#include "norm.hpp" static void norm_f32(const float* x, float* dst, const int ncols, const float eps, const sycl::nd_item<3>& item_ct1, sycl::float2* s_sum, int block_size) { const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1); const int tid = item_ct1.get_local_id(2); const int nthreads = item_ct1.get_local_range(2); const int nwarps = nthreads / WARP_SIZE; assert(nwarps % WARP_SIZE == 0); sycl::float2 mean_var = sycl::float2(0.f, 0.f); for (int col = tid; col < ncols; col += block_size) { const float xi = x[row * ncols + col]; mean_var.x() += xi; mean_var.y() += xi * xi; } // sum up partial sums mean_var = warp_reduce_sum(mean_var, item_ct1); if (block_size > WARP_SIZE) { int warp_id = item_ct1.get_local_id(2) / WARP_SIZE; int lane_id = item_ct1.get_local_id(2) % WARP_SIZE; if (lane_id == 0) { s_sum[warp_id] = mean_var; } /* DPCT1118:0: SYCL group functions and algorithms must be encountered in converged control flow. You may need to adjust the code. */ item_ct1.barrier(sycl::access::fence_space::local_space); mean_var = 0.f; int nreduce = nwarps / WARP_SIZE; for (size_t i = 0; i < nreduce; i += 1) { mean_var += s_sum[lane_id + i * WARP_SIZE]; } mean_var = warp_reduce_sum(mean_var, item_ct1); } const float mean = mean_var.x() / ncols; const float var = mean_var.y() / ncols - mean * mean; const float inv_std = sycl::rsqrt(var + eps); for (int col = tid; col < ncols; col += block_size) { dst[row * ncols + col] = (x[row * ncols + col] - mean) * inv_std; } } static void group_norm_f32(const float* x, float* dst, const int group_size, const int ne_elements, const float eps, const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) { int start = item_ct1.get_group(2) * group_size; int end = start + group_size; const int nthreads = item_ct1.get_local_range(2); const int nwarps = nthreads / WARP_SIZE; assert(nwarps % WARP_SIZE == 0); start += item_ct1.get_local_id(2); if (end >= ne_elements) { end = ne_elements; } float tmp = 0.0f; // partial sum for thread in warp for (int j = start; j < end; j += block_size) { tmp += x[j]; } tmp = warp_reduce_sum(tmp, item_ct1); if (block_size > WARP_SIZE) { int warp_id = item_ct1.get_local_id(2) / WARP_SIZE; int lane_id = item_ct1.get_local_id(2) % WARP_SIZE; if (lane_id == 0) { s_sum[warp_id] = tmp; } /* DPCT1118:1: SYCL group functions and algorithms must be encountered in converged control flow. You may need to adjust the code. */ /* DPCT1065:54: Consider replacing sycl::nd_item::barrier() with sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better performance if there is no access to global memory. */ item_ct1.barrier(); tmp = 0.f; int nreduce = nwarps / WARP_SIZE; for (size_t i = 0; i < nreduce; i += 1) { tmp += s_sum[lane_id + i * WARP_SIZE]; } tmp = warp_reduce_sum(tmp, item_ct1); } float mean = tmp / group_size; tmp = 0.0f; for (int j = start; j < end; j += block_size) { float xi = x[j] - mean; dst[j] = xi; tmp += xi * xi; } tmp = warp_reduce_sum(tmp, item_ct1); if (block_size > WARP_SIZE) { int warp_id = item_ct1.get_local_id(2) / WARP_SIZE; int lane_id = item_ct1.get_local_id(2) % WARP_SIZE; if (lane_id == 0) { s_sum[warp_id] = tmp; } /* DPCT1118:2: SYCL group functions and algorithms must be encountered in converged control flow. You may need to adjust the code. */ /* DPCT1065:55: Consider replacing sycl::nd_item::barrier() with sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better performance if there is no access to global memory. */ item_ct1.barrier(); tmp = s_sum[lane_id]; tmp = warp_reduce_sum(tmp, item_ct1); } float variance = tmp / group_size; float scale = sycl::rsqrt(variance + eps); for (int j = start; j < end; j += block_size) { dst[j] *= scale; } } static void rms_norm_f32(const float* x, float* dst, const int ncols, const float eps, const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) { const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1); const int tid = item_ct1.get_local_id(2); const int nthreads = item_ct1.get_local_range(2); const int nwarps = nthreads / WARP_SIZE; assert(nwarps % WARP_SIZE == 0); float tmp = 0.0f; // partial sum for thread in warp for (int col = tid; col < ncols; col += block_size) { const float xi = x[row * ncols + col]; tmp += xi * xi; } // sum up partial sums tmp = warp_reduce_sum(tmp, item_ct1); if (block_size > WARP_SIZE) { int warp_id = item_ct1.get_local_id(2) / WARP_SIZE; int lane_id = item_ct1.get_local_id(2) % WARP_SIZE; if (lane_id == 0) { s_sum[warp_id] = tmp; } /* DPCT1118:3: SYCL group functions and algorithms must be encountered in converged control flow. You may need to adjust the code. */ item_ct1.barrier(sycl::access::fence_space::local_space); int nreduce = nwarps / WARP_SIZE; tmp = 0.f; for (size_t i = 0; i < nreduce; i += 1) { tmp += s_sum[lane_id + i * WARP_SIZE]; } tmp = warp_reduce_sum(tmp, item_ct1); } const float mean = tmp / ncols; const float scale = sycl::rsqrt(mean + eps); for (int col = tid; col < ncols; col += block_size) { dst[row * ncols + col] = scale * x[row * ncols + col]; } } static void norm_f32_sycl(const float* x, float* dst, const int ncols, const int nrows, const float eps, queue_ptr stream) { GGML_ASSERT(ncols % WARP_SIZE == 0); if (ncols < 1024) { const sycl::range<3> block_dims(1, 1, WARP_SIZE); stream->submit([&](sycl::handler& cgh) { cgh.parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { norm_f32(x, dst, ncols, eps, item_ct1, nullptr, WARP_SIZE); }); }); } else { const int work_group_size = get_work_group_size(stream->get_device()); const sycl::range<3> block_dims(1, 1, work_group_size); /* DPCT1049:17: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ stream->submit([&](sycl::handler& cgh) { sycl::local_accessor s_sum_acc_ct1( sycl::range<1>(work_group_size / WARP_SIZE), cgh); cgh.parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { norm_f32(x, dst, ncols, eps, item_ct1, s_sum_acc_ct1.get_pointer(), work_group_size); }); }); } } static void group_norm_f32_sycl(const float* x, float* dst, const int num_groups, const int group_size, const int ne_elements, queue_ptr stream) { static const float eps = 1e-6f; if (group_size < 1024) { const sycl::range<3> block_dims(1, 1, WARP_SIZE); stream->submit([&](sycl::handler& cgh) { const float eps_ct4 = eps; cgh.parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { group_norm_f32( x, dst, group_size, ne_elements, eps_ct4, item_ct1, nullptr, WARP_SIZE); }); }); } else { const int work_group_size = get_work_group_size(stream->get_device()); const sycl::range<3> block_dims(1, 1, work_group_size); /* DPCT1049:18: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ stream->submit([&](sycl::handler& cgh) { sycl::local_accessor s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE), cgh); const float eps_ct4 = eps; cgh.parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { group_norm_f32(x, dst, group_size, ne_elements, eps_ct4, item_ct1, s_sum_acc_ct1.get_pointer(), work_group_size); }); }); } } static void rms_norm_f32_sycl(const float* x, float* dst, const int ncols, const int nrows, const float eps, queue_ptr stream) { GGML_ASSERT(ncols % WARP_SIZE == 0); // printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE); if (ncols < 1024) { const sycl::range<3> block_dims(1, 1, WARP_SIZE); stream->submit([&](sycl::handler& cgh) { cgh.parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { rms_norm_f32(x, dst, ncols, eps, item_ct1, nullptr, WARP_SIZE); }); }); } else { const int work_group_size = get_work_group_size(stream->get_device()); const sycl::range<3> block_dims(1, 1, work_group_size); /* DPCT1049:19: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ stream->submit([&](sycl::handler& cgh) { sycl::local_accessor s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE), cgh); cgh.parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { rms_norm_f32(x, dst, ncols, eps, item_ct1, s_sum_acc_ct1.get_pointer(), work_group_size); }); }); } } void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, const ggml_tensor* src1, ggml_tensor* dst, const float* src0_dd, const float* src1_dd, float* dst_dd, const queue_ptr& main_stream) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); const int64_t ne00 = src0->ne[0]; const int64_t nrows = ggml_nrows(src0); float eps; memcpy(&eps, dst->op_params, sizeof(float)); norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream); (void)src1; (void)dst; (void)src1_dd; } void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, const ggml_tensor* src1, ggml_tensor* dst, const float* src0_dd, const float* src1_dd, float* dst_dd, const queue_ptr& main_stream) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); int num_groups = dst->op_params[0]; int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups); group_norm_f32_sycl(src0_dd, dst_dd, num_groups, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream); (void)src1; (void)dst; (void)src1_dd; } void ggml_sycl_op_rms_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, const ggml_tensor* src1, ggml_tensor* dst, const float* src0_dd, const float* src1_dd, float* dst_dd, const queue_ptr& main_stream) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); const int64_t ne00 = src0->ne[0]; const int64_t nrows = ggml_nrows(src0); float eps; memcpy(&eps, dst->op_params, sizeof(float)); rms_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream); (void)src1; (void)dst; (void)src1_dd; }