# llama.cpp for SYCL [Background](#background) [OS](#os) [Intel GPU](#intel-gpu) [Linux](#linux) [Windows](#windows) [Environment Variable](#environment-variable) [Known Issue](#known-issue) [Q&A](#q&a) [Todo](#todo) ## Background SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators—such as CPUs, GPUs, and FPGAs. It is a single-source embedded domain-specific language based on pure C++17. oneAPI is a specification that is open and standards-based, supporting multiple architecture types including but not limited to GPU, CPU, and FPGA. The spec has both direct programming and API-based programming paradigms. Intel uses the SYCL as direct programming language to support CPU, GPUs and FPGAs. To avoid to re-invent the wheel, this code refer other code paths in llama.cpp (like OpenBLAS, cuBLAS, CLBlast). We use a open-source tool [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) migrate to SYCL. The llama.cpp for SYCL is used to support Intel GPUs. For Intel CPU, recommend to use llama.cpp for X86 (Intel MKL building). ## OS |OS|Status|Verified| |-|-|-| |Linux|Support|Ubuntu 22.04| |Windows|Support|Windows 11| ## Intel GPU |Intel GPU| Status | Verified Model| |-|-|-| |Intel Data Center Max Series| Support| Max 1550| |Intel Data Center Flex Series| Support| Flex 170| |Intel Arc Series| Support| Arc 770, 730M| |Intel built-in Arc GPU| Support| built-in Arc GPU in Meteor Lake| |Intel iGPU| Support| iGPU in i5-1250P, i7-1165G7| ## Linux ### Setup Environment 1. Install Intel GPU driver. a. Please install Intel GPU driver by official guide: [Install GPU Drivers](https://dgpu-docs.intel.com/driver/installation.html). Note: for iGPU, please install the client GPU driver. b. Add user to group: video, render. ``` sudo usermod -aG render username sudo usermod -aG video username ``` Note: re-login to enable it. c. Check ``` sudo apt install clinfo sudo clinfo -l ``` Output (example): ``` Platform #0: Intel(R) OpenCL Graphics `-- Device #0: Intel(R) Arc(TM) A770 Graphics Platform #0: Intel(R) OpenCL HD Graphics `-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49] ``` 2. Install Intel® oneAPI Base toolkit. a. Please follow the procedure in [Get the Intel® oneAPI Base Toolkit ](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html). Recommend to install to default folder: **/opt/intel/oneapi**. Following guide use the default folder as example. If you use other folder, please modify the following guide info with your folder. b. Check ``` source /opt/intel/oneapi/setvars.sh sycl-ls ``` There should be one or more level-zero devices. Like **[ext_oneapi_level_zero:gpu:0]**. Output (example): ``` [opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000] [opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000] [opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50] [ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918] ``` 2. Build locally: ``` mkdir -p build cd build source /opt/intel/oneapi/setvars.sh #for FP16 #cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON # faster for long-prompt inference #for FP32 cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx #build example/main only #cmake --build . --config Release --target main #build all binary cmake --build . --config Release -v cd .. ``` or ``` ./examples/sycl/build.sh ``` Note: - By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for **example/main** only. ### Run 1. Put model file to folder **models** 2. Enable oneAPI running environment ``` source /opt/intel/oneapi/setvars.sh ``` 3. List device ID Run without parameter: ``` ./build/bin/ls-sycl-device or ./build/bin/main ``` Check the ID in startup log, like: ``` found 4 SYCL devices: Device 0: Intel(R) Arc(TM) A770 Graphics, compute capability 1.3, max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136 Device 1: Intel(R) FPGA Emulation Device, compute capability 1.2, max compute_units 24, max work group size 67108864, max sub group size 64, global mem size 67065057280 Device 2: 13th Gen Intel(R) Core(TM) i7-13700K, compute capability 3.0, max compute_units 24, max work group size 8192, max sub group size 64, global mem size 67065057280 Device 3: Intel(R) Arc(TM) A770 Graphics, compute capability 3.0, max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136 ``` |Attribute|Note| |-|-| |compute capability 1.3|Level-zero running time, recommended | |compute capability 3.0|OpenCL running time, slower than level-zero in most cases| 4. Set device ID and execute llama.cpp Set device ID = 0 by **GGML_SYCL_DEVICE=0** ``` GGML_SYCL_DEVICE=0 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 ``` or run by script: ``` ./examples/sycl/run-llama2.sh ``` Note: - By default, mmap is used to read model file. In some cases, it leads to the hang issue. Recommend to use parameter **--no-mmap** to disable mmap() to skip this issue. 