# LLaVA Currently this implementation supports [llava-v1.5](https://huggingface.co/liuhaotian/llava-v1.5-7b) variants. The pre-converted [7b](https://huggingface.co/mys/ggml_llava-v1.5-7b) and [13b](https://huggingface.co/mys/ggml_llava-v1.5-13b) models are available. After API is confirmed, more models will be supported / uploaded. ## Usage Build with cmake or run `make llava-cli` to build it. After building, run: `./llava-cli` to see the usage. For example: ```sh ./llava-cli -m ../llava-v1.5-7b/ggml-model-f16.gguf --mmproj ../llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg ``` **note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so. ## Model conversion - Clone `llava-v15-7b` and `clip-vit-large-patch14-336` locally: ```sh git clone https://huggingface.co/liuhaotian/llava-v1.5-7b git clone https://huggingface.co/openai/clip-vit-large-patch14-336 ``` 2. Use `llava-surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents: ```sh python ./examples/llava/llava-surgery.py -m ../llava-v1.5-7b ``` 3. Use `convert-image-encoder-to-gguf.py` to convert the LLaVA image encoder to GGUF: ```sh python ./examples/llava/convert-image-encoder-to-gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b ``` 4. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF: ```sh python ./convert.py ../llava-v1.5-7b ``` Now both the LLaMA part and the image encoder is in the `llava-v1.5-7b` directory. ## TODO - [ ] Support non-CPU backend for the image encoding part. - [ ] Support different sampling methods. - [ ] Support more model variants.