#include "common.h" #include "llama.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__APPLE__) && defined(__MACH__) #include #include #endif #if defined(_WIN32) #define WIN32_LEAN_AND_MEAN #ifndef NOMINMAX # define NOMINMAX #endif #include #include #include #include #include #else #include #include #include #endif #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif #if (defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)) #define GGML_USE_CUBLAS_SYCL #endif #if (defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)) || defined(GGML_USE_VULKAN) #define GGML_USE_CUBLAS_SYCL_VULKAN #endif int32_t get_num_physical_cores() { #ifdef __linux__ // enumerate the set of thread siblings, num entries is num cores std::unordered_set siblings; for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) { std::ifstream thread_siblings("/sys/devices/system/cpu" + std::to_string(cpu) + "/topology/thread_siblings"); if (!thread_siblings.is_open()) { break; // no more cpus } std::string line; if (std::getline(thread_siblings, line)) { siblings.insert(line); } } if (!siblings.empty()) { return static_cast(siblings.size()); } #elif defined(__APPLE__) && defined(__MACH__) int32_t num_physical_cores; size_t len = sizeof(num_physical_cores); int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0); if (result == 0) { return num_physical_cores; } result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0); if (result == 0) { return num_physical_cores; } #elif defined(_WIN32) //TODO: Implement #endif unsigned int n_threads = std::thread::hardware_concurrency(); return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4; } void process_escapes(std::string& input) { std::size_t input_len = input.length(); std::size_t output_idx = 0; for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) { if (input[input_idx] == '\\' && input_idx + 1 < input_len) { switch (input[++input_idx]) { case 'n': input[output_idx++] = '\n'; break; case 'r': input[output_idx++] = '\r'; break; case 't': input[output_idx++] = '\t'; break; case '\'': input[output_idx++] = '\''; break; case '\"': input[output_idx++] = '\"'; break; case '\\': input[output_idx++] = '\\'; break; case 'x': // Handle \x12, etc if (input_idx + 2 < input_len) { const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 }; char *err_p = nullptr; const long val = std::strtol(x, &err_p, 16); if (err_p == x + 2) { input_idx += 2; input[output_idx++] = char(val); break; } } // fall through default: input[output_idx++] = '\\'; input[output_idx++] = input[input_idx]; break; } } else { input[output_idx++] = input[input_idx]; } } input.resize(output_idx); } bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { bool result = true; try { if (!gpt_params_parse_ex(argc, argv, params)) { gpt_print_usage(argc, argv, gpt_params()); exit(0); } } catch (const std::invalid_argument & ex) { fprintf(stderr, "%s\n", ex.what()); gpt_print_usage(argc, argv, gpt_params()); exit(1); } return result; } bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) { bool invalid_param = false; std::string arg; const std::string arg_prefix = "--"; llama_sampling_params & sparams = params.sparams; for (int i = 1; i < argc; i++) { arg = argv[i]; if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { std::replace(arg.begin(), arg.end(), '_', '-'); } if (arg == "-s" || arg == "--seed") { if (++i >= argc) { invalid_param = true; break; } params.seed = std::stoul(argv[i]); } else if (arg == "-t" || arg == "--threads") { if (++i >= argc) { invalid_param = true; break; } params.n_threads = std::stoi(argv[i]); if (params.n_threads <= 0) { params.n_threads = std::thread::hardware_concurrency(); } } else if (arg == "-tb" || arg == "--threads-batch") { if (++i >= argc) { invalid_param = true; break; } params.n_threads_batch = std::stoi(argv[i]); if (params.n_threads_batch <= 0) { params.n_threads_batch = std::thread::hardware_concurrency(); } } else if (arg == "-td" || arg == "--threads-draft") { if (++i >= argc) { invalid_param = true; break; } params.n_threads_draft = std::stoi(argv[i]); if (params.n_threads_draft <= 0) { params.n_threads_draft = std::thread::hardware_concurrency(); } } else if (arg == "-tbd" || arg == "--threads-batch-draft") { if (++i >= argc) { invalid_param = true; break; } params.n_threads_batch_draft = std::stoi(argv[i]); if (params.n_threads_batch_draft <= 0) { params.n_threads_batch_draft = std::thread::hardware_concurrency(); } } else if (arg == "-p" || arg == "--prompt") { if (++i >= argc) { invalid_param = true; break; } params.prompt = argv[i]; } else if (arg == "-e" || arg == "--escape") { params.escape = true; } else if (arg == "--prompt-cache") { if (++i >= argc) { invalid_param = true; break; } params.path_prompt_cache = argv[i]; } else if (arg == "--prompt-cache-all") { params.prompt_cache_all = true; } else if (arg == "--prompt-cache-ro") { params.prompt_cache_ro = true; } else if (arg == "-bf" || arg == "--binary-file") { if (++i >= argc) { invalid_param = true; break; } std::ifstream file(argv[i], std::ios::binary); if (!file) { fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); invalid_param = true; break; } // store the external file name in params params.prompt_file = argv[i]; std::ostringstream ss; ss << file.rdbuf(); params.prompt = ss.str(); fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), argv[i]); } else if (arg == "-f" || arg == "--file") { if (++i >= argc) { invalid_param = true; break; } std::ifstream file(argv[i]); if (!file) { fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); invalid_param = true; break; } // store the external file name in params params.prompt_file = argv[i]; std::copy(std::istreambuf_iterator(file), std::istreambuf_iterator(), back_inserter(params.prompt)); if (!params.prompt.empty() && params.prompt.back() == '\n') { params.prompt.pop_back(); } } else if (arg == "-n" || arg == "--n-predict") { if (++i >= argc) { invalid_param = true; break; } params.n_predict = std::stoi(argv[i]); } else if (arg == "--top-k") { if (++i >= argc) { invalid_param = true; break; } sparams.top_k = std::stoi(argv[i]); } else if (arg == "-c" || arg == "--ctx-size") { if (++i >= argc) { invalid_param = true; break; } params.n_ctx = std::stoi(argv[i]); } else if (arg == "--grp-attn-n" || arg == "-gan") { if (++i >= argc) { invalid_param = true; break; } params.grp_attn_n = std::stoi(argv[i]); } else if (arg == "--grp-attn-w" || arg == "-gaw") { if (++i >= argc) { invalid_param = true; break; } params.grp_attn_w = std::stoi(argv[i]); } else if (arg == "--rope-freq-base") { if (++i >= argc) { invalid_param = true; break; } params.rope_freq_base = std::stof(argv[i]); } else if (arg == "--rope-freq-scale") { if (++i >= argc) { invalid_param = true; break; } params.rope_freq_scale = std::stof(argv[i]); } else if (arg == "--rope-scaling") { if (++i >= argc) { invalid_param = true; break; } std::string value(argv[i]); /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; } else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; } else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; } else { invalid_param = true; break; } } else if (arg == "--rope-scale") { if (++i >= argc) { invalid_param = true; break; } params.rope_freq_scale = 1.0f/std::stof(argv[i]); } else if (arg == "--yarn-orig-ctx") { if (++i >= argc) { invalid_param = true; break; } params.yarn_orig_ctx = std::stoi(argv[i]); } else if (arg == "--yarn-ext-factor") { if (++i >= argc) { invalid_param = true; break; } params.yarn_ext_factor = std::stof(argv[i]); } else if (arg == "--yarn-attn-factor") { if (++i >= argc) { invalid_param = true; break; } params.yarn_attn_factor = std::stof(argv[i]); } else if (arg == "--yarn-beta-fast") { if (++i >= argc) { invalid_param = true; break; } params.yarn_beta_fast = std::stof(argv[i]); } else if (arg == "--yarn-beta-slow") { if (++i >= argc) { invalid_param = true; break; } params.yarn_beta_slow = std::stof(argv[i]); } else if (arg == "--samplers") { if (++i >= argc) { invalid_param = true; break; } const auto sampler_names = string_split(argv[i], ';'); sparams.samplers_sequence = sampler_types_from_names(sampler_names, true); } else if (arg == "--sampling-seq") { if (++i >= argc) { invalid_param = true; break; } sparams.samplers_sequence = sampler_types_from_chars(argv[i]); } else if (arg == "--top-p") { if (++i >= argc) { invalid_param = true; break; } sparams.top_p = std::stof(argv[i]); } else if (arg == "--min-p") { if (++i >= argc) { invalid_param = true; break; } sparams.min_p = std::stof(argv[i]); } else if (arg == "--temp") { if (++i >= argc) { invalid_param = true; break; } sparams.temp = std::stof(argv[i]); sparams.temp = std::max(sparams.temp, 0.0f); } else if (arg == "--tfs") { if (++i >= argc) { invalid_param = true; break; } sparams.tfs_z = std::stof(argv[i]); } else if (arg == "--typical") { if (++i >= argc) { invalid_param = true; break; } sparams.typical_p = std::stof(argv[i]); } else if (arg == "--repeat-last-n") { if (++i >= argc) { invalid_param = true; break; } sparams.penalty_last_n = std::stoi(argv[i]); sparams.n_prev = std::max(sparams.n_prev, sparams.penalty_last_n); } else if (arg == "--repeat-penalty") { if (++i >= argc) { invalid_param = true; break; } sparams.penalty_repeat = std::stof(argv[i]); } else if (arg == "--frequency-penalty") { if (++i >= argc) { invalid_param = true; break; } sparams.penalty_freq = std::stof(argv[i]); } else if (arg == "--presence-penalty") { if (++i >= argc) { invalid_param = true; break; } sparams.penalty_present = std::stof(argv[i]); } else if (arg == "--dynatemp-range") { if (++i >= argc) { invalid_param = true; break; } sparams.dynatemp_range = std::stof(argv[i]); } else if (arg == "--dynatemp-exp") { if (++i >= argc) { invalid_param = true; break; } sparams.dynatemp_exponent = std::stof(argv[i]); } else if (arg == "--mirostat") { if (++i >= argc) { invalid_param = true; break; } sparams.mirostat = std::stoi(argv[i]); } else if (arg == "--mirostat-lr") { if (++i >= argc) { invalid_param = true; break; } sparams.mirostat_eta = std::stof(argv[i]); } else if (arg == "--mirostat-ent") { if (++i >= argc) { invalid_param = true; break; } sparams.mirostat_tau = std::stof(argv[i]); } else if (arg == "--cfg-negative-prompt") { if (++i >= argc) { invalid_param = true; break; } sparams.cfg_negative_prompt = argv[i]; } else if (arg == "--cfg-negative-prompt-file") { if (++i >= argc) { invalid_param = true; break; } std::ifstream file(argv[i]); if (!file) { fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); invalid_param = true; break; } std::copy(std::istreambuf_iterator(file), std::istreambuf_iterator(), back_inserter(sparams.cfg_negative_prompt)); if (!sparams.cfg_negative_prompt.empty() && sparams.cfg_negative_prompt.back() == '\n') { sparams.cfg_negative_prompt.pop_back(); } } else if (arg == "--cfg-scale") { if (++i >= argc) { invalid_param = true; break; } sparams.cfg_scale = std::stof(argv[i]); } else if (arg == "-b" || arg == "--batch-size") { if (++i >= argc) { invalid_param = true; break; } params.n_batch = std::stoi(argv[i]); } else if (arg == "--keep") { if (++i >= argc) { invalid_param = true; break; } params.n_keep = std::stoi(argv[i]); } else if (arg == "--draft") { if (++i >= argc) { invalid_param = true; break; } params.n_draft = std::stoi(argv[i]); } else if (arg == "--chunks") { if (++i >= argc) { invalid_param = true; break; } params.n_chunks = std::stoi(argv[i]); } else if (arg == "-np" || arg == "--parallel") { if (++i >= argc) { invalid_param = true; break; } params.n_parallel = std::stoi(argv[i]); } else if (arg == "-ns" || arg == "--sequences") { if (++i >= argc) { invalid_param = true; break; } params.n_sequences = std::stoi(argv[i]); } else if (arg == "--p-accept" || arg == "-pa") { if (++i >= argc) { invalid_param = true; break; } params.p_accept = std::stof(argv[i]); } else if (arg == "--p-split" || arg == "-ps") { if (++i >= argc) { invalid_param = true; break; } params.p_split = std::stof(argv[i]); } else if (arg == "-m" || arg == "--model") { if (++i >= argc) { invalid_param = true; break; } params.model = argv[i]; } else if (arg == "-md" || arg == "--model-draft") { if (++i >= argc) { invalid_param = true; break; } params.model_draft = argv[i]; } else if (arg == "-a" || arg == "--alias") { if (++i >= argc) { invalid_param = true; break; } params.model_alias = argv[i]; } else if (arg == "--lora") { if (++i >= argc) { invalid_param = true; break; } params.lora_adapter.emplace_back(argv[i], 1.0f); params.use_mmap = false; } else if (arg == "--lora-scaled") { if (++i >= argc) { invalid_param = true; break; } const char * lora_adapter = argv[i]; if (++i >= argc) { invalid_param = true; break; } params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i])); params.use_mmap = false; } else if (arg == "--lora-base") { if (++i >= argc) { invalid_param = true; break; } params.lora_base = argv[i]; } else if (arg == "--mmproj") { if (++i >= argc) { invalid_param = true; break; } params.mmproj = argv[i]; } else if (arg == "--image") { if (++i >= argc) { invalid_param = true; break; } params.image = argv[i]; } else if (arg == "-i" || arg == "--interactive") { params.interactive = true; } else if (arg == "--embedding") { params.embedding = true; } else if (arg == "--interactive-first") { params.interactive_first = true; } else if (arg == "-ins" || arg == "--instruct") { params.instruct = true; } else if (arg == "-cml" || arg == "--chatml") { params.chatml = true; } else if (arg == "--infill") { params.infill = true; } else if (arg == "-dkvc" || arg == "--dump-kv-cache") { params.dump_kv_cache = true; } else if (arg == "-nkvo" || arg == "--no-kv-offload") { params.no_kv_offload = true; } else if (arg == "-ctk" || arg == "--cache-type-k") { params.cache_type_k = argv[++i]; } else if (arg == "-ctv" || arg == "--cache-type-v") { params.cache_type_v = argv[++i]; } else if (arg == "--multiline-input") { params.multiline_input = true; } else if (arg == "--simple-io") { params.simple_io = true; } else if (arg == "-cb" || arg == "--cont-batching") { params.cont_batching = true; } else if (arg == "--color") { params.use_color = true; } else if (arg == "--mlock") { params.use_mlock = true; } else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") { if (++i >= argc) { invalid_param = true; break; } params.n_gpu_layers = std::stoi(argv[i]); if (!llama_supports_gpu_offload()) { fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n"); fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); } } else if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") { if (++i >= argc) { invalid_param = true; break; } params.n_gpu_layers_draft = std::stoi(argv[i]); if (!llama_supports_gpu_offload()) { fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n"); fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); } } else if (arg == "--main-gpu" || arg == "-mg") { if (++i >= argc) { invalid_param = true; break; } params.main_gpu = std::stoi(argv[i]); #ifndef GGML_USE_CUBLAS_SYCL fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL. Setting the main GPU has no effect.