#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows #include "ggml.h" #include #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif #if defined(__GNUC__) #pragma GCC diagnostic ignored "-Wdouble-promotion" #endif #define MAX_NARGS 3 #undef MIN #undef MAX #define MIN(a, b) ((a) < (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b)) #define GGML_SILU_FP16 // // logging // #if (GGML_DEBUG >= 1) #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__) #else #define GGML_PRINT_DEBUG(...) #endif #if (GGML_DEBUG >= 5) #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__) #else #define GGML_PRINT_DEBUG_5(...) #endif #if (GGML_DEBUG >= 10) #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__) #else #define GGML_PRINT_DEBUG_10(...) #endif #define GGML_PRINT(...) printf(__VA_ARGS__) static float frand(void) { return (float)rand()/(float)RAND_MAX; } static int irand(int n) { if (n == 0) return 0; return rand()%n; } static void get_random_dims(int64_t * dims, int ndims) { dims[0] = dims[1] = dims[2] = dims[3] = 1; for (int i = 0; i < ndims; i++) { dims[i] = 1 + irand(4); } } static struct ggml_tensor * get_random_tensor_f32( struct ggml_context * ctx0, int ndims, int64_t ne[], float fmin, float fmax) { struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne); switch (ndims) { case 1: for (int i0 = 0; i0 < ne[0]; i0++) { ((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin; } break; case 2: for (int i1 = 0; i1 < ne[1]; i1++) { for (int i0 = 0; i0 < ne[0]; i0++) { ((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; } } break; case 3: for (int i2 = 0; i2 < ne[2]; i2++) { for (int i1 = 0; i1 < ne[1]; i1++) { for (int i0 = 0; i0 < ne[0]; i0++) { ((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; } } } break; case 4: for (int i3 = 0; i3 < ne[3]; i3++) { for (int i2 = 0; i2 < ne[2]; i2++) { for (int i1 = 0; i1 < ne[1]; i1++) { for (int i0 = 0; i0 < ne[0]; i0++) { ((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; } } } } break; default: assert(false); } return result; } static struct ggml_tensor * get_random_tensor_f16( struct ggml_context * ctx0, int ndims, int64_t ne[], float fmin, float fmax) { struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F16, ndims, ne); switch (ndims) { case 1: for (int i0 = 0; i0 < ne[0]; i0++) { ((ggml_fp16_t *)result->data)[i0] = ggml_fp32_to_fp16(frand()*(fmax - fmin) + fmin); } break; case 2: for (int i1 = 0; i1 < ne[1]; i1++) { for (int i0 = 0; i0 < ne[0]; i0++) { ((ggml_fp16_t *)result->data)[i1*ne[0] + i0] = ggml_fp32_to_fp16(frand()*(fmax - fmin) + fmin); } } break; case 3: for (int i2 = 0; i2 < ne[2]; i2++) { for (int i1 = 0; i1 < ne[1]; i1++) { for (int i0 = 0; i0 < ne[0]; i0++) { ((ggml_fp16_t *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = ggml_fp32_to_fp16(frand()*(fmax - fmin) + fmin); } } } break; case 4: for (int i3 = 0; i3 < ne[3]; i3++) { for (int i2 = 0; i2 < ne[2]; i2++) { for (int i1 = 0; i1 < ne[1]; i1++) { for (int i0 = 0; i0 < ne[0]; i0++) { ((ggml_fp16_t *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = ggml_fp32_to_fp16(frand()*(fmax - fmin) + fmin); } } } } break; default: assert(false); } return result; } static struct ggml_tensor * get_random_tensor_i32( struct ggml_context * ctx0, int ndims, int64_t ne[], int32_t imin, int32_t imax) { struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_I32, ndims, ne); switch (ndims) { case 1: for (int i0 = 0; i0 < ne[0]; i0++) { ((int32_t *)result->data)[i0] = irand(imax - imin) + imin; } break; case 2: for (int i1 = 0; i1 < ne[1]; i1++) { for (int i0 = 0; i0 < ne[0]; i0++) { ((int32_t *)result->data)[i1*ne[0] + i0] = irand(imax - imin) + imin; } } break; case 3: for (int i2 = 0; i2 < ne[2]; i2++) { for (int i1 = 0; i1 < ne[1]; i1++) { for (int i0 = 0; i0 < ne[0]; i0++) { ((int32_t *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = irand(imax - imin) + imin; } } } break; case 4: for (int i3 = 0; i3 < ne[3]; i3++) { for (int i2 = 0; i2 < ne[2]; i2++) { for (int i1 = 0; i1 < ne[1]; i1++) { for (int i0 = 0; i0 < ne[0]; i0++) { ((int32_t *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = irand(imax - imin) + imin; } } } } break; default: assert(false); } return result; } static bool check_gradient( const