#include "mmq.cuh" #include "vecdotq.cuh" typedef void (*allocate_tiles_cuda_t)(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc); typedef void (*load_tiles_cuda_t)( const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row); typedef float (*vec_dot_q_mul_mat_cuda_t)( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ms, const int & i, const int & j, const int & k); typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v); typedef void (mul_mat_q_t)( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst); struct mmq_arch_config_t { int x; int y; int nwarps; }; struct mmq_config_t { mmq_arch_config_t rdna2; mmq_arch_config_t rdna1; mmq_arch_config_t ampere; mmq_arch_config_t pascal; }; constexpr mmq_config_t MMQ_CONFIG_Q4_0 = { // x y nwarps { 64, 128, 8}, { 64, 64, 8}, #ifdef CUDA_USE_TENSOR_CORES { 4, 32, 4}, #else { 64, 128, 4}, #endif // CUDA_USE_TENSOR_CORES { 64, 64, 8}, }; constexpr mmq_config_t MMQ_CONFIG_Q4_1 = { // x y nwarps { 64, 128, 8}, { 64, 64, 8}, #ifdef CUDA_USE_TENSOR_CORES { 4, 32, 4}, #else { 64, 128, 4}, #endif // CUDA_USE_TENSOR_CORES { 64, 64, 8}, }; constexpr mmq_config_t MMQ_CONFIG_Q5_0 = { // x y nwarps { 64, 128, 8}, { 64, 64, 8}, #ifdef CUDA_USE_TENSOR_CORES { 4, 32, 4}, #else {128, 64, 4}, #endif // CUDA_USE_TENSOR_CORES { 64, 64, 8}, }; constexpr mmq_config_t MMQ_CONFIG_Q5_1 = { // x y nwarps { 64, 128, 8}, { 64, 64, 8}, #ifdef CUDA_USE_TENSOR_CORES { 4, 32, 4}, #else {128, 64, 4}, #endif // CUDA_USE_TENSOR_CORES { 64, 64, 8}, }; constexpr mmq_config_t MMQ_CONFIG_Q8_0 = { // x y nwarps { 64, 128, 8}, { 64, 64, 8}, #ifdef CUDA_USE_TENSOR_CORES { 4, 32, 4}, #else {128, 64, 4}, #endif // CUDA_USE_TENSOR_CORES { 64, 64, 8}, }; constexpr mmq_config_t MMQ_CONFIG_Q2_K = { // x y nwarps { 64, 128, 8}, {128, 32, 8}, #ifdef CUDA_USE_TENSOR_CORES { 4, 32, 4}, #else { 64, 128, 4}, #endif // CUDA_USE_TENSOR_CORES { 64, 64, 8}, }; constexpr mmq_config_t MMQ_CONFIG_Q3_K = { // x y nwarps {128, 64, 8}, { 32, 128, 8}, #ifdef CUDA_USE_TENSOR_CORES { 4, 32, 4}, #else {128, 128, 4}, #endif // CUDA_USE_TENSOR_CORES { 64, 64, 8}, }; constexpr mmq_config_t MMQ_CONFIG_Q4_K = { // x y nwarps { 64, 128, 8}, { 32, 64, 8}, #ifdef CUDA_USE_TENSOR_CORES { 4, 32, 4}, #else { 64, 128, 4}, #endif // CUDA_USE_TENSOR_CORES { 64, 64, 8}, }; constexpr mmq_config_t MMQ_CONFIG_Q5_K = { // x y nwarps { 64, 128, 8}, { 32, 64, 8}, #ifdef CUDA_USE_TENSOR_CORES { 4, 32, 4}, #else { 64, 128, 4}, #endif // CUDA_USE_TENSOR_CORES { 64, 64, 8}, }; constexpr mmq_config_t MMQ_CONFIG_Q6_K = { // x y nwarps { 64, 128, 8}, { 32, 64, 8}, #ifdef CUDA_USE_TENSOR_CORES { 4, 32, 4}, #else { 64, 64, 4}, #endif // CUDA_USE_TENSOR_CORES { 64, 64, 8}, }; // ------------------------------------------------------------ template static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y]; __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI4_0) + mmq_y/QI4_0]; *x_ql = tile_x_qs; *x_dm = (half2 *) tile_x_d; } template static __device__ __forceinline__ void load_tiles_q4_0( const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); GGML_CUDA_ASSUME(i_offset >= 0); GGML_CUDA_ASSUME(i_offset < nwarps); GGML_CUDA_ASSUME(k >= 0); GGML_CUDA_ASSUME(k < WARP_SIZE); const int kbx = k / QI4_0; const int kqsx = k % QI4_0; const block_q4_0 * bx0 = (const block_q4_0 *) vx; float * x_dmf = (float *) x_dm; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + i_offset; if (need_check) { i = min(i, i_max); } const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx; x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx); // x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d; } const int blocks_per_tile_x_row = WARP_SIZE / QI4_0; const int kbxd = k % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) { int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row; if (need_check) { i = min(i, i_max); } const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd; x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d; } } static __device__ __forceinline__ float vec_dot_q4_0_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2)); const float * x_dmf = (const float *) x_dm; int u[2*VDR_Q4_0_Q8_1_MMQ]; #pragma unroll for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) { u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE]; u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE]; } return vec_dot_q4_0_q8_1_impl (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]); } template static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + + mmq_y]; __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_1) + mmq_y/QI4_1]; *x_ql = tile_x_qs; *x_dm = tile_x_dm; } template static __device__ __forceinline__ void load_tiles_q4_1( const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); GGML_CUDA_ASSUME(i_offset >= 0); GGML_CUDA_ASSUME(i_offset < nwarps); GGML_CUDA_ASSUME(k >= 0); GGML_CUDA_ASSUME(k < WARP_SIZE); const int kbx = k / QI4_1; const int kqsx = k % QI4_1; const block_q4_1 * bx0 = (const block_q4_1 *) vx; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + i_offset; if (need_check) { i = min(i, i_max); } const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx; x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx); } const int blocks_per_tile_x_row = WARP_SIZE / QI4_1; const int kbxd = k % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) { int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row; if (need_check) { i = min(i, i_max); } const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd; x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm; } } static __device__ __forceinline__ float vec_dot_q4_1_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2)); int u[2*VDR_Q4_1_Q8_1_MMQ]; #pragma unroll for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) { u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE]; u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE]; } return vec_dot_q4_1_q8_1_impl (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]); } template static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y]; __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI5_0) + mmq_y/QI5_0]; *x_ql = tile_x_ql; *x_dm = (half2 *) tile_x_d; } template static __device__ __forceinline__ void load_tiles_q5_0( const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); GGML_CUDA_ASSUME(i_offset >= 0); GGML_CUDA_ASSUME(i_offset < nwarps); GGML_CUDA_ASSUME(k >= 0); GGML_CUDA_ASSUME(k < WARP_SIZE); const int kbx = k / QI5_0; const int kqsx = k % QI5_0; const block_q5_0 * bx0 = (const block_q5_0 *) vx; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + i_offset; if (need_check) { i = min(i, i_max); } const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx; const int ql = get_int_from_uint8(bxi->qs, kqsx); const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0)); int qs0 = (ql >> 0) & 0x0F0F0F0F; qs0 |= (qh << 4) & 0x00000010; // 0 -> 4 qs0 |= (qh << 11) & 0x00001000; // 1 -> 12 qs0 |= (qh << 18) & 0x00100000; // 2 -> 20 qs0 |= (qh << 25) & 0x10000000; // 3 -> 28 qs0 = __vsubss4(qs0, 0x10101010); // subtract 16 x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0; int qs1 = (ql >> 4) & 0x0F0F0F0F; qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4 qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12 qs1 |= (qh << 2) & 0x00100000; // 18 -> 20 qs1 |= (qh << 9) & 0x10000000; // 19 -> 28 qs1 = __vsubss4(qs1, 0x10101010); // subtract 16 x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1; } const int blocks_per_tile_x_row = WARP_SIZE / QI5_0; const int kbxd = k % blocks_per_tile_x_row; float * x_dmf = (float *) x_dm; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) { int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row; if (need_check) { i = min(i, i_max); } const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd; x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d; } } static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2)); const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0; const float * x_dmf = (const float *) x_dm; const float * y_df = (const float *) y_ds; int u[2*VDR_Q5_0_Q8_1_MMQ]; #pragma unroll for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) { u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE]; u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE]; } return vec_dot_q8_0_q8_1_impl (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]); } template static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y]; __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_1) + mmq_y/QI5_1]; *x_ql = tile_x_ql; *x_dm = tile_x_dm; } template static __device__ __forceinline__ void load_tiles_q5_1( const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); GGML_CUDA_ASSUME(i_offset >= 0); GGML_CUDA_ASSUME(i_offset < nwarps); GGML_CUDA_ASSUME(k >= 0); GGML_CUDA_ASSUME(k < WARP_SIZE); const int kbx = k / QI5_1; const int kqsx = k % QI5_1; const block_q5_1 * bx0 = (const block_q5_1 *) vx; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + i_offset; if (need_check) { i = min(i, i_max); } const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx; const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx); const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1)); int qs0 = (ql >> 0) & 0x0F0F0F0F; qs0 |= (qh << 4) & 0x00000010; // 0 -> 4 qs0 |= (qh << 11) & 0x00001000; // 1 -> 12 qs0 |= (qh << 18) & 0x00100000; // 2 -> 20 qs0 |= (qh << 25) & 0x10000000; // 3 -> 28 x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0; int qs1 = (ql >> 4) & 0x0F0F0F0F; qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4 qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12 qs1 |= (qh << 2) & 0x00100000; // 18 -> 20 qs1 |= (qh << 9) & 0x10000000; // 19 -> 28 x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1; } const int blocks_per_tile_x_row = WARP_SIZE / QI5_1; const int kbxd = k % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) { int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row; if (need_check) { i = min(i, i_max); } const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd; x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm; } } static __device__ __forceinline__ float vec_dot_q5_1_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2)); const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1; int u[2*VDR_Q5_1_Q8_1_MMQ]; #pragma unroll for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) { u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE]; u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE]; } return vec_dot_q8_1_q8_1_impl (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]); } template static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y]; __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI8_0) + mmq_y/QI8_0]; *x_ql = tile_x_qs; *x_dm = (half2 *) tile_x_d; } template static __device__ __forceinline__ void load_tiles_q8_0( const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); GGML_CUDA_ASSUME(i_offset >= 0); GGML_CUDA_ASSUME(i_offset < nwarps); GGML_CUDA_ASSUME(k >= 0); GGML_CUDA_ASSUME(k < WARP_SIZE); const int kbx = k / QI8_0; const int kqsx = k % QI8_0; float * x_dmf = (float *) x_dm; const block_q8_0 * bx0 = (const block_q8_0 *) vx; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + i_offset; if (need_check) { i = min(i, i_max); } const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx; x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx); } const int blocks_per_tile_x_row = WARP_SIZE / QI8_0; const int kbxd = k % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) { int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row; if (need_check) { i = min(i, i_max); } const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd; x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d; } } static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); const float * x_dmf = (const float *) x_dm; const float * y_df = (const float *) y_ds; return vec_dot_q8_0_q8_1_impl (&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0], y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]); } template static __device__ __forceinline__ void allocate_tiles_q2_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { GGML_UNUSED(x_qh); __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y]; __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI2_K) + mmq_y/QI2_K]; __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4]; *x_ql = tile_x_ql; *x_dm = tile_x_dm; *x_sc = tile_x_sc; } template static __device__ __forceinline__ void load_tiles_q2_K( const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { GGML_UNUSED(x_qh); GGML_CUDA_ASSUME(i_offset >= 0); GGML_CUDA_ASSUME(i_offset < nwarps); GGML_CUDA_ASSUME(k >= 0); GGML_CUDA_ASSUME(k < WARP_SIZE); const int kbx = k / QI2_K; const int kqsx = k % QI2_K; const block_q2_K * bx0 = (const block_q2_K *) vx; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + i_offset; if (need_check) { i = min(i, i_max); } const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx; x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx); } const int blocks_per_tile_x_row = WARP_SIZE / QI2_K; const int kbxd = k % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) { int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd; x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm; } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) { int i = i0 + i_offset * 4 + k / (WARP_SIZE/4); if (need_check) { i = min(i, i_max); } const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4); x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4)); } } static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { GGML_UNUSED(x_qh); const int kbx = k / QI2_K; const int ky = (k % QI2_K) * QR2_K; const float * y_df = (const float *) y_ds; int v[QR2_K*VDR_Q2_K_Q8_1_MMQ]; const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2); const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2)); #pragma unroll for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) { v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303; } const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4; const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE; return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]); } template static __device__ __forceinline__ void allocate_tiles_q3_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y]; __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI3_K) + mmq_y/QI3_K]; __shared__ int tile_x_qh[mmq_y * (WARP_SIZE/2) + mmq_y/2]; __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4]; *x_ql = tile_x_ql; *x_dm = tile_x_dm; *x_qh = tile_x_qh; *x_sc = tile_x_sc; } template static __device__ __forceinline__ void load_tiles_q3_K( const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { GGML_CUDA_ASSUME(i_offset >= 0); GGML_CUDA_ASSUME(i_offset < nwarps); GGML_CUDA_ASSUME(k >= 0); GGML_CUDA_ASSUME(k < WARP_SIZE); const int kbx = k / QI3_K; const int kqsx = k % QI3_K; const block_q3_K * bx0 = (const block_q3_K *) vx; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + i_offset; if (need_check) { i = min(i, i_max); } const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx; x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx); } const int blocks_per_tile_x_row = WARP_SIZE / QI3_K; const int kbxd = k % blocks_per_tile_x_row; float * x_dmf = (float *) x_dm; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) { int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd; x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d; } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) { int i = i0 + i_offset * 2 + k / (WARP_SIZE/2); if (need_check) { i = min(i, i_max); } const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2); // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2)); } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) { int i = i0 + i_offset * 4 + k / (WARP_SIZE/4); if (need_check) { i = min(i, i_max); } const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4); const int ksc = k % (QI3_K/4); const int ksc_low = ksc % (QI3_K/8); const int shift_low = 4 * (ksc / (QI3_K/8)); const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F; const int ksc_high = QI3_K/8; const int shift_high = 2 * ksc; const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030; const int sc = __vsubss4(sc_low | sc_high, 0x20202020); x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc; } } static __device__ __forceinline__ float vec_dot_q3_K_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { const int kbx = k / QI3_K; const int ky = (k % QI3_K) * QR3_K; const float * x_dmf = (const float *) x_dm; const float * y_df = (const float *) y_ds; const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4; int v[QR3_K*VDR_Q3_K_Q8_1_MMQ]; #pragma unroll for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) { const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2); const int shift = 2 * ((ky % 32) / 8); const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303; const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8); const int vlh = (vh << 2) & 0x04040404; v[l] = __vsubss4(vll, vlh); } const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE; return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]); } template static __device__ __forceinline__ void allocate_tiles_q4_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { GGML_UNUSED(x_qh); __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y]; __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_K) + mmq_y/QI4_K]; __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8]; *x_ql = tile_x_ql; *x_dm = tile_x_dm; *x_sc = tile_x_sc; } template static __device__ __forceinline__ void load_tiles_q4_K( const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { GGML_UNUSED(x_qh); GGML_CUDA_ASSUME(i_offset >= 0); GGML_CUDA_ASSUME(i_offset < nwarps); GGML_CUDA_ASSUME(k >= 0); GGML_CUDA_ASSUME(k < WARP_SIZE); const int kbx = k / QI4_K; // == 0 if QK_K == 256 const int kqsx = k % QI4_K; // == k if QK_K == 256 const block_q4_K * bx0 = (const block_q4_K *) vx; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + i_offset; if (need_check) { i = min(i, i_max); } const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx; x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx); } const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256 const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256 #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) { int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd; #if QK_K == 256 x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm; #else x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = {bxi->dm[0], bxi->dm[1]}; #endif } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) { int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8); const int * scales = (const int *) bxi->scales; const int ksc = k % (WARP_SIZE/8); // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8 int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8; } } static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { GGML_UNUSED(x_qh); const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8); const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE; return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8, x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]); } template static __device__ __forceinline__ void allocate_tiles_q5_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { GGML_UNUSED(x_qh); __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y]; __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_K) + mmq_y/QI5_K]; __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8]; *x_ql = tile_x_ql; *x_dm = tile_x_dm; *x_sc = tile_x_sc; } template static __device__ __forceinline__ void load_tiles_q5_K( const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { GGML_UNUSED(x_qh); GGML_CUDA_ASSUME(i_offset >= 0); GGML_CUDA_ASSUME(i_offset < nwarps); GGML_CUDA_ASSUME(k >= 0); GGML_CUDA_ASSUME(k < WARP_SIZE); const int kbx = k / QI5_K; // == 0 if QK_K == 256 const int kqsx = k % QI5_K; // == k if QK_K == 256 const block_q5_K * bx0 = (const block_q5_K *) vx; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + i_offset; if (need_check) { i = min(i, i_max); } const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx; const int ky = QR5_K*kqsx; const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx); const int ql0 = (ql >> 0) & 0x0F0F0F0F; const int ql1 = (ql >> 4) & 0x0F0F0F0F; const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4)); const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010; const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010; const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0; const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4); x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0; x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1; } const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256 const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256 #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) { int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd; #if QK_K == 256 x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm; #endif } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) { int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8); const int * scales = (const int *) bxi->scales; const int ksc = k % (WARP_SIZE/8); // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8 int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8; } } static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { GGML_UNUSED(x_qh); const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8); const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k; const int index_y = j * WARP_SIZE + (QR5_K*k) % WARP_SIZE; return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8, x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]); } template static __device__ __forceinline__ void allocate_tiles_q6_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { GGML_UNUSED(x_qh); __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y]; __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI6_K) + mmq_y/QI6_K]; __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8]; *x_ql = tile_x_ql; *x_dm = tile_x_dm; *x_sc = tile_x_sc; } template static __device__ __forceinline__ void load_tiles_q6_K( const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { GGML_UNUSED(x_qh); GGML_CUDA_ASSUME(i_offset >= 0); GGML_CUDA_ASSUME(i_offset < nwarps); GGML_CUDA_ASSUME(k >= 0); GGML_CUDA_ASSUME(k < WARP_SIZE); const int kbx = k / QI6_K; // == 0 if QK_K == 256 const int kqsx = k % QI6_K; // == k if QK_K == 