\n"); #endif // GGML_USE_CUBLAS_SYCL } else if (arg == "--split-mode" || arg == "-sm") { if (++i >= argc) { invalid_param = true; break; } std::string arg_next = argv[i]; if (arg_next == "none") { params.split_mode = LLAMA_SPLIT_NONE; } else if (arg_next == "layer") { params.split_mode = LLAMA_SPLIT_LAYER; } else if (arg_next == "row") { params.split_mode = LLAMA_SPLIT_ROW; } else { invalid_param = true; break; } #ifndef GGML_USE_CUBLAS_SYCL fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL. Setting the split mode has no effect.\n"); #endif // GGML_USE_CUBLAS_SYCL } else if (arg == "--tensor-split" || arg == "-ts") { if (++i >= argc) { invalid_param = true; break; } std::string arg_next = argv[i]; // split string by , and / const std::regex regex{R"([,/]+)"}; std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1}; std::vector split_arg{it, {}}; if (split_arg.size() >= llama_max_devices()) { invalid_param = true; break; } for (size_t i = 0; i < llama_max_devices(); ++i) { if (i < split_arg.size()) { params.tensor_split[i] = std::stof(split_arg[i]); } else { params.tensor_split[i] = 0.0f; } } #ifndef GGML_USE_CUBLAS_SYCL_VULKAN fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL/Vulkan. Setting a tensor split has no effect.\n"); #endif // GGML_USE_CUBLAS_SYCL } else if (arg == "--no-mmap") { params.use_mmap = false; } else if (arg == "--numa") { if (++i >= argc) { invalid_param = true; break; } std::string value(argv[i]); /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; } else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; } else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; } else { invalid_param = true; break; } } else if (arg == "--verbose-prompt") { params.verbose_prompt = true; } else if (arg == "--no-display-prompt") { params.display_prompt = false; } else if (arg == "-r" || arg == "--reverse-prompt") { if (++i >= argc) { invalid_param = true; break; } params.antiprompt.emplace_back(argv[i]); } else if (arg == "-ld" || arg == "--logdir") { if (++i >= argc) { invalid_param = true; break; } params.logdir = argv[i]; if (params.logdir.back() != DIRECTORY_SEPARATOR) { params.logdir += DIRECTORY_SEPARATOR; } } else if (arg == "--save-all-logits" || arg == "--kl-divergence-base") { if (++i >= argc) { invalid_param = true; break; } params.logits_file = argv[i]; } else if (arg == "--perplexity" || arg == "--all-logits") { params.logits_all = true; } else if (arg == "--ppl-stride") { if (++i >= argc) { invalid_param = true; break; } params.ppl_stride = std::stoi(argv[i]); } else if (arg == "-ptc" || arg == "--print-token-count") { if (++i >= argc) { invalid_param = true; break; } params.n_print = std::stoi(argv[i]); } else if (arg == "--ppl-output-type") { if (++i >= argc) { invalid_param = true; break; } params.ppl_output_type = std::stoi(argv[i]); } else if (arg == "--hellaswag") { params.hellaswag = true; } else if (arg == "--hellaswag-tasks") { if (++i >= argc) { invalid_param = true; break; } params.hellaswag_tasks = std::stoi(argv[i]); } else if (arg == "--winogrande") { params.winogrande = true; } else if (arg == "--winogrande-tasks") { if (++i >= argc) { invalid_param = true; break; } params.winogrande_tasks = std::stoi(argv[i]); } else if (arg == "--multiple-choice") { params.multiple_choice = true; } else if (arg == "--multiple-choice-tasks") { if (++i >= argc) { invalid_param = true; break; } params.multiple_choice_tasks = std::stoi(argv[i]); } else if (arg == "--kl-divergence") { params.kl_divergence = true; } else if (arg == "--ignore-eos") { params.ignore_eos = true; } else if (arg == "--no-penalize-nl") { sparams.penalize_nl = false; } else if (arg == "-l" || arg == "--logit-bias") { if (++i >= argc) { invalid_param = true; break; } std::stringstream ss(argv[i]); llama_token key; char sign; std::string value_str; try { if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) { sparams.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f); } else { throw std::exception(); } } catch (const std::exception&) { invalid_param = true; break; } } else if (arg == "-h" || arg == "--help") { return false; } else if (arg == "--version") { fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT); fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET); exit(0); } else if (arg == "--random-prompt") { params.random_prompt = true; } else if (arg == "--in-prefix-bos") { params.input_prefix_bos = true; } else if (arg == "--in-prefix") { if (++i >= argc) { invalid_param = true; break; } params.input_prefix = argv[i]; } else if (arg == "--in-suffix") { if (++i >= argc) { invalid_param = true; break; } params.input_suffix = argv[i]; } else if (arg == "--grammar") { if (++i >= argc) { invalid_param = true; break; } sparams.grammar = argv[i]; } else if (arg == "--grammar-file") { if (++i >= argc) { invalid_param = true; break; } std::ifstream file(argv[i]); if (!file) { fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); invalid_param = true; break; } std::copy( std::istreambuf_iterator(file), std::istreambuf_iterator(), std::back_inserter(sparams.grammar) ); } else if (arg == "--override-kv") { if (++i >= argc) { invalid_param = true; break; } char * sep = strchr(argv[i], '='); if (sep == nullptr || sep - argv[i] >= 128) { fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]); invalid_param = true; break; } struct llama_model_kv_override kvo; std::strncpy(kvo.key, argv[i], sep - argv[i]); kvo.key[sep - argv[i]] = 0; sep++; if (strncmp(sep, "int:", 4) == 0) { sep += 4; kvo.tag = LLAMA_KV_OVERRIDE_INT; kvo.int_value = std::atol(sep); } else if (strncmp(sep, "float:", 6) == 0) { sep += 6; kvo.tag = LLAMA_KV_OVERRIDE_FLOAT; kvo.float_value = std::atof(sep); } else if (strncmp(sep, "bool:", 5) == 0) { sep += 5; kvo.tag = LLAMA_KV_OVERRIDE_BOOL; if (std::strcmp(sep, "true") == 0) { kvo.bool_value = true; } else if (std::strcmp(sep, "false") == 0) { kvo.bool_value = false; } else { fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]); invalid_param = true; break; } } else { fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]); invalid_param = true; break; } params.kv_overrides.push_back(kvo); #ifndef LOG_DISABLE_LOGS // Parse args for logging parameters } else if ( log_param_single_parse( argv[i] ) ) { // Do nothing, log_param_single_parse automatically does it's thing // and returns if a match was found and parsed. } else if ( log_param_pair_parse( /*check_but_dont_parse*/ true, argv[i] ) ) { // We have a matching known parameter requiring an argument, // now we need to check if there is anything after this argv // and flag invalid_param or parse it. if (++i >= argc) { invalid_param = true; break; } if( !log_param_pair_parse( /*check_but_dont_parse*/ false, argv[i-1], argv[i]) ) { invalid_param = true; break; } // End of Parse args for logging parameters #endif // LOG_DISABLE_LOGS } else { throw std::invalid_argument("error: unknown argument: " + arg); } } if (invalid_param) { throw std::invalid_argument("error: invalid parameter for argument: " + arg); } if (params.prompt_cache_all && (params.interactive || params.interactive_first || params.instruct)) { throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n"); } if (params.escape) { process_escapes(params.prompt); process_escapes(params.input_prefix); process_escapes(params.input_suffix); process_escapes(sparams.cfg_negative_prompt); for (auto & antiprompt : params.antiprompt) { process_escapes(antiprompt); } } if (!params.kv_overrides.empty()) { params.kv_overrides.emplace_back(); params.kv_overrides.back().key[0] = 0; } return true; } void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { const llama_sampling_params & sparams = params.sparams; std::string sampler_type_chars; std::string sampler_type_names; for (const auto sampler_type : sparams.samplers_sequence) { sampler_type_chars += static_cast(sampler_type); sampler_type_names += sampler_type_to_name_string(sampler_type) + ";"; } sampler_type_names.pop_back(); printf("\n"); printf("usage: %s [options]\n", argv[0]); printf("\n"); printf("options:\n"); printf(" -h, --help show this help message and exit\n"); printf(" --version show version and build info\n"); printf(" -i, --interactive run in interactive mode\n"); printf(" --interactive-first run in interactive mode and wait for input right away\n"); printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n"); printf(" -cml, --chatml run in chatml mode (use with ChatML-compatible models)\n"); printf(" --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n"); printf(" -r PROMPT, --reverse-prompt PROMPT\n"); printf(" halt generation at PROMPT, return control in interactive mode\n"); printf(" (can be specified more than once for multiple prompts).\n"); printf(" --color colorise output to distinguish prompt and user input from generations\n"); printf(" -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n"); printf(" -t N, --threads N number of threads to use during generation (default: %d)\n", params.n_threads); printf(" -tb N, --threads-batch N\n"); printf(" number of threads to use during batch and prompt processing (default: same as --threads)\n"); printf(" -td N, --threads-draft N"); printf(" number of threads to use during generation (default: same as --threads)\n"); printf(" -tbd N, --threads-batch-draft N\n"); printf(" number of threads to use during batch and prompt processing (default: same as --threads-draft)\n"); printf(" -p PROMPT, --prompt PROMPT\n"); printf(" prompt to start generation with (default: empty)\n"); printf(" -e, --escape process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n"); printf(" --prompt-cache FNAME file to cache prompt state for faster startup (default: none)\n"); printf(" --prompt-cache-all if specified, saves user input and generations to cache as well.\n"); printf(" not supported with --interactive or other interactive options\n"); printf(" --prompt-cache-ro if specified, uses the prompt cache but does not update it.\n"); printf(" --random-prompt start with a randomized prompt.\n"); printf(" --in-prefix-bos prefix BOS to user inputs, preceding the `--in-prefix` string\n"); printf(" --in-prefix STRING string to prefix user inputs with (default: empty)\n"); printf(" --in-suffix STRING string to suffix after user inputs with (default: empty)\n"); printf(" -f FNAME, --file FNAME\n"); printf(" prompt file to start generation.\n"); printf(" -bf FNAME, --binary-file FNAME\n"); printf(" binary file containing multiple choice tasks.\n"); printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict); printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx); printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); printf(" --samplers samplers that will be used for generation in the order, separated by \';\'\n"); printf(" (default: %s)\n", sampler_type_names.c_str()); printf(" --sampling-seq simplified sequence for samplers that will be used (default: %s)\n", sampler_type_chars.c_str()); printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k); printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p); printf(" --min-p N min-p sampling (default: %.1f, 0.0 = disabled)\n", (double)sparams.min_p); printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)sparams.tfs_z); printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)sparams.typical_p); printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", sparams.penalty_last_n); printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)sparams.penalty_repeat); printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_present); printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_freq); printf(" --dynatemp-range N dynamic temperature range (default: %.1f, 0.0 = disabled)\n", (double)sparams.dynatemp_range); printf(" --dynatemp-exp N dynamic temperature exponent (default: %.1f)\n", (double)sparams.dynatemp_exponent); printf(" --mirostat N use Mirostat sampling.\n"); printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n"); printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", sparams.mirostat); printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)sparams.mirostat_eta); printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)sparams.mirostat_tau); printf(" -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n"); printf(" modifies the likelihood of token appearing in the completion,\n"); printf(" i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"); printf(" or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n"); printf(" --grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)\n"); printf(" --grammar-file FNAME file to read grammar from\n"); printf(" --cfg-negative-prompt PROMPT\n"); printf(" negative prompt to use for guidance. (default: empty)\n"); printf(" --cfg-negative-prompt-file FNAME\n"); printf(" negative prompt file to use for guidance. (default: empty)\n"); printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", sparams.cfg_scale); printf(" --rope-scaling {none,linear,yarn}\n"); printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n"); printf(" --rope-scale N RoPE context scaling factor, expands