char * op_name, struct ggml_context * ctx0, struct ggml_tensor * x[], struct ggml_tensor * f, int ndims, int nargs, float eps, float max_error_abs, float max_error_rel, std::vector expected_vals) { static int n_threads = -1; if (n_threads < 0) { n_threads = GGML_DEFAULT_N_THREADS; const char *env = getenv("GGML_N_THREADS"); if (env) { n_threads = atoi(env); } printf("GGML_N_THREADS = %d\n", n_threads); } struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, GGML_DEFAULT_GRAPH_SIZE, true); struct ggml_cgraph * gb = ggml_new_graph_custom(ctx0, GGML_DEFAULT_GRAPH_SIZE, true); ggml_build_forward_expand(gf, f); ggml_graph_cpy(gf, gb); ggml_build_backward_expand(ctx0, gf, gb, false); ggml_graph_prepare(gf, n_threads, nullptr); ggml_graph_work_init(gf, ctx0); ggml_graph_compute(gf); ggml_graph_reset (gf); ggml_set_f32 (f->grad, 1.0f); ggml_graph_prepare(gb, n_threads, nullptr); ggml_graph_work_init(gb, ctx0); ggml_graph_compute(gb); // ggml_graph_dump_dot(gf, NULL, "test-grad0-forward.dot"); // ggml_graph_dump_dot(gb, gf, "test-grad0-backward.dot"); for (int i = 0; i < nargs; ++i) { bool all_g0_bad = true; const int nelements = ggml_nelements(x[i]); for (int k = 0; k < nelements; ++k) { // Calculate gradient numerically: const float x0 = ggml_get_f32_1d(x[i], k); const float xm = x0 - eps; const float xp = x0 + eps; ggml_set_f32_1d(x[i], k, xp); ggml_graph_prepare(gf, n_threads, nullptr); ggml_graph_work_init(gf, ctx0); ggml_graph_compute(gf); const double f0 = ggml_get_f32_1d(f, 0); ggml_set_f32_1d(x[i], k, xm); ggml_graph_prepare(gf, n_threads, nullptr); ggml_graph_work_init(gf, ctx0); ggml_graph_compute(gf); const double f1 = ggml_get_f32_1d(f, 0); const double g0 = (f0 - f1)/(2.0*(double) eps); // The numerical calculation of the gradient fails around noncontinuities (e.g. 0 for ReLU). // In such cases, provide a vector of expected values and skip the comparison for failed calculations. if (!expected_vals.empty()) { bool matches_any = false; for (const double & ev : expected_vals) { const double error_abs = std::fabs(g0 - ev); if (error_abs > max_error_abs) { continue; } const double error_rel = g0 != 0.0 ? fabs(g0 - ev)/fabs(g0) : 0.0; if (error_rel > max_error_rel) { continue; } matches_any = true; break; } if (!matches_any) { continue; } } all_g0_bad = false; ggml_set_f32_1d(x[i], k, x0); // compute gradient using backward graph ggml_graph_reset (gf); ggml_set_f32 (f->grad, 1.0f); ggml_graph_prepare(gb, n_threads, nullptr); ggml_graph_work_init(gb, ctx0); ggml_graph_compute(gb); const double g1 = ggml_get_f32_1d(x[i]->grad, k); const double error_abs = fabs(g0 - g1); const double error_rel = g0 != 0.0 ? fabs(g0 - g1)/fabs(g0) : 0.0; if (error_abs > max_error_abs || error_rel > max_error_rel) { printf("%s: ndims=%d, i=%d, k=%d, x0=%f, xm=%f, xp=%f, f0=%f, f1=%f, g0=%f, g1=%f, eps=%f, error_abs=%f, error_rel=%f\n", op_name, ndims, i, k, x0, xm, xp, f0, f1, g0, g1, eps, error_abs, error_rel); //assert(false); return false; } } if (all_g0_bad) { printf("%s: numerical calculation of the gradient failed for all values\n", op_name); return false; } } return true; } // TODO: clean-up this .. static bool check_mat_mul( const struct ggml_tensor * y, const struct ggml_tensor * x0, const struct ggml_tensor * x1) { float * dst = (float *) y->data; float * src0 = (float *) x0->data; float * src1 = (float *) x1->data; const int nc = x0->ne[1]; const int nr = x1->ne[1]; const int nk = x0->ne[0]; GGML_PRINT_DEBUG("check_mat_mul: nc=%d, nr=%d, nk=%d\n", nc, nr, nk); GGML_PRINT_DEBUG("x0:\n"); for (int j = 0; j < x0->ne[1]; ++j) { for (int i = 0; i < x0->ne[0]; ++i) { GGML_PRINT_DEBUG("%6.3f ", src0[j*nk + i]); } GGML_PRINT_DEBUG("\n"); } GGML_PRINT_DEBUG("\n"); GGML_PRINT_DEBUG("x1:\n"); for (int j = 0; j < x1->ne[1]; ++j) { for (int i = 0; i < x1->ne[0]; ++i) { GGML_PRINT_DEBUG("%6.3f ", src1[j*nk + i]); } GGML_PRINT_DEBUG("\n"); } GGML_PRINT_DEBUG("\n"); GGML_PRINT_DEBUG("y: n_dims = %d, (%lld, %lld)\n", y->n_dims, y->ne[0], y->ne[1]); for (int j = 0; j < y->ne[1]; ++j) { for (int i = 0; i < y->ne[0]; ++i) { GGML_PRINT_DEBUG("%6.3f ", dst[j*nr + i]); } GGML_PRINT_DEBUG("\n"); } for (int i = 0; i < nr; ++i) { for (int j = 0; j < nc; ++j) { float sum = 0.0f; for (int k = 0; k < nk; ++k) { sum += src0[j*nk + k]*src1[i*nk + k]; } if (fabsf(dst[i*nc + j] - sum) > 1e-5f) { fprintf(stderr, "check_mat_mul: dst[%d] = %f, sum = %f\n", i*nc + j, dst[i*nc + j], sum); assert(false); return false; } } } return true; } #define NUM_PERMUTATIONS (4*3*2*1) int main(int argc, const char ** argv) { struct ggml_init_params params = { /* .mem_size = */ 256*1024*1024, /* .mem_buffer = */ NULL, /* .no_alloc = */ false, }; int64_t ne[4]; int all_permutations[4 * NUM_PERMUTATIONS]; { int count = 0; for (int ax0=0; ax0<4; ++ax0) { for (int ax1=0; ax1<4; ++ax1) { if (ax1 == ax0) continue; for (int ax2=0; ax2<4; ++ax2) { if (ax2 == ax0) continue; if (ax2 == ax1) continue; for (int ax3=0; ax3<4; ++ax3) { if (ax3 == ax0) continue; if (ax3 == ax1) continue; if (ax3 == ax2) continue; assert(count < NUM_PERMUTATIONS); all_permutations[count*4+0] = ax0; all_permutations[count*4+1] = ax1; all_permutations[count*4+2] = ax2; all_permutations[count*4+3] = ax3; ++count; } } } } } unsigned seed_iter = 1; // original loop: 1000 int niter = 4; const char *env = getenv("GGML_NLOOP"); if (env != NULL) { niter = atoi(env); } if (argc > 1) { niter = atoi(argv[1]); } for (int iter = 0; iter < niter; ++iter) { srand(seed_iter); seed_iter = rand(); unsigned seed = rand(); printf("test-grad0: iter:%d/%d\n", (iter+1), niter); struct ggml_context * ctx0 = ggml_init(params); get_random_dims(ne, 4); struct ggml_tensor * x[MAX_NARGS]; // add f32 { srand(seed); const int nargs = 2; for (int ndims = 1; ndims <= 4; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor * f = ggml_sum(ctx0, ggml_add(ctx0, x[0], x[1])); check_gradient("add f32", ctx0, x, f, ndims, nargs, 1e-3f, 2e-3f, 2e-3f, {}); } } // add f16 { srand(seed); const int nargs = 2; for (int ndims = 1; ndims <= 4; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor_f16(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor * f = ggml_sum(ctx0, ggml_add(ctx0, x[0], x[1])); check_gradient("add f16", ctx0, x, f, ndims, nargs, 1e-1f, 2e-1f, 2e-1f, {}); } } // sub { srand(seed); const int nargs = 2; for (int ndims = 1; ndims <= 4; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor * f = ggml_sum(ctx0, ggml_sub(ctx0, x[0], x[1])); check_gradient("sub", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {}); } } // mul { srand(seed); const int nargs = 2; for (int ndims = 1; ndims <= 4; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor * f = ggml_sum(ctx0, ggml_mul(ctx0, x[0], x[1])); check_gradient("mul", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); } } // div { srand(seed); const int nargs = 2; for (int ndims = 1; ndims <= 4; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor_f32(ctx0, ndims, ne, 0.5f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor * f = ggml_sum(ctx0, ggml_div(ctx0, x[0], x[1])); check_gradient("div", ctx0, x, f, ndims, nargs, 1e-3f, 1e-1f, 1e-1f, {}); } } // sqr { srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqr(ctx0, x[0])); check_gradient("sqr", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); } } // sqrt { srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor_f32(ctx0, ndims, ne, 2.0f*1e-3f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqrt(ctx0, x[0])); check_gradient("sqrt", ctx0, x, f, ndims, nargs, 1e-3f, 2e-2f, 1e-1f, {}); } } // log { srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor_f32(ctx0, ndims, ne, 2.0f*1e-3f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor * f = ggml_sum(ctx0, ggml_log(ctx0, x[0])); check_gradient("log", ctx0, x, f, ndims, nargs, 1e-3f, INFINITY, 1e-1f, {}); } } // sum { srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor * f = ggml_sum(ctx0, x[0]); check_gradient("sum", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {}); } } // sum_rows { srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqr(ctx0, ggml_sum_rows(ctx0, x[0]))); check_gradient("sum_rows", ctx0, x, f, ndims, nargs, 1e-3f, 1e-2f, INFINITY, {}); } } // mean, not yet fully implemented if(0) { srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor * f = ggml_sum(ctx0, ggml_mean(ctx0, x[0])); check_gradient("mean", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {}); } } // argmax if (0) { srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor * f = ggml_sum(ctx0, ggml_argmax(ctx0, x[0])); check_gradient("argmax", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {}); } } // repeat { srand(seed); int64_t ne2[4]; get_random_dims(ne2, 4); ne2[0] = ne[0] * ne2[0]; ne2[1] = ne[1] * ne2[1]; ne2[2] = 1; ne2[3] = 1; const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); x[1] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f); ggml_set_param(ctx0, x[0]); struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqr(ctx0, ggml_sub(ctx0, x[1], ggml_repeat(ctx0, x[0], x[1])))); check_gradient("repeat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-2f, INFINITY, {}); } } // repeat back { srand(seed); int64_t ne2[4]; get_random_dims(ne2, 4); ne2[0] = ne[0] * ne2[0]; ne2[1] = ne[1] * ne2[1]; ne2[2] = 1; ne2[3] = 1; const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); x[1] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f); ggml_set_param(ctx0, x[0]); struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqr(ctx0, ggml_sub(ctx0, x[0], ggml_repeat_back(ctx0, x[1], x[0])))); check_gradient("repeat back", ctx0, x, f, ndims, nargs, 1e-3f, 1e-2f, INFINITY, {}); } } // abs { const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor * f = ggml_sum(ctx0, ggml_abs(ctx0, x[0])); check_gradient("abs", ctx0, x, f, ndims, nargs, 1e-3f, INFINITY, 1e-3f, {-1.0, 1.0}); } } // sgn { srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor* f = ggml_sum(ctx0, ggml_sgn(ctx0, x[0])); check_gradient("sgn", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {0.0}); } } // neg { srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor* f = ggml_sum(ctx0, ggml_neg(ctx0, x[0])); check_gradient("neg", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {}); } } // step { srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor* f = ggml_sum(ctx0, ggml_step(ctx0, x[0])); check_gradient("step", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {0.0}); } } // tanh, not yet fully implemented if(0) { srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor* f = ggml_sum(ctx0, ggml_tanh(ctx0, x[0])); check_gradient("tanh", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {}); } } // mul_mat { srand(seed); const int nargs = 2; for (int ndims = 2; ndims <= 4; ++ndims) { int max_nrep = (ndims >= 3) ? 2 : 1; x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); for (int nrep2 = 1; nrep2 < max_nrep; ++nrep2) { for (int nrep3 = 1; nrep3 < max_nrep; ++nrep3) { { int64_t ne2[4]; get_random_dims(ne2, 4); ne2[0] = ne[0]; ne2[2] = nrep2 * ne[2]; ne2[3] = nrep3 * ne[3]; x[1] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f); } ggml_set_param(ctx0, x[0]); ggml_set_param(ctx0, x[1]); struct ggml_tensor * m = ggml_mul_mat(ctx0, x[1], x[0]); struct ggml_tensor * f = ggml_sum(ctx0, m); GGML_PRINT_DEBUG("testing: mul_mat, [%lld, %lld] (%d) * [%lld, %lld] (%d)\n", x[1]->ne[0], x[1]->ne[1], x[1]->n_dims, x[0]->ne[0], x[0]->ne[1], x[0]->n_dims); check_gradient("mul_mat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); if (ndims == 2) { // check_mat_mul does not support ndims > 2 check_mat_mul(m, x[1], x[0]); } } } } } // elu, not yet fully implemented if(0) { srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor* f = ggml_sum(ctx0, ggml_elu(ctx0, x[0])); check_gradient("elu", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {}); } } // relu { srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor* f = ggml_sum(ctx0, ggml_relu(ctx0, x[0])); check_gradient("relu", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {0.0, 1.0}); } } // gelu, not yet fully implemented if(0) { srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor* f = ggml_sum(ctx0, ggml_gelu(ctx0, x[0])); check_gradient("gelu", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {}); } } // silu { srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor * f = ggml_sum(ctx0, ggml_silu(ctx0, x[0])); #ifdef GGML_SILU_FP16 // due to GGML_SILU_FP16 the finite difference method will be slightly wrong -> increase error bounds. check_gradient("silu", ctx0, x, f, ndims, nargs, 1e-3f, 0.5, INFINITY, {}); #else check_gradient("silu", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); #endif } } // rms_norm { srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor * f = ggml_sum(ctx0, ggml_rms_norm(ctx0, x[0], 1e-6f)); check_gradient("rms_norm", ctx0, x, f, ndims, nargs, 1e-4f, 1.0f, INFINITY, {}); } } // scale { srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); const float s = -1.0f + 2.0f*frand(); ggml_set_param(ctx0, x[0]); struct ggml_tensor * f = ggml_sum(ctx0, ggml_scale(ctx0, x[0], s)); check_gradient("scale", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); } } // cpy f32 { srand(seed); const int nargs = 2; for (int ndims = 1; ndims <= 2; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[i]); } // x[1] is overwritten by x[0], so the gradients don't propagate to x[1] struct ggml_tensor * f = ggml_sum(ctx0, ggml_cpy(ctx0, x[0], x[1])); check_gradient("cpy f32", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); } } // cpy f16 { srand(seed); const int nargs = 2; for (int ndims = 1; ndims <= 2; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor_f16(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[i]); } // x[1] is overwritten by x[0], so the gradients don't propagate to x[1] struct ggml_tensor * f = ggml_sum(ctx0, ggml_cpy(ctx0, x[0], x[1])); check_gradient("cpy f16", ctx0, x, f, ndims, nargs, 1e-1f, 1e-1f, INFINITY, {}); } } // reshape (1d->nd) { srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { int64_t ne2[4]; ne2[0] = 1; ne2[1] = 1; ne2[2] = 1; ne2[3] = 1; for (int i = 0; i < ndims; ++i) { ne2[0] *= ne[i]; } x[0] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f); x[1] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[0]); struct ggml_tensor * f = ggml_sum(ctx0, ggml_reshape(ctx0, x[0], x[1])); check_gradient("reshape", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); } } // reshape (nd->1d) { srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { int64_t ne2[4]; ne2[0] = 1; ne2[1] = 1; ne2[2] = 1; ne2[3] = 1; for (int i = 0; i < ndims; ++i) { ne2[0] *= ne[i]; } x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); x[1] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f); ggml_set_param(ctx0, x[0]); struct ggml_tensor * f = ggml_sum(ctx0, ggml_reshape(ctx0, x[0], x[1])); check_gradient("reshape", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); } } // acc 1d { srand(seed); int64_t ne2[4] = { 1, 1, 1, 1 }; const int nargs = 2; for (int ndims = 1; ndims <= 4; ++ndims) { x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[0]); get_random_dims(ne2, 1); while ((ne2[0] > ne[0]) || (ne2[0] > ggml_nelements(x[0]))) { get_random_dims(ne2, 1); } x[1] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f); ggml_set_param(ctx0, x[1]); const int max_offset = MAX(0, ggml_nelements(x[0]) - ggml_nelements(x[1])); const int offset = irand(max_offset) * ggml_element_size(x[0]); struct ggml_tensor * f = ggml_sum(ctx0, ggml_acc(ctx0, x[0], x[1], x[0]->nb[1], x[0]->nb[2], x[0]->nb[3], offset)); check_gradient("acc 1d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); } } // acc 2d { srand(seed); int64_t ne2[4] = { 1, 1, 1, 1 }; int64_t max_offsets[4] = { 0, 0, 0, 0 }; int64_t offsets[4] = { 0, 0, 0, 0 }; const int nargs = 2; for (int ndims = 2; ndims <= 4; ++ndims) { x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[0]); get_random_dims(ne2, 2); while ((ne2[0] > ne[0]) || (ne2[1] > ne[1]) || (ne2[0]*ne2[1] > ggml_nelements(x[0]))) { get_random_dims(ne2, 2); } x[1] = get_random_tensor_f32(ctx0, 2, ne2, -1.0f, 1.0f); ggml_set_param(ctx0, x[1]); max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]); max_offsets[1] = MAX(0, x[0]->ne[1] - x[1]->ne[1]); offsets[0] = irand(max_offsets[0]) * x[0]->nb[0]; offsets[1] = irand(max_offsets[1]) * x[0]->nb[1]; const int offset = offsets[0] + offsets[1]; struct ggml_tensor * f = ggml_sum(ctx0, ggml_acc(ctx0, x[0], x[1], x[0]->nb[1], x[0]->nb[2], x[0]->nb[3], offset)); check_gradient("acc 2d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); } } // acc 3d { srand(seed); int64_t ne2[4] = { 1, 1, 1, 1 }; int64_t max_offsets[4] = { 0, 0, 0, 0 }; int64_t offsets[4] = { 0, 0, 0, 0 }; const int nargs = 2; for (int ndims = 3; ndims <= 4; ++ndims) { x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[0]); get_random_dims(ne2, 3); while ((ne2[0] > ne[0]) || (ne2[1] > ne[1]) || (ne2[2] > ne[2]) || (ne2[0]*ne2[1]*ne2[2] > ggml_nelements(x[0]))) { get_random_dims(ne2, 3); } x[1] = get_random_tensor_f32(ctx0, 3, ne2, -1.0f, 1.0f); ggml_set_param(ctx0, x[1]); max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]); max_offsets[1] = MAX(0, x[0]->ne[1] - x[1]->ne[1]); max_offsets[2] = MAX(0, x[0]->ne[2] - x[1]->ne[2]); offsets[0] = irand(max_offsets[0]) * x[0]->nb[0]; offsets[1] = irand(max_offsets[1]) * x[0]->nb[1]; offsets[2] = irand(max_offsets[2]) * x[0]->nb[2]; const int offset = offsets[0] + offsets[1] + offsets[2]; struct ggml_tensor * f = ggml_sum(ctx0, ggml_acc(ctx0, x[0], x[1], x[0]->nb[1], x[0]->nb[2], x[0]->nb[3], offset)); check_gradient("acc 3d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); } } // acc 4d { srand(seed); int64_t ne2[4] = { 1, 1, 1, 1 }; int64_t max_offsets[4] = { 0, 0, 0, 0 }; int64_t offsets[4] = { 0, 0, 0, 0 }; const int nargs = 2; for (int ndims = 4; ndims <= 4; ++ndims) { x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[0]); get_random_dims(ne2, 4); while ((ne2[0] > ne[0]) || (ne2[1] > ne[1]) || (ne2[2] > ne[2]) || (ne2[3] > ne[3]) || (ne2[0]*ne2[1]*ne2[2]*ne2[3] > ggml_nelements(x[0]))) { get_random_dims(ne2, 4); } x[1] = get_random_tensor_f32(ctx0, 4, ne2, -1.0f, 1.0f); ggml_set_param(ctx0, x[1]); max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]); max_offsets[1] = MAX(0, x[0]->ne[1] - x[1]->ne[1]); max_offsets[2] = MAX(0, x[0]->ne[2] - x[1]->ne[2]); max_offsets[3] = MAX(0, x[0]->ne[3] - x[1]->ne[3]); offsets[0] = irand(max_offsets[0]) * x[0]->nb[0]; offsets[1] = irand(max_offsets[1]) * x[0]->nb[1]; offsets[2] = irand(max_offsets[2]) * x[0]->nb[2]; offsets[3] = irand(max_offsets[3]) * x[0]->nb[3]; const int offset = offsets[0] + offsets[1] + offsets[2] + offsets[3]; struct ggml_tensor * f = ggml_sum(ctx0, ggml_acc(ctx0, x[0], x[1], x[0]->nb[1], x[0]->nb[2], x[0]->nb[3], offset)); check_gradient("acc 4d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); } } // set_1d { srand(seed); int64_t ne2[4]; const int nargs = 2; for (int ndims = 1; ndims <= 4; ++ndims) { x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[0]); get_random_dims(ne2, 1); while ((ne2[0] > ne[0]) || (ne2[0] > ggml_nelements(x[0]))) { get_random_dims(ne2, 1); } x[1] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f); ggml_set_param(ctx0, x[1]); const int max_offset = MAX(0, ggml_nelements(x[0]) - ggml_nelements(x[1])); const int offset = irand(max_offset) * ggml_element_size(x[0]); struct ggml_tensor * f = ggml_sum(ctx0, ggml_set_1d(ctx0, x[0], x[1], offset)); check_gradient("set_1d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); } } // set_2d { srand(seed); int64_t ne2[4]; int64_t max_offsets[4] = { 0, 0, 0, 0 }; int64_t offsets[4] = { 0, 0, 0, 0 }; const int nargs = 1; for (int ndims = 2; ndims <= 4; ++ndims) { x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[0]); get_random_dims(ne2, 2); while ((ne2[0] > ne[0]) || (ne2[1] > ne[1]) || (ne2[0]*ne2[1] > ggml_nelements(x[0]))) { get_random_dims(ne2, 2); } x[1] = get_random_tensor_f32(ctx0, 2, ne2, -1.0f, 1.0f); ggml_set_param(ctx0, x[1]); max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]); max_offsets[1] = MAX(0, x[0]->ne[1] - x[1]->ne[1]); offsets[0] = irand(max_offsets[0]) * x[0]->nb[0]; offsets[1] = irand(max_offsets[1]) * x[0]->nb[1]; const int offset = offsets[0] + offsets[1]; struct ggml_tensor * f = ggml_sum(ctx0, ggml_set_2d(ctx0, x[0], x[1], x[1]->nb[1], offset)); check_gradient("set_2d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); } } // view_1d { srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[0]); const int k0 = irand(ggml_nelements(x[0])); const int k1 = irand(ggml_nelements(x[0])); const int i0 = MIN(k0, k1); const int i1 = MAX(k0, k1); const int offset = i0 * sizeof(float); const int nelem = i1 - i0; struct ggml_tensor * f = ggml_sum(ctx0, ggml_view_1d(ctx0, x[0], nelem, offset)); check_gradient("view_1d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); } } // view_2d { srand(seed); int64_t ne2[4]; int64_t nb2[4]; const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); get_random_dims(ne2, 2); while (ne2[0]*ne2[1] > ggml_nelements(x[0])) { get_random_dims(ne2, 