const paramDefaults = { stream: true, n_predict: 500, temperature: 0.2, stop: [""] }; let generation_settings = null; // Completes the prompt as a generator. Recommended for most use cases. // // Example: // // import { llama } from '/completion.js' // // const request = llama("Tell me a joke", {n_predict: 800}) // for await (const chunk of request) { // document.write(chunk.data.content) // } // export async function* llama(prompt, params = {}, config = {}) { let controller = config.controller; if (!controller) { controller = new AbortController(); } const completionParams = { ...paramDefaults, ...params, prompt }; const response = await fetch("/completion", { method: 'POST', body: JSON.stringify(completionParams), headers: { 'Connection': 'keep-alive', 'Content-Type': 'application/json', 'Accept': 'text/event-stream' }, signal: controller.signal, }); const reader = response.body.getReader(); const decoder = new TextDecoder(); let content = ""; try { let cont = true; while (cont) { const result = await reader.read(); if (result.done) { break; } // sse answers in the form multiple lines of: value\n with data always present as a key. in our case we // mainly care about the data: key here, which we expect as json const text = decoder.decode(result.value); // parse all sse events and add them to result const regex = /^(\S+):\s(.*)$/gm; for (const match of text.matchAll(regex)) { result[match[1]] = match[2] } // since we know this is llama.cpp, let's just decode the json in data result.data = JSON.parse(result.data); content += result.data.content; // yield yield result; // if we got a stop token from server, we will break here if (result.data.stop) { if(result.data.generation_settings) { generation_settings = result.data.generation_settings; } break; } } } catch (e) { if (e.name !== 'AbortError') { console.error("llama error: ", e); } throw e; } finally { controller.abort(); } return content; } // Call llama, return an event target that you can subcribe to // // Example: // // import { llamaEventTarget } from '/completion.js' // // const conn = llamaEventTarget(prompt) // conn.addEventListener("message", (chunk) => { // document.write(chunk.detail.content) // }) // export const llamaEventTarget = (prompt, params = {}, config = {}) => { const eventTarget = new EventTarget(); (async () => { let content = ""; for await (const chunk of llama(prompt, params, config)) { if (chunk.data) { content += chunk.data.content; eventTarget.dispatchEvent(new CustomEvent("message", {detail: chunk.data})); } if(chunk.data.generation_settings) { eventTarget.dispatchEvent(new CustomEvent("generation_settings", {detail: chunk.data.generation_settings})); } if(chunk.data.timings) { eventTarget.dispatchEvent(new CustomEvent("timings", {detail: chunk.data.timings})); } } eventTarget.dispatchEvent(new CustomEvent("done", {detail: {content}})); })(); return eventTarget; } // Call llama, return a promise that resolves to the completed text. This does not support streaming // // Example: // // llamaPromise(prompt).then((content) => { // document.write(content) // }) // // or // // const content = await llamaPromise(prompt) // document.write(content) // export const llamaPromise = (prompt, params = {}, config = {}) => { return new Promise(async (resolve, reject) => { let content = ""; try { for await (const chunk of llama(prompt, params, config)) { content += chunk.data.content; } resolve(content); } catch (error) { reject(error); } }); }; /** * (deprecated) */ export const llamaComplete = async (params, controller, callback) => { for await (const chunk of llama(params.prompt, params, {controller})) { callback(chunk); } } // Get the model info from the server. This is useful for getting the context window and so on. export const llamaModelInfo = async () => { if (!generation_settings) { generation_settings = await fetch("/model.json").then(r => r.json()); } return generation_settings; }