256 const block_q6_K * bx0 = (const block_q6_K *) vx; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + i_offset; if (need_check) { i = min(i, i_max); } const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx; const int ky = QR6_K*kqsx; const int ql = get_int_from_uint8(bxi->ql, kqsx); const int ql0 = (ql >> 0) & 0x0F0F0F0F; const int ql1 = (ql >> 4) & 0x0F0F0F0F; const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4)); const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030; const int qh1 = (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) & 0x30303030; const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0; const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2); x_ql[i * (2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020); x_ql[i * (2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020); } const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256 const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256 float * x_dmf = (float *) x_dm; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) { int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd; x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d; } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) { int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4; x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8)); } } static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { GGML_UNUSED(x_qh); const float * x_dmf = (const float *) x_dm; const float * y_df = (const float *) y_ds; const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]); const int index_x = i * (QR6_K*WARP_SIZE + 1) + QR6_K*k; const int index_y = j * WARP_SIZE + (QR6_K*k) % WARP_SIZE; return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]); } template static __device__ __forceinline__ void mul_mat_q( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { const block_q_t * x = (const block_q_t *) vx; const block_q8_1 * y = (const block_q8_1 *) vy; const int blocks_per_row_x = ncols_x / qk; const int blocks_per_col_y = nrows_y / QK8_1; const int blocks_per_warp = WARP_SIZE / qi; const int & ncols_dst = ncols_y; const int row_dst_0 = blockIdx.x*mmq_y; const int & row_x_0 = row_dst_0; const int col_dst_0 = blockIdx.y*mmq_x; const int & col_y_0 = col_dst_0; int * tile_x_ql = nullptr; half2 * tile_x_dm = nullptr; int * tile_x_qh = nullptr; int * tile_x_sc = nullptr; allocate_tiles(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc); __shared__ int tile_y_qs[mmq_x * WARP_SIZE]; __shared__ half2 tile_y_ds[mmq_x * WARP_SIZE/QI8_1]; float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {{0.0f}}; for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) { load_tiles(x + row_x_0*blocks_per_row_x + ib0, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, threadIdx.y, nrows_x-row_x_0-1, threadIdx.x, blocks_per_row_x); #pragma unroll for (int ir = 0; ir < qr; ++ir) { const int kqs = ir*WARP_SIZE + threadIdx.x; const int kbxd = kqs / QI8_1; #pragma unroll for (int i = 0; i < mmq_x; i += nwarps) { const int col_y_eff = min(col_y_0 + threadIdx.y + i, ncols_y-1); // to prevent out-of-bounds memory accesses const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd]; const int index_y = (threadIdx.y + i) * WARP_SIZE + kqs % WARP_SIZE; tile_y_qs[index_y] = get_int_from_int8_aligned(by0->qs, threadIdx.x % QI8_1); } #pragma unroll for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) { const int ids = (ids0 + threadIdx.y * QI8_1 + threadIdx.x / (WARP_SIZE/QI8_1)) % mmq_x; const int kby = threadIdx.x % (WARP_SIZE/QI8_1); const int col_y_eff = min(col_y_0 + ids, ncols_y-1); // if the sum is not needed it's faster to transform the scale to f32 ahead of time const half2 * dsi_src = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + ir*(WARP_SIZE/QI8_1) + kby].ds; half2 * dsi_dst = &tile_y_ds[ids * (WARP_SIZE/QI8_1) + kby]; if (need_sum) { *dsi_dst = *dsi_src; } else { float * dfi_dst = (float *) dsi_dst; *dfi_dst = __low2float(*dsi_src); } } __syncthreads(); // #pragma unroll // unrolling this loop causes too much register pressure for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) { #pragma unroll for (int j = 0; j < mmq_x; j += nwarps) { #pragma unroll for (int i = 0; i < mmq_y; i += WARP_SIZE) { sum[i/WARP_SIZE][j/nwarps] += vec_dot( tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, tile_y_qs, tile_y_ds, threadIdx.x + i, threadIdx.y + j, k); } } } __syncthreads(); } } #pragma unroll for (int j = 0; j < mmq_x; j += nwarps) { const int col_dst = col_dst_0 + j + threadIdx.y; if (col_dst >= ncols_dst) { return; } #pragma unroll for (int i = 0; i < mmq_y; i += WARP_SIZE) { const int row_dst = row_dst_0 + threadIdx.x + i; if (row_dst >= nrows_dst) { continue; } dst[col_dst*nrows_dst + row_dst] = sum[i/WARP_SIZE][j/nwarps]; } } } static constexpr __device__ mmq_arch_config_t get_arch_config_device(mmq_config_t mmq_config) { #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) return mmq_config.rdna2; #else return mmq_config.rdna1; #endif // defined(RDNA3) || defined(RDNA2) #else #if __CUDA_ARCH__ >= CC_VOLTA return mmq_config.ampere; #else return mmq_config.pascal; #endif // __CUDA_ARCH__ >= CC_VOLTA #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) } template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_0.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) mul_mat_q4_0( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { #if __CUDA_ARCH__ >= MIN_CC_DP4A constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q4_0); mul_mat_q, load_tiles_q4_0, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else GGML_UNUSED(get_arch_config_device); GGML_UNUSED(vec_dot_q4_0_q8_1_mul_mat); NO_DEVICE_CODE; #endif // __CUDA_ARCH__ >= MIN_CC_DP4A } template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_1.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #elif __CUDA_ARCH__ < CC_VOLTA __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_1.pascal.nwarps, 2) #endif // __CUDA_ARCH__ < CC_VOLTA mul_mat_q4_1( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { #if __CUDA_ARCH__ >= MIN_CC_DP4A constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q4_1); mul_mat_q, load_tiles_q4_1, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else GGML_UNUSED(get_arch_config_device); GGML_UNUSED(vec_dot_q4_1_q8_1_mul_mat); NO_DEVICE_CODE; #endif // __CUDA_ARCH__ >= MIN_CC_DP4A } template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q5_0.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) mul_mat_q5_0( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { #if __CUDA_ARCH__ >= MIN_CC_DP4A constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q5_0); mul_mat_q, load_tiles_q5_0, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else GGML_UNUSED(get_arch_config_device); GGML_UNUSED(vec_dot_q5_0_q8_1_mul_mat); NO_DEVICE_CODE; #endif // __CUDA_ARCH__ >= MIN_CC_DP4A } template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q5_1.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) mul_mat_q5_1( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { #if __CUDA_ARCH__ >= MIN_CC_DP4A constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q5_1); mul_mat_q, load_tiles_q5_1, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else GGML_UNUSED(get_arch_config_device); GGML_UNUSED(vec_dot_q5_1_q8_1_mul_mat); NO_DEVICE_CODE; #endif // __CUDA_ARCH__ >= MIN_CC_DP4A } template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q8_0.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) mul_mat_q8_0( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { #if __CUDA_ARCH__ >= MIN_CC_DP4A constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q8_0); mul_mat_q, load_tiles_q8_0, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else GGML_UNUSED(get_arch_config_device); GGML_UNUSED(vec_dot_q8_0_q8_1_mul_mat); NO_DEVICE_CODE; #endif // __CUDA_ARCH__ >= MIN_CC_DP4A } template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q2_K.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) mul_mat_q2_K( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { #if __CUDA_ARCH__ >= MIN_CC_DP4A constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q2_K); mul_mat_q, load_tiles_q2_K, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else GGML_UNUSED(get_arch_config_device); GGML_UNUSED(vec_dot_q2_K_q8_1_mul_mat); NO_DEVICE_CODE; #endif // __CUDA_ARCH__ >= MIN_CC_DP4A } template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q3_K.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #elif __CUDA_ARCH__ < CC_VOLTA __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q3_K.pascal.nwarps, 2) #endif // __CUDA_ARCH__ < CC_VOLTA mul_mat_q3_K( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { #if __CUDA_ARCH__ >= MIN_CC_DP4A constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q3_K); mul_mat_q, load_tiles_q3_K, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else GGML_UNUSED(get_arch_config_device); GGML_UNUSED(vec_dot_q3_K_q8_1_mul_mat); NO_DEVICE_CODE; #endif // __CUDA_ARCH__ >= MIN_CC_DP4A } template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_K.