2); } const int count = ne2[0]*ne2[1]; nb2[0] = sizeof(float); nb2[1] = nb2[0]*ne2[0]; ggml_set_param(ctx0, x[0]); const int max_offset = ggml_nelements(x[0]) - count; const int offset = irand(max_offset+1) * sizeof(float); struct ggml_tensor * f = ggml_sum(ctx0, ggml_view_2d(ctx0, x[0], ne2[0], ne2[1], nb2[1], offset)); check_gradient("view_2d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); } } // view_3d { srand(seed); int64_t ne2[4] = {1,1,1,1}; int64_t nb2[4] = {0,0,0,0}; const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); get_random_dims(ne2, 3); while (ne2[0]*ne2[1]*ne2[2] > ggml_nelements(x[0])) { get_random_dims(ne2, 3); } const int count = ne2[0]*ne2[1]*ne2[2]; nb2[0] = sizeof(float); nb2[1] = nb2[0]*ne2[0]; nb2[2] = nb2[1]*ne2[1]; ggml_set_param(ctx0, x[0]); const int max_offset = ggml_nelements(x[0]) - count; const int offset = irand(max_offset+1) * sizeof(float); struct ggml_tensor * f = ggml_sum(ctx0, ggml_view_3d(ctx0, x[0], ne2[0], ne2[1], ne2[2], nb2[1], nb2[2], offset)); check_gradient("view_3d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); } } // permute { srand(seed); int64_t ne2[4]; const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { // ggml_permute will set axes of dimensions below n_dims to 1. // to make ggml_permute work correctly on all axes, // the input tensor needs maximal n_dim of 4. for (int i=0; i finite differences should not work // instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0) struct ggml_tensor * f = ggml_sum(ctx0, ggml_log(ctx0, ggml_add1(ctx0, ggml_scale(ctx0, ggml_soft_max(ctx0, x[0]), 1.0f - eps), ggml_new_f32(ctx0, eps)))); check_gradient("softmax", ctx0, x, f, ndims, nargs, 1e-3f, 2e-1f, INFINITY, {}); // NOTE: softmax forward is computed using f16 table lookup instead of using actual expf, but backward assumes actual expf. // this may result in different gradients too finite differences. // when this test reports errors, first try to replace the table lookup with actual expf and test again to see if just that was the cause. // if only the table lookup causes gradients to differ this is acceptable. } } // cross_entropy_loss { srand(seed); const int nargs = 1; int64_t ne2[4]; get_random_dims(ne2, 4); for (int ndims = 1; ndims <= 4; ++ndims) { x[0] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f); x[1] = get_random_tensor_f32(ctx0, ndims, ne2, 0.0f, 1.0f); // the second argument to cross_entropy_loss must sum up to 1 for each row int nr = ggml_nrows(x[1]); int nc = ggml_nelements(x[1]) / nr; for (int ir = 0; ir < nr; ++ir) { float sum = 0; for (int ic = 0; ic < nc; ++ic) { sum += ((float *) x[1]->data)[ic + ir*nc]; } for (int ic = 0; ic < nc; ++ic) { ((float *) x[1]->data)[ic + ir*nc] /= sum; } } ggml_set_param(ctx0, x[0]); struct ggml_tensor * f = ggml_cross_entropy_loss(ctx0, x[0], x[1]); check_gradient("cross_entropy_loss", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); } } // rope f32 { srand(seed); const int nargs = 1; int64_t ne2[4]; get_random_dims(ne2, 4); ne2[0] += ne2[0] % 2; int n_rot = ne2[0]; for (int ndims = 3; ndims <= 4; ++ndims) { for (int mode = 0; mode < 4; ++mode) { for (int n_past = 1; n_past < ne2[2]; ++n_past) { x[0] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f); struct ggml_tensor * p = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne2[2]); for (int i = 0; i < ne2[2]; ++i) { ((int32_t *) p->data)[i] = n_past + i; } ggml_set_param(ctx0, x[0]); const bool skip_past = (mode & 1); if (skip_past) { // we have no past, so this would have to work on uninitialized memory. // we only test the gradients here; // skip_past should have no influence on gradient computation. // so when other modes work, we assume that this does as well. continue; } struct ggml_tensor * f = ggml_sum(ctx0, ggml_rope(ctx0, x[0], p, n_rot, mode)); GGML_PRINT_DEBUG("rope f32: n_past: %d n_rot: %d mode: %d\n", n_past, n_rot, mode); check_gradient("rope f32", ctx0, x, f, ndims, nargs, 1e-2f, 1e-3f, INFINITY, {}); } } } } // rope f16 { srand(seed); const int nargs = 1; int64_t ne2[4]; get_random_dims(ne2, 4); ne2[0] += ne2[0] % 2; int n_rot = ne2[0]; for (int ndims = 3; ndims <= 4; ++ndims) { for (int mode = 0; mode < 4; ++mode) { for (int