context by a factor of N\n"); printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n"); printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n"); printf(" --yarn-orig-ctx N YaRN: original context size of model (default: 0 = model training context size)\n"); printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n"); printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n"); printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow); printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast); printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n"); printf(" --no-penalize-nl do not penalize newline token\n"); printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp); printf(" --logits-all return logits for all tokens in the batch (default: disabled)\n"); printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n"); printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks); printf(" --winogrande compute Winogrande score over random tasks from datafile supplied with -f\n"); printf(" --winogrande-tasks N number of tasks to use when computing the Winogrande score (default: %zu)\n", params.winogrande_tasks); printf(" --multiple-choice compute multiple choice score over random tasks from datafile supplied with -f\n"); printf(" --multiple-choice-tasks N number of tasks to use when computing the multiple choice score (default: %zu)\n", params.winogrande_tasks); printf(" --kl-divergence computes KL-divergence to logits provided via --kl-divergence-base\n"); printf(" --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep); printf(" --draft N number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft); printf(" --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks); printf(" -np N, --parallel N number of parallel sequences to decode (default: %d)\n", params.n_parallel); printf(" -ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences); printf(" -pa N, --p-accept N speculative decoding accept probability (default: %.1f)\n", (double)params.p_accept); printf(" -ps N, --p-split N speculative decoding split probability (default: %.1f)\n", (double)params.p_split); printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n"); printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n"); printf(" --image IMAGE_FILE path to an image file. use with multimodal models\n"); if (llama_supports_mlock()) { printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n"); } if (llama_supports_mmap()) { printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n"); } printf(" --numa TYPE attempt optimizations that help on some NUMA systems\n"); printf(" - distribute: spread execution evenly over all nodes\n"); printf(" - isolate: only spawn threads on CPUs on the node that execution started on\n"); printf(" - numactl: use the CPU map provided by numactl\n"); printf(" if run without this previously, it is recommended to drop the system page cache before using this\n"); printf(" see https://github.com/ggerganov/llama.cpp/issues/1437\n"); if (llama_supports_gpu_offload()) { printf(" -ngl N, --n-gpu-layers N\n"); printf(" number of layers to store in VRAM\n"); printf(" -ngld N, --n-gpu-layers-draft N\n"); printf(" number of layers to store in VRAM for the draft model\n"); printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n"); printf(" how to split the model across multiple GPUs, one of:\n"); printf(" - none: use one GPU only\n"); printf(" - layer (default): split layers and KV across GPUs\n"); printf(" - row: split rows across GPUs\n"); printf(" -ts SPLIT, --tensor-split SPLIT\n"); printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n"); printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n"); printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu); } printf(" --verbose-prompt print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false"); printf(" --no-display-prompt don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false"); printf(" -gan N, --grp-attn-n N\n"); printf(" group-attention factor (default: %d)\n", params.grp_attn_n); printf(" -gaw N, --grp-attn-w N\n"); printf(" group-attention width (default: %.1f)\n", (double)params.grp_attn_w); printf(" -dkvc, --dump-kv-cache\n"); printf(" verbose print of the KV cache\n"); printf(" -nkvo, --no-kv-offload\n"); printf(" disable KV offload\n"); printf(" -ctk TYPE, --cache-type-k TYPE\n"); printf(" KV cache data type for K (default: %s)\n", params.cache_type_k.c_str()); printf(" -ctv TYPE, --cache-type-v TYPE\n"); printf(" KV cache data type for V (default: %s)\n", params.cache_type_v.c_str()); printf(" --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n"); printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n"); printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n"); printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n"); printf(" -m FNAME, --model FNAME\n"); printf(" model path (default: %s)\n", params.model.c_str()); printf(" -md FNAME, --model-draft FNAME\n"); printf(" draft model for speculative decoding\n"); printf(" -ld LOGDIR, --logdir LOGDIR\n"); printf(" path under which to save YAML logs (no logging if unset)\n"); printf(" --override-kv KEY=TYPE:VALUE\n"); printf(" advanced option to override model metadata by key. may be specified multiple times.\n"); printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n"); printf(" -ptc N, --print-token-count N\n"); printf(" print token count every N tokens (default: %d)\n", params.n_print); printf("\n"); #ifndef LOG_DISABLE_LOGS log_print_usage(); #endif // LOG_DISABLE_LOGS } std::string get_system_info(const gpt_params & params) { std::ostringstream os; os << "system_info: n_threads = " << params.n_threads; if (params.n_threads_batch != -1) { os << " (n_threads_batch = " << params.n_threads_batch << ")"; } os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info(); return os.str(); } std::string gpt_random_prompt(std::mt19937 & rng) { const int r = rng() % 10; switch (r) { case 0: return "So"; case 1: return "Once upon a time"; case 2: return "When"; case 3: return "The"; case 4: return "After"; case 5: return "If"; case 6: return "import"; case 7: return "He"; case 8: return "She"; case 9: return "They"; } GGML_UNREACHABLE(); } // // String utils // std::vector string_split(std::string input, char separator) { std::vector parts; size_t separator_pos = input.find(separator); while (separator_pos != std::string::npos) { std::string part = input.substr(0, separator_pos); parts.emplace_back(part); input = input.substr(separator_pos + 1); separator_pos = input.find(separator); } parts.emplace_back(input); return parts; } std::vector sampler_types_from_names(const std::vector & names, bool allow_alt_names) { std::unordered_map sampler_canonical_name_map { {"top_k", llama_sampler_type::TOP_K}, {"top_p", llama_sampler_type::TOP_P}, {"typical_p", llama_sampler_type::TYPICAL_P}, {"min_p", llama_sampler_type::MIN_P}, {"tfs_z", llama_sampler_type::TFS_Z}, {"temperature", llama_sampler_type::TEMPERATURE} }; // since samplers names are written multiple