#!/usr/bin/env python3 from __future__ import annotations import logging import argparse import contextlib import json import os import re import sys from enum import IntEnum from pathlib import Path from hashlib import sha256 from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Sequence, TypeVar, cast import numpy as np import torch if TYPE_CHECKING: from torch import Tensor if 'NO_LOCAL_GGUF' not in os.environ: sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) import gguf from convert import LlamaHfVocab logger = logging.getLogger("hf-to-gguf") ###### MODEL DEFINITIONS ###### class SentencePieceTokenTypes(IntEnum): NORMAL = 1 UNKNOWN = 2 CONTROL = 3 USER_DEFINED = 4 UNUSED = 5 BYTE = 6 AnyModel = TypeVar("AnyModel", bound="type[Model]") class Model: _model_classes: dict[str, type[Model]] = {} dir_model: Path ftype: int is_big_endian: bool endianess: gguf.GGUFEndian use_temp_file: bool lazy: bool part_names: list[str] is_safetensors: bool hparams: dict[str, Any] block_count: int tensor_map: gguf.TensorNameMap tensor_names: set[str] | None fname_out: Path gguf_writer: gguf.GGUFWriter # subclasses should define this! model_arch: gguf.MODEL_ARCH def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool): if type(self) is Model: raise TypeError(f"{type(self).__name__!r} should not be directly instantiated") self.dir_model = dir_model self.ftype = ftype self.is_big_endian = is_big_endian self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE self.use_temp_file = use_temp_file self.lazy = not eager self.part_names = Model.get_model_part_names(self.dir_model, ".safetensors") self.is_safetensors = len(self.part_names) > 0 if not self.is_safetensors: self.part_names = Model.get_model_part_names(self.dir_model, ".bin") self.hparams = Model.load_hparams(self.dir_model) self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"]) self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count) self.tensor_names = None if self.ftype == gguf.LlamaFileType.GUESSED: # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie. _, first_tensor = next(self.get_tensors()) if first_tensor.dtype == torch.float16: logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})") self.ftype = gguf.LlamaFileType.MOSTLY_F16 else: logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})") self.ftype = gguf.LlamaFileType.MOSTLY_BF16 ftype_up: str = self.ftype.name.partition("_")[2].upper() ftype_lw: str = ftype_up.lower() # allow templating the file name with the output ftype, useful with the "auto" ftype self.fname_out = fname_out.parent / fname_out.name.format(ftype_lw, outtype=ftype_lw, ftype=ftype_lw, OUTTYPE=ftype_up, FTYPE=ftype_up) self.gguf_writer = gguf.GGUFWriter(self.fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file) @classmethod def __init_subclass__(cls): # can't use an abstract property, because overriding it without type errors # would require using decorated functions instead of simply defining the property if "model_arch" not in cls.__dict__: raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}") def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any: key = next((k for k in keys if k in self.hparams), None) if key is not None: return self.hparams[key] if optional: return None raise KeyError(f"could not find any of: {keys}") def set_vocab(self): self._set_vocab_gpt2() def get_tensors(self) -> Iterator[tuple[str, Tensor]]: tensor_names_from_parts: set[str] = set() if len(self.part_names) > 1: self.tensor_names = set() index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin" index_name += ".index.json" logger.info(f"gguf: loading model weight map from '{index_name}'") with open(self.dir_model / index_name, "r", encoding="utf-8") as f: index: dict[str, Any] = json.load(f) weight_map = index.get("weight_map") if weight_map is None or not isinstance(weight_map, dict): raise ValueError(f"Can't load 'weight_map' from {index_name!r}") self.tensor_names.update(weight_map.keys()) else: self.tensor_names = tensor_names_from_parts for part_name in self.part_names: logger.info(f"gguf: loading model part '{part_name}'") ctx: ContextManager[Any] if self.is_safetensors: from safetensors import safe_open ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu")) else: ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True)) with ctx as model_part: tensor_names_from_parts.update(model_part.keys()) for name in model_part.keys(): data = model_part.get_tensor(name) if self.is_safetensors else model_part[name] if self.lazy: data = LazyTorchTensor.from_eager(data) yield name, data # only verify tensor name presence; it doesn't matter if they are not in the right files if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0: raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}") def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str: if key not in gguf.MODEL_TENSORS[self.model_arch]: raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}") name: str = gguf.TENSOR_NAMES[key] if "{bid}" in name: assert bid is not None name = name.format(bid=bid) return name + suffix def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool: if key not in gguf.MODEL_TENSORS[self.model_arch]: return False key_name: str = gguf.TENSOR_NAMES[key] if "{bid}" in key_name: if bid is None: return False key_name = key_name.format(bid=bid) else: if bid is not None: return False return name == (key_name + suffix) def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str: new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes) if new_name is None: raise ValueError(f"Can not map tensor {name!r}") return new_name def set_gguf_parameters(self): self.gguf_writer.add_name(self.dir_model.name) self.gguf_writer.add_block_count(self.block_count) if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None: self.gguf_writer.add_context_length(n_ctx) logger.info(f"gguf: context length = {n_ctx}") n_embd = self.find_hparam(["hidden_size", "n_embd"]) self.gguf_writer.add_embedding_length(n_embd) logger.info(f"gguf: embedding length = {n_embd}") if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None: self.gguf_writer.add_feed_forward_length(n_ff) logger.info(f"gguf: feed forward length = {n_ff}") n_head = self.find_hparam(["num_attention_heads", "n_head"]) self.gguf_writer.add_head_count(n_head) logger.info(f"gguf: head count = {n_head}") if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None: self.gguf_writer.add_head_count_kv(n_head_kv) logger.info(f"gguf: key-value head count = {n_head_kv}") if (rope_theta := self.hparams.get("rope_theta")) is not None: self.gguf_writer.add_rope_freq_base(rope_theta) logger.info(f"gguf: rope theta = {rope_theta}") if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None: self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps) logger.info(f"gguf: rms norm epsilon = {f_rms_eps}") if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None: self.gguf_writer.add_layer_norm_eps(f_norm_eps) logger.info(f"gguf: layer norm epsilon = {f_norm_eps}") if (n_experts := self.hparams.get("num_local_experts")) is not None: self.gguf_writer.add_expert_count(n_experts) logger.info(f"gguf: expert count = {n_experts}") if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None: self.gguf_writer.add_expert_used_count(n_experts_used) logger.info(f"gguf: experts used count = {n_experts_used}") self.gguf_writer.add_file_type(self.ftype) logger.info(f"gguf: file type = {self.ftype}") def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: del bid # unused return [(self.map_tensor_name(name), data_torch)] def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool: del name, new_name, bid, n_dims # unused return False def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool: del name, new_name, bid, n_dims # unused return False def write_tensors(self): max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,") for name, data_torch in self.get_tensors(): # we don't need these if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")): continue old_dtype = data_torch.dtype # convert any unsupported data types to float32 if data_torch.dtype not in (torch.float16, torch.float32): data_torch = data_torch.to(torch.float32) # use the first number-like part of the tensor name as the block id bid = None for part in name.split("."): if part.isdecimal(): bid = int(part) break for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)): data: np.ndarray = data # type hint n_dims = len(data.shape) data_dtype = data.dtype data_qtype: gguf.GGMLQuantizationType | None = None # when both are True, f32 should win extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims) extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims) # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors # Conditions should closely match those in llama_model_quantize_internal in llama.cpp extra_f32 = any(cond for cond in ( extra_f32, n_dims == 1, new_name.endswith("_norm.weight"), )) # Some tensor types are always in float32 extra_f32 = extra_f32 or any(self.match_model_tensor_name(new_name, key, bid) for key in ( gguf.MODEL_TENSOR.FFN_GATE_INP, gguf.MODEL_TENSOR.POS_EMBD, gguf.MODEL_TENSOR.TOKEN_TYPES, )) # if f16 desired, convert any float32 2-dim weight tensors to float16 extra_f16 = any(cond for cond in ( extra_f16, (name.endswith(".weight") and n_dims >= 2), )) if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32: if self.ftype == gguf.LlamaFileType.MOSTLY_BF16: data = gguf.quantize_bf16(data) assert data.dtype == np.int16 data_qtype = gguf.GGMLQuantizationType.BF16 elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data): data = gguf.quantize_q8_0(data) assert data.dtype == np.uint8 data_qtype = gguf.GGMLQuantizationType.Q8_0 else: # default to float16 for quantized tensors if data_dtype != np.float16: data = data.astype(np.float16) data_qtype = gguf.GGMLQuantizationType.F16 if data_qtype is None: # by default, convert to float32 if