n_past = 1; n_past < ne2[2]; ++n_past) { x[0] = get_random_tensor_f16(ctx0, ndims, ne2, -1.0f, 1.0f); struct ggml_tensor * p = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne2[2]); for (int i = 0; i < ne2[2]; ++i) { ((int32_t *) p->data)[i] = n_past + i; } ggml_set_param(ctx0, x[0]); const bool skip_past = (mode & 1); if (skip_past) { // we have no past, so this would have to work on uninitialized memory. // we only test the gradients here; // skip_past should have no influence on gradient computation. // so when other modes work, we assume that this does as well. continue; } struct ggml_tensor * f = ggml_sum(ctx0, ggml_rope(ctx0, x[0], p, n_rot, mode)); GGML_PRINT_DEBUG("rope f16: n_past: %d n_rot: %d mode: %d\n", n_past, n_rot, mode); check_gradient("rope f16", ctx0, x, f, ndims, nargs, 1e-1f, 1e-1f, INFINITY, {}); } } } } // im2col f32 { srand(seed); const int nargs = 1; const int ndims = 4; for (const bool is_2D : {false, true}) { int64_t ne0[ndims]; int64_t ne1[ndims]; get_random_dims(ne0, ndims); get_random_dims(ne1, ndims); // // Ensure that the output is not zero-sized: ne1[0] += 8; ne1[1] += 8; if (is_2D) { ne1[2] = ne0[2]; } else { ne1[1] = ne0[1]; ne0[3] = 1; ne1[3] = 1; } // The order of arguments is swapped because the first tensor is only used for its shape. x[1] = get_random_tensor_f16(ctx0, ndims, ne0, -1.0f, 1.0f); x[0] = get_random_tensor_f32(ctx0, ndims, ne1, -1.0f, 1.0f); ggml_set_param(ctx0, x[0]); const int s0 = 1 + irand(2); const int s1 = is_2D ? 1 + irand(2) : 0; const int p0 = 0 + irand(2); const int p1 = is_2D ? 0 + irand(2) : 0; const int d0 = 1 + irand(2); const int d1 = is_2D ? 1 + irand(2) : 0; struct ggml_tensor * f = ggml_sum(ctx0, ggml_im2col(ctx0, x[1], x[0], s0, s1, p0, p1, d0, d1, is_2D, GGML_TYPE_F32)); GGML_PRINT_DEBUG("im2col f32: is_2D=%s, s0=%d, s1=%d, p0=%d, p1=%d, d0=%d, d1=%d\n", is_2D ? "yes" : "no", s0, s1, p0, p1, d0, d1); check_gradient("im2col f32", ctx0, x, f, ndims, nargs, 1e-2f, 1e-3f, INFINITY, {}); } } // pool_2d f32 { srand(seed); const int nargs = 1; const int ndims = 4; for (const enum ggml_op_pool op : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) { int64_t ne0[ndims]; get_random_dims(ne0, ndims); ne0[0] += 8; ne0[1] += 8; x[0] = get_random_tensor_f32(ctx0, ndims, ne0, -1.0f, 1.0f); ggml_set_param(ctx0, x[0]); const int k0 = 2 + irand(2); const int k1 = 2 + irand(2); const int s0 = 2 + irand(2); const int s1 = 2 + irand(2); const int p0 = 0 + irand(2); const int p1 = 0 + irand(2); struct ggml_tensor * f = ggml_sum(ctx0, ggml_pool_2d(ctx0, x[0], op, k0, k1, s0, s1, p0, p1)); GGML_PRINT_DEBUG("ggml_pool_2d f32: op=%s k0=%d, k1=%d, s0=%d, s1=%d, p0=%d, p1=%d\n", op == GGML_OP_POOL_MAX ? "max" : "avg", k0, k1, s0, s1, p0, p1); std::vector expected_vals; if (op == GGML_OP_POOL_MAX) { expected_vals.push_back(0.0); expected_vals.push_back(1.0); } check_gradient("ggml_pool_2d f32", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, expected_vals); } } // flash_attn f32 // TODO: adapt to ggml_flash_attn_ext() changes //{ // srand(seed); // const int nargs = 3; // int64_t ne2[4]; // get_random_dims(ne2, 4); // int64_t D = ne2[0]; // int64_t N = ne2[1]; // int64_t M = ne2[2] + N; // int64_t B = ne2[3]; // for (int masked = 0; masked <= 1; ++masked) { // for (int ndims = 2; ndims <= 4; ++ndims) { // int max_nrep = (ndims >= 3) ? 2 : 1; // for (int nrep = 1; nrep < max_nrep; ++nrep) { // int64_t neq[4] = { D, N, B*nrep, ne[3] }; // int64_t nek[4] = { D, M, B, ne[3] }; // int64_t nev[4] = { M, D, B, ne[3] }; // if (ndims == 2) { // neq[2] = 1; neq[3] = 1; // nek[2] = 1; nek[3] = 1; // nev[2] = 1; nev[3] = 1; // } else if (ndims == 3) { // neq[3] = 1; // nek[3] = 1; // nev[3] = 1; // } // x[0] = get_random_tensor_f32(ctx0, ndims, neq, -0.1250f, 0.1250f); // x[1] = get_random_tensor_f32(ctx0, ndims, nek, -0.1250f, 0.1250f); // x[2] = get_random_tensor_f32(ctx0, ndims, nev, -0.1250f, 0.1250f); // ggml_set_param(ctx0, x[0]); // ggml_set_param(ctx0, x[1]); // ggml_set_param(ctx0, x[2]); // struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0))); // check_gradient("flash_attn f32", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY, {}); // } // } // } //} ggml_free(ctx0); } return 0; }