ways // make it ready for both system names and input names std::unordered_map sampler_alt_name_map { {"top-k", llama_sampler_type::TOP_K}, {"top-p", llama_sampler_type::TOP_P}, {"nucleus", llama_sampler_type::TOP_P}, {"typical-p", llama_sampler_type::TYPICAL_P}, {"typical", llama_sampler_type::TYPICAL_P}, {"min-p", llama_sampler_type::MIN_P}, {"tfs-z", llama_sampler_type::TFS_Z}, {"tfs", llama_sampler_type::TFS_Z}, {"temp", llama_sampler_type::TEMPERATURE} }; std::vector sampler_types; sampler_types.reserve(names.size()); for (const auto & name : names) { auto sampler_item = sampler_canonical_name_map.find(name); if (sampler_item != sampler_canonical_name_map.end()) { sampler_types.push_back(sampler_item->second); } else { if (allow_alt_names) { sampler_item = sampler_alt_name_map.find(name); if (sampler_item != sampler_alt_name_map.end()) { sampler_types.push_back(sampler_item->second); } } } } return sampler_types; } std::vector sampler_types_from_chars(const std::string & names_string) { std::unordered_map sampler_name_map { {'k', llama_sampler_type::TOP_K}, {'p', llama_sampler_type::TOP_P}, {'y', llama_sampler_type::TYPICAL_P}, {'m', llama_sampler_type::MIN_P}, {'f', llama_sampler_type::TFS_Z}, {'t', llama_sampler_type::TEMPERATURE} }; std::vector sampler_types; sampler_types.reserve(names_string.size()); for (const auto & c : names_string) { const auto sampler_item = sampler_name_map.find(c); if (sampler_item != sampler_name_map.end()) { sampler_types.push_back(sampler_item->second); } } return sampler_types; } std::string sampler_type_to_name_string(llama_sampler_type sampler_type) { switch (sampler_type) { case llama_sampler_type::TOP_K: return "top_k"; case llama_sampler_type::TFS_Z: return "tfs_z"; case llama_sampler_type::TYPICAL_P: return "typical_p"; case llama_sampler_type::TOP_P: return "top_p"; case llama_sampler_type::MIN_P: return "min_p"; case llama_sampler_type::TEMPERATURE: return "temperature"; default : return ""; } } // // Model utils // struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) { auto mparams = llama_model_default_params(); if (params.n_gpu_layers != -1) { mparams.n_gpu_layers = params.n_gpu_layers; } mparams.main_gpu = params.main_gpu; mparams.split_mode = params.split_mode; mparams.tensor_split = params.tensor_split; mparams.use_mmap = params.use_mmap; mparams.use_mlock = params.use_mlock; if (params.kv_overrides.empty()) { mparams.kv_overrides = NULL; } else { GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key"); mparams.kv_overrides = params.kv_overrides.data(); } return mparams; } static ggml_type kv_cache_type_from_str(const std::string & s) { if (s == "f32") { return GGML_TYPE_F32; } if (s == "f16") { return GGML_TYPE_F16; } if (s == "q8_0") { return GGML_TYPE_Q8_0; } if (s == "q4_0") { return GGML_TYPE_Q4_0; } if (s == "q4_1") { return GGML_TYPE_Q4_1; } if (s == "q5_0") { return GGML_TYPE_Q5_0; } if (s == "q5_1") { return GGML_TYPE_Q5_1; } throw std::runtime_error("Invalid cache type: " + s); } struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) { auto cparams = llama_context_default_params(); cparams.n_ctx = params.n_ctx; cparams.n_batch = params.n_batch; cparams.n_threads = params.n_threads; cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; cparams.mul_mat_q = params.mul_mat_q; cparams.seed = params.seed; cparams.logits_all = params.logits_all; cparams.embedding = params.embedding; cparams.rope_scaling_type = params.rope_scaling_type; cparams.rope_freq_base = params.rope_freq_base; cparams.rope_freq_scale = params.rope_freq_scale; cparams.yarn_ext_factor = params.yarn_ext_factor; cparams.yarn_attn_factor = params.yarn_attn_factor; cparams.yarn_beta_fast = params.yarn_beta_fast; cparams.yarn_beta_slow = params.yarn_beta_slow; cparams.yarn_orig_ctx = params.yarn_orig_ctx; cparams.offload_kqv = !params.no_kv_offload; cparams.type_k = kv_cache_type_from_str(params.cache_type_k); cparams.type_v = kv_cache_type_from_str(params.cache_type_v); return cparams; } void llama_batch_clear(struct llama_batch & batch) { batch.n_tokens = 0; } void llama_batch_add( struct llama_batch & batch, llama_token id, llama_pos pos, const std::vector & seq_ids, bool logits) { batch.token [batch.n_tokens] = id; batch.pos [batch.n_tokens] = pos; batch.n_seq_id[batch.n_tokens] = seq_ids.size(); for (size_t i = 0; i < seq_ids.size(); ++i) { batch.seq_id[batch.n_tokens][i] = seq_ids[i]; } batch.logits [batch.n_tokens] = logits; batch.n_tokens++; } std::tuple llama_init_from_gpt_params(gpt_params & params) { auto mparams = llama_model_params_from_gpt_params(params); llama_model * model = llama_load_model_from_file(params.model.c_str(), mparams); if (model == NULL) { fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); return std::make_tuple(nullptr, nullptr); } auto cparams = llama_context_params_from_gpt_params(params); llama_context * lctx = llama_new_context_with_model(model, cparams); if (lctx == NULL) { fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str()); llama_free_model(model); return std::make_tuple(nullptr, nullptr); } for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) { const std::string& lora_adapter = std::get<0>(params.lora_adapter[i]); float lora_scale = std::get<1>(params.lora_adapter[i]); int err = llama_model_apply_lora_from_file(model, lora_adapter.c_str(), lora_scale, ((i > 0) || params.lora_base.empty()) ? NULL : params.lora_base.c_str(), params.n_threads); if (err != 0) { fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__); llama_free(lctx); llama_free_model(model); return std::make_tuple(nullptr, nullptr); } } if (params.ignore_eos) { params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY; } { LOG("warming up the model with an empty run\n"); std::vector tmp = { llama_token_bos(model), llama_token_eos(model), }; llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0)); llama_kv_cache_clear(lctx); llama_reset_timings(lctx); } return std::make_tuple(model, lctx); } // // Vocab utils // std::vector llama_tokenize( const struct llama_context * ctx, const std::string & text, bool add_bos, bool special) { return llama_tokenize(llama_get_model(ctx), text, add_bos, special); } std::vector llama_tokenize( const struct llama_model * model, const std::string & text, bool add_bos, bool special) { // upper limit for the number of tokens int n_tokens = text.length() + add_bos; std::vector result(n_tokens); n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special); if (n_tokens < 0) { result.resize(-n_tokens); int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special); GGML_ASSERT(check == -n_tokens); } else { result.resize(n_tokens); } return result; } std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) { std::vector result(8, 0); const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); if (n_tokens < 0) { result.resize(-n_tokens); int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); GGML_ASSERT(check == -n_tokens); } else { result.resize(n_tokens); } return std::string(result.data(), result.size()); } std::string