggml_type_size(src1->type)); // dst cannot be transposed or permuted GGML_ASSERT(nb0 == sizeof(float)); GGML_ASSERT(nb0 <= nb1); GGML_ASSERT(nb1 <= nb2); GGML_ASSERT(nb2 <= nb3); // broadcast factors const int64_t r2 = ne12/ne02; const int64_t r3 = ne13/ne03; const int64_t ne_plane = ne01*ne00; const size_t desired_wsize = type == GGML_TYPE_F32 ? 0 : ne03*ne02*ne_plane*sizeof(float); if (ctx->work_size < desired_wsize) { ctx->work_data.reset(new char[desired_wsize]); ctx->work_size = desired_wsize; } void * wdata = ctx->work_data.get(); // convert src0 to float if (type != GGML_TYPE_F32) { ggml_type_traits_t type_traits = ggml_internal_get_type_traits(type); ggml_to_float_t const to_float = type_traits.to_float; for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { const void * x = (char *) src0->data + i02*nb02 + i03*nb03; float * const wplane = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane; const int min_cols_per_thread = 4096; const int min_rows_per_thread = std::max((int)(min_cols_per_thread/ne00), 1); const int n_threads = std::max(std::min(ctx->n_threads, (int)(ne01/min_rows_per_thread)), 1); #ifdef GGML_USE_OPENMP #pragma omp parallel for num_threads(n_threads) for (int64_t i01 = 0; i01 < ne01; i01++) { to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00); } #else for (int i = 1; i < n_threads; i++) { const int64_t start = i*ne01/n_threads; const int64_t end = (i + 1)*ne01/n_threads; if (start < end) { ctx->tasks.push_back(std::async(std::launch::async, [=]() { for (int64_t i01 = start; i01 < end; i01++) { to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00); } })); } } { // reuse the current thread for the first task const int64_t start = 0; const int64_t end = ne01/n_threads; for (int64_t i01 = start; i01 < end; i01++) { to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00); } } #endif } } #ifndef GGML_USE_OPENMP // wait for all tasks to finish for (auto & task : ctx->tasks) { task.get(); } ctx->tasks.clear(); #endif } #if defined(OPENBLAS_VERSION) openblas_set_num_threads(ctx->n_threads); #endif #if defined(BLIS_ENABLE_CBLAS) bli_thread_set_num_threads(ctx->n_threads); #endif for (int64_t i13 = 0; i13 < ne13; i13++) { for (int64_t i12 = 0; i12 < ne12; i12++) { const int64_t i03 = i13/r3; const int64_t i02 = i12/r2; const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03); const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13); float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3); if (type != GGML_TYPE_F32) { x = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane; } cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, ne1, ne01, ne10, 1.0f, y, ne10, x, ne00, 0.0f, d, ne01); } } } static void ggml_backend_blas_out_prod(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) { const struct ggml_tensor * src0 = dst->src[0]; const struct ggml_tensor * src1 = dst->src[1]; GGML_TENSOR_BINARY_OP_LOCALS GGML_ASSERT(ne0 == ne00); GGML_ASSERT(ne1 == ne10); GGML_ASSERT(ne2 == ne02); GGML_ASSERT(ne02 == ne12); GGML_ASSERT(ne3 == ne13); GGML_ASSERT(ne03 == ne13); // we don't support permuted src0 or src1 GGML_ASSERT(nb00 == sizeof(float)); // dst cannot be transposed or permuted GGML_ASSERT(nb0 == sizeof(float)); // GGML_ASSERT(nb0 <= nb1); // GGML_ASSERT(nb1 <= nb2); // GGML_ASSERT(nb2 <= nb3); // Arguments to ggml_compute_forward_out_prod (expressed as major,minor) // src0: (k,n) // src1: (k,m) // dst: (m,n) // // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f) // Also expressed as (major,minor) // a: (m,k): so src1 transposed // b: (k,n): so src0 // c: (m,n) // // However, if ggml_is_transposed(src1) is true, then // src1->data already contains a transposed version, so sgemm mustn't // transpose it further. int n = src0->ne[0]; int k = src0->ne[1]; int m = src1->ne[0]; CBLAS_TRANSPOSE transposeA; int lda; if (!ggml_is_transposed(src1)) { transposeA = CblasTrans; lda = m; } else { transposeA = CblasNoTrans; lda = k; } float * a = (float *) ((char *) src1->data); float * b = (float *) ((char *) src0->data); float * c = (float *) ((char *) dst->data); cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n); GGML_UNUSED(ctx); } // backend interface GGML_CALL static const char * ggml_backend_blas_name(ggml_backend_t backend) { return "BLAS"; GGML_UNUSED(backend); } GGML_CALL static void ggml_backend_blas_free(ggml_backend_t backend) { ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context; delete ctx; delete backend; } GGML_CALL static ggml_backend_buffer_type_t ggml_backend_blas_get_default_buffer_type(ggml_backend_t backend) { return ggml_backend_cpu_buffer_type(); GGML_UNUSED(backend); } GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context; for (int i = 0; i < cgraph->n_nodes; i++) { struct ggml_tensor * node = cgraph->nodes[i]; switch (node->op) { case GGML_OP_MUL_MAT: //ggml_backend_blas_mul_mat(ctx, node); ggml_compute_forward_mul_mat(ctx, node); break; case GGML_OP_OUT_PROD: ggml_backend_blas_out_prod(ctx, node); break; case GGML_OP_NONE: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: break; default: fprintf(stderr, "%s: unsupported op %s\n", __func__, ggml_op_desc(node)); GGML_ASSERT(false); } } return GGML_STATUS_SUCCESS; GGML_UNUSED(backend); } GGML_CALL static bool ggml_backend_blas_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { return op->op == GGML_OP_MUL_MAT || op->op == GGML_OP_OUT_PROD; /* const struct ggml_tensor * src0 = op->src[0]; const struct ggml_tensor * src1 = op->src[1]; return (op->op == GGML_OP_MUL_MAT && ggml_backend_blas_use_blas(op)) || (op->op == GGML_OP_OUT_PROD && op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && ggml_is_matrix(src0) && ggml_is_matrix(src1) && ggml_is_contiguous(src0) && (ggml_is_contiguous(src1) || ggml_is_transposed(src1))); */ GGML_UNUSED(backend); } GGML_CALL static bool ggml_backend_blas_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) { return ggml_backend_buft_is_host(buft); GGML_UNUSED(backend); } static struct ggml_backend_i blas_backend_i = { /* .get_name = */ ggml_backend_blas_name, /* .free = */ ggml_backend_blas_free, /* .get_default_buffer_type = */ ggml_backend_blas_get_default_buffer_type, /* .set_tensor_async = */ NULL, /* .get_tensor_async = */ NULL, /* .cpy_tensor_async = */ NULL, /* .synchronize = */ NULL, /* .graph_plan_create = */ NULL, /* .graph_plan_free = */ NULL, /* .graph_plan_update = */ NULL, /* .graph_plan_compute = */ NULL, /* .graph_compute = */ ggml_backend_blas_graph_compute, /* .supports_op = */ ggml_backend_blas_supports_op, /* .supports_buft = */ ggml_backend_blas_supports_buft, /* .offload_op = */ NULL, /* .event_new = */ NULL, /* .event_free = */ NULL, /* .event_record = */ NULL, /* .event_wait = */ NULL, /* .event_synchronize = */ NULL, }; static ggml_guid_t ggml_backend_blas_guid(void) { static ggml_guid guid = { 0x12, 0xa8, 0xae, 0xf4, 0xc0, 0x1e, 0x61, 0x97, 0x8f, 0xeb, 0x33, 0x04, 0xa1, 0x33, 0x51, 0x2d }; return &guid; } ggml_backend_t ggml_backend_blas_init(void) { ggml_backend_blas_context * ctx = new ggml_backend_blas_context; ggml_backend_t backend = new ggml_backend { /* .guid = */ ggml_backend_blas_guid(), /* .interface = */ blas_backend_i, /* .context = */ ctx, }; #if !defined(NDEBUG) && defined(OPENBLAS_VERSION) && defined(GGML_USE_OPENMP) if (openblas_get_parallel() != OPENBLAS_OPENMP) { fprintf(stderr, "%s: warning: ggml is using OpenMP, but OpenBLAS was compiled without OpenMP support\n", __func__); } #endif #if !defined(NDEBUG) && defined(BLIS_ENABLE_CBLAS) && defined(GGML_USE_OPENMP) && !defined(BLIS_ENABLE_OPENMP) fprintf(stderr, "%s: warning: ggml is using OpenMP, but BLIS was compiled without OpenMP support\n", __func__); #endif return backend; } GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend) { return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_blas_guid()); } void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads) { GGML_ASSERT(ggml_backend_is_blas(backend_blas)); ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend_blas->context; ctx->n_threads = n_threads; }