5. Check the device ID in output Like: ``` Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device ``` ## Windows ### Setup Environment 1. Install Intel GPU driver. Please install Intel GPU driver by official guide: [Install GPU Drivers](https://www.intel.com/content/www/us/en/products/docs/discrete-gpus/arc/software/drivers.html). 2. Install Intel® oneAPI Base toolkit. a. Please follow the procedure in [Get the Intel® oneAPI Base Toolkit ](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html). Recommend to install to default folder: **/opt/intel/oneapi**. Following guide uses the default folder as example. If you use other folder, please modify the following guide info with your folder. b. Enable oneAPI running environment: - In Search, input 'oneAPI'. Search & open "Intel oneAPI command prompt for Intel 64 for Visual Studio 2022" - In Run: In CMD: ``` "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 ``` c. Check GPU In oneAPI command line: ``` sycl-ls ``` There should be one or more level-zero devices. Like **[ext_oneapi_level_zero:gpu:0]**. Output (example): ``` [opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000] [opencl:cpu:1] Intel(R) OpenCL, 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000] [opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Iris(R) Xe Graphics OpenCL 3.0 NEO [31.0.101.5186] [ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Iris(R) Xe Graphics 1.3 [1.3.28044] ``` 3. Install cmake & make a. Download & install cmake for windows: https://cmake.org/download/ b. Download & install make for windows provided by mingw-w64: https://www.mingw-w64.org/downloads/ ### Build locally: In oneAPI command line window: ``` mkdir -p build cd build @call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force :: for FP16 :: faster for long-prompt inference :: cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON :: for FP32 cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release :: build example/main only :: make main :: build all binary make -j cd .. ``` or ``` .\examples\sycl\win-build-sycl.bat ``` Note: - By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for **example/main** only. ### Run 1. Put model file to folder **models** 2. Enable oneAPI running environment - In Search, input 'oneAPI'. Search & open "Intel oneAPI command prompt for Intel 64 for Visual Studio 2022" - In Run: In CMD: ``` "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 ``` 3. List device ID Run without parameter: ``` build\bin\ls-sycl-device.exe or build\bin\main.exe ``` Check the ID in startup log, like: ``` found 4 SYCL devices: Device 0: Intel(R) Arc(TM) A770 Graphics, compute capability 1.3, max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136 Device 1: Intel(R) FPGA Emulation Device, compute capability 1.2, max compute_units 24, max work group size 67108864, max sub group size 64, global mem size 67065057280 Device 2: 13th Gen Intel(R) Core(TM) i7-13700K, compute capability 3.0, max compute_units 24, max work group size 8192, max sub group size 64, global mem size 67065057280 Device 3: Intel(R) Arc(TM) A770 Graphics, compute capability 3.0, max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136 ``` |Attribute|Note| |-|-| |compute capability 1.3|Level-zero running time, recommended | |compute capability 3.0|OpenCL running time, slower than level-zero in most cases| 4. Set device ID and execute llama.cpp Set device ID = 0 by **set GGML_SYCL_DEVICE=0** ``` set GGML_SYCL_DEVICE=0 build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 ``` or run by script: ``` .\examples\sycl\win-run-llama2.bat ``` Note: - By default, mmap is used to read model file. In some cases, it leads to the hang issue. Recommend to use parameter **--no-mmap** to disable mmap() to skip this issue. 5. Check the device ID in output Like: ``` Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device ``` ## Environment Variable #### Build |Name|Value|Function| |-|-|-| |LLAMA_SYCL|ON (mandatory)|Enable build with SYCL code path.
For FP32/FP16, LLAMA_SYCL=ON is mandatory.| |LLAMA_SYCL_F16|ON (optional)|Enable FP16 build with SYCL code path. Faster for long-prompt inference.
For FP32, not set it.| |CMAKE_C_COMPILER|icx|Use icx compiler for SYCL code path| |CMAKE_CXX_COMPILER|icpx (Linux), icx (Windows)|use icpx/icx for SYCL code path| #### Running |Name|Value|Function| |-|-|-| |GGML_SYCL_DEVICE|0 (default) or 1|Set the device id used. Check the device ids by default running output| |GGML_SYCL_DEBUG|0 (default) or 1|Enable log function by macro: GGML_SYCL_DEBUG| ## Known Issue - Hang during startup llama.cpp use mmap as default way to read model file and copy to GPU. In some system, memcpy will be abnormal and block. Solution: add **--no-mmap** or **--mmap 0**. ## Q&A - Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`. Miss to enable oneAPI running environment. Install oneAPI base toolkit and enable it by: `source /opt/intel/oneapi/setvars.sh`. - In Windows, no result, not error. Miss to enable oneAPI running environment. ## Todo - Support to build in Windows. - Support multiple cards.