llama_detokenize_spm(llama_context * ctx, const std::vector & tokens) { const llama_token bos_id = llama_token_bos(llama_get_model(ctx)); std::string piece; std::string result; for (size_t i = 0; i < tokens.size(); ++i) { piece = llama_token_to_piece(ctx, tokens[i]); // remove the leading space of the first non-BOS token if (((tokens[0] == bos_id && i == 1) || (tokens[0] != bos_id && i == 0)) && piece[0] == ' ') { piece = piece.substr(1); } result += piece; } return result; } std::string llama_detokenize_bpe(llama_context * ctx, const std::vector & tokens) { std::string piece; std::string result; for (size_t i = 0; i < tokens.size(); ++i) { piece = llama_token_to_piece(ctx, tokens[i]); result += piece; } // NOTE: the original tokenizer decodes bytes after collecting the pieces. return result; } bool llama_should_add_bos_token(const llama_model * model) { const int add_bos = llama_add_bos_token(model); return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM); } // // YAML utils // // returns true if successful, false otherwise bool create_directory_with_parents(const std::string & path) { #ifdef _WIN32 std::wstring_convert> converter; std::wstring wpath = converter.from_bytes(path); // if the path already exists, check whether it's a directory const DWORD attributes = GetFileAttributesW(wpath.c_str()); if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) { return true; } size_t pos_slash = 0; // process path from front to back, procedurally creating directories while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) { const std::wstring subpath = wpath.substr(0, pos_slash); const wchar_t * test = subpath.c_str(); const bool success = CreateDirectoryW(test, NULL); if (!success) { const DWORD error = GetLastError(); // if the path already exists, ensure that it's a directory if (error == ERROR_ALREADY_EXISTS) { const DWORD attributes = GetFileAttributesW(subpath.c_str()); if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) { return false; } } else { return false; } } pos_slash += 1; } return true; #else // if the path already exists, check whether it's a directory struct stat info; if (stat(path.c_str(), &info) == 0) { return S_ISDIR(info.st_mode); } size_t pos_slash = 1; // skip leading slashes for directory creation // process path from front to back, procedurally creating directories while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) { const std::string subpath = path.substr(0, pos_slash); struct stat info; // if the path already exists, ensure that it's a directory if (stat(subpath.c_str(), &info) == 0) { if (!S_ISDIR(info.st_mode)) { return false; } } else { // create parent directories const int ret = mkdir(subpath.c_str(), 0755); if (ret != 0) { return false; } } pos_slash += 1; } return true; #endif // _WIN32 } void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector & data) { if (data.empty()) { fprintf(stream, "%s:\n", prop_name); return; } fprintf(stream, "%s: [", prop_name); for (size_t i = 0; i < data.size() - 1; ++i) { fprintf(stream, "%e, ", data[i]); } fprintf(stream, "%e]\n", data.back()); } void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector & data) { if (data.empty()) { fprintf(stream, "%s:\n", prop_name); return; } fprintf(stream, "%s: [", prop_name); for (size_t i = 0; i < data.size() - 1; ++i) { fprintf(stream, "%d, ", data[i]); } fprintf(stream, "%d]\n", data.back()); } void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data) { std::string data_str(data == NULL ? "" : data); if (data_str.empty()) { fprintf(stream, "%s:\n", prop_name); return; } size_t pos_start = 0; size_t pos_found = 0; if (!data_str.empty() && (std::isspace(data_str[0]) || std::isspace(data_str.back()))) { data_str = std::regex_replace(data_str, std::regex("\n"), "\\n"); data_str = std::regex_replace(data_str, std::regex("\""), "\\\""); data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)"); data_str = "\"" + data_str + "\""; fprintf(stream, "%s: %s\n", prop_name, data_str.c_str()); return; } if (data_str.find('\n') == std::string::npos) { fprintf(stream, "%s: %s\n", prop_name, data_str.c_str()); return; } fprintf(stream, "%s: |\n", prop_name); while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) { fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str()); pos_start = pos_found + 1; } } std::string get_sortable_timestamp() { using clock = std::chrono::system_clock; const clock::time_point current_time = clock::now(); const time_t as_time_t = clock::to_time_t(current_time); char timestamp_no_ns[100]; std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t)); const int64_t ns = std::chrono::duration_cast( current_time.time_since_epoch() % 1000000000).count(); char timestamp_ns[11]; snprintf(timestamp_ns, 11, "%09" PRId64, ns); return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns); } void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx, const std::string & timestamp, const std::vector & prompt_tokens, const char * model_desc) { const llama_sampling_params & sparams = params.sparams; fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT); fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER); fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false"); fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false"); fprintf(stream, "cpu_has_avx_vnni: %s\n", ggml_cpu_has_avx_vnni() ? "true" : "false"); fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false"); fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false"); fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false"); fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false"); fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false"); fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false"); fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false"); fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false"); fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false"); fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false"); fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false"); fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false"); fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false"); fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false"); fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false"); fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false"); fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false"); fprintf(stream, "cpu_has_matmul_int8: %s\n", ggml_cpu_has_matmul_int8() ? "true" : "false"); #ifdef NDEBUG fprintf(stream, "debug: false\n"); #else fprintf(stream, "debug: true\n"); #endif // NDEBUG fprintf(stream, "model_desc: %s\n", model_desc); fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx))); #ifdef __OPTIMIZE__ fprintf(stream, "optimize: true\n"); #else fprintf(stream, "optimize: false\n"); #endif // __OPTIMIZE__ fprintf(stream, "time: %s\n", timestamp.c_str()); fprintf(stream, "\n"); fprintf(stream, "###############\n"); fprintf(stream, "# User Inputs #\n"); fprintf(stream, "###############\n"); fprintf(stream, "\n"); fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str()); fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch); dump_string_yaml_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str()); fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale); fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks); fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false"); fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx); fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false"); fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n"); fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq); dump_string_yaml_multiline(stream, "grammar", sparams.grammar.c_str()); fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n"); fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false"); fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks); const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(llama_get_model(lctx))); const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY; fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false"); dump_string_yaml_multiline(stream, "in_prefix", params.input_prefix.c_str()); fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false"); dump_string_yaml_multiline(stream, "in_suffix", params.input_prefix.c_str()); fprintf(stream, "instruct: %s # default: false\n", params.instruct ? "true" : "false"); fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false"); fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false"); fprintf(stream, "keep: %d # default: 0\n", params.n_keep); fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str()); fprintf(stream, "logit_bias:\n"); for (std::pair lb : sparams.logit_bias) { if (ignore_eos && lb.first == logit_bias_eos->first) { continue; } fprintf(stream, " %d: %f", lb.first, lb.second); } fprintf(stream, "lora:\n"); for (std::tuple la : params.lora_adapter) { if (std::get<1>(la) != 1.0f) { continue; } fprintf(stream, " - %s\n", std::get<0>(la).c_str()); } fprintf(stream, "lora_scaled:\n"); for (std::tuple la : params.lora_adapter) { if (std::get<1>(la) == 1.0f) { continue; } fprintf(stream, " - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la)); } fprintf(stream, "lora_base: %s\n", params.lora_base.c_str()); fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu); fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat); fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau); fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta); fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false"); fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str()); fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str()); fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false"); fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers); fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict); fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs); fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false"); fprintf(stream, "no_mul_mat_q: %s # default: false\n", !params.mul_mat_q ? "true" : "false"); fprintf(stream, "no_penalize_nl: %s # default: false\n", !sparams.penalize_nl ? "true" : "false"); fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type); fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride); fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present); dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str()); fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str()); fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false"); fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false"); dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens); fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false"); fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat); fprintf(stream, "reverse_prompt:\n"); for (std::string ap : params.antiprompt) { size_t pos = 0; while ((pos = ap.find('\n', pos)) != std::string::npos) { ap.replace(pos, 1, "\\n"); pos += 1; } fprintf(stream, " - %s\n", ap.c_str()); } fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base); fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale); fprintf(stream, "seed: %u # default: -1 (random seed)\n", params.seed); fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false"); fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false"); fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp); const std::vector tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices()); dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector); fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z); fprintf(stream, "threads: %d # default: %u\n", params.n_threads, std::thread::hardware_concurrency()); fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k); fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p); fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p); fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p); fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false"); fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false"); } // // KV cache utils // void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size) { static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+"; printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d", view.n_cells, view.n_max_seq, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx); llama_kv_cache_view_cell * c_curr = view.cells; llama_seq_id * cs_curr = view.cells_sequences; for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) { if (i % row_size == 0) { printf("\n%5d: ", i); } int seq_count = 0; for (int j = 0; j < view.n_max_seq; j++) { if (cs_curr[j] >= 0) { seq_count++; } } putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]); } printf("\n=== Done dumping\n"); } void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size) { static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n", view.n_cells, view.n_max_seq, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx); std::unordered_map seqs; llama_kv_cache_view_cell * c_curr = view.cells; llama_seq_id * cs_curr = view.cells_sequences; for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) { for (int j = 0; j < view.n_max_seq; j++) { if (cs_curr[j] < 0) { continue; } if (seqs.find(cs_curr[j]) == seqs.end()) { if (seqs.size() + 1 >= sizeof(slot_chars)) { break; } const size_t sz = seqs.size(); seqs[cs_curr[j]] = sz; } } if (seqs.size() + 1 >= sizeof(slot_chars)) { break; } } printf("=== Sequence legend: "); for (const auto & it : seqs) { printf("%zu=%d, ", it.second, it.first); } printf("'+'=other sequence ids"); c_curr = view.cells; cs_curr = view.cells_sequences; for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) { if (i % row_size == 0) { printf("\n%5d: ", i); } for (int j = 0; j < view.n_max_seq; j++) { if (cs_curr[j] >= 0) { const auto & it = seqs.find(cs_curr[j]); putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+'); } else { putchar('.'); } } putchar(' '); } printf("\n=== Done dumping\n"); }