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #elif __CUDA_ARCH__ < CC_VOLTA __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_K.pascal.nwarps, 2) #endif // __CUDA_ARCH__ < CC_VOLTA mul_mat_q4_K( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { #if __CUDA_ARCH__ >= MIN_CC_DP4A constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q4_K); mul_mat_q, load_tiles_q4_K, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else GGML_UNUSED(get_arch_config_device); GGML_UNUSED(vec_dot_q4_K_q8_1_mul_mat); NO_DEVICE_CODE; #endif // __CUDA_ARCH__ >= MIN_CC_DP4A } template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q5_K.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) mul_mat_q5_K( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { #if __CUDA_ARCH__ >= MIN_CC_DP4A constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q5_K); mul_mat_q, load_tiles_q5_K, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else GGML_UNUSED(get_arch_config_device); GGML_UNUSED(vec_dot_q5_K_q8_1_mul_mat); NO_DEVICE_CODE; #endif // __CUDA_ARCH__ >= MIN_CC_DP4A } template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q6_K.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #elif __CUDA_ARCH__ < CC_VOLTA __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_K.pascal.nwarps, 2) #endif // __CUDA_ARCH__ < CC_VOLTA mul_mat_q6_K( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { #if __CUDA_ARCH__ >= MIN_CC_DP4A constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q6_K); mul_mat_q, load_tiles_q6_K, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else GGML_UNUSED(get_arch_config_device); GGML_UNUSED(vec_dot_q6_K_q8_1_mul_mat); NO_DEVICE_CODE; #endif // __CUDA_ARCH__ >= MIN_CC_DP4A } #define MMQ_SWITCH_CASE(type_suffix) \ case GGML_TYPE_Q##type_suffix: if (row_diff % arch_config.y == 0) { \ const bool need_check = false; \ mul_mat_q##type_suffix<<>> \ (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst); \ } else { \ const bool need_check = true; \ mul_mat_q##type_suffix<<>> \ (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst); \ } break; \ void ggml_cuda_op_mul_mat_q( ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, const int64_t src1_padded_row_size, cudaStream_t stream) { const int64_t ne00 = src0->ne[0]; const int64_t ne10 = src1->ne[0]; GGML_ASSERT(ne10 % QK8_1 == 0); const int64_t ne0 = dst->ne[0]; const int64_t row_diff = row_high - row_low; int id = ggml_cuda_get_device(); const int compute_capability = ggml_cuda_info().devices[id].cc; // the main device has a larger memory buffer to hold the results from all GPUs // nrows_dst == nrows of the matrix that the kernel writes into const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff; mmq_config_t mmq_config; switch (src0->type) { case GGML_TYPE_Q4_0: mmq_config = MMQ_CONFIG_Q4_0; break; case GGML_TYPE_Q4_1: mmq_config = MMQ_CONFIG_Q4_1; break; case GGML_TYPE_Q5_0: mmq_config = MMQ_CONFIG_Q5_0; break; case GGML_TYPE_Q5_1: mmq_config = MMQ_CONFIG_Q5_1; break; case GGML_TYPE_Q8_0: mmq_config = MMQ_CONFIG_Q8_0; break; case GGML_TYPE_Q2_K: mmq_config = MMQ_CONFIG_Q2_K; break; case GGML_TYPE_Q3_K: mmq_config = MMQ_CONFIG_Q3_K; break; case GGML_TYPE_Q4_K: mmq_config = MMQ_CONFIG_Q4_K; break; case GGML_TYPE_Q5_K: mmq_config = MMQ_CONFIG_Q5_K; break; case GGML_TYPE_Q6_K: mmq_config = MMQ_CONFIG_Q6_K; break; default: GGML_ASSERT(false); break; } mmq_arch_config_t arch_config; if (compute_capability >= CC_RDNA2) { arch_config = mmq_config.rdna2; } else if (compute_capability >= CC_OFFSET_AMD) { arch_config = mmq_config.rdna1; } else if (compute_capability >= CC_VOLTA) { arch_config = mmq_config.ampere; } else if (compute_capability >= MIN_CC_DP4A) { arch_config = mmq_config.pascal; } else { GGML_ASSERT(false); } const int block_num_x = (row_diff + arch_config.y - 1) / arch_config.y; const int block_num_y = (src1_ncols + arch_config.x - 1) / arch_config.x; const dim3 block_nums(block_num_x, block_num_y, 1); const dim3 block_dims(WARP_SIZE, arch_config.nwarps, 1); switch (src0->type) { MMQ_SWITCH_CASE(4_0) MMQ_SWITCH_CASE(4_1) MMQ_SWITCH_CASE(5_0) MMQ_SWITCH_CASE(5_1) MMQ_SWITCH_CASE(8_0) MMQ_SWITCH_CASE(2_K) MMQ_SWITCH_CASE(3_K) MMQ_SWITCH_CASE(4_K) MMQ_SWITCH_CASE(5_K) MMQ_SWITCH_CASE(6_K) default: GGML_ASSERT(false); break; } GGML_UNUSED(src1); GGML_UNUSED(dst); GGML_UNUSED(src1_ddf_i); } bool ggml_cuda_supports_mmq(enum ggml_type type) { switch (type) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: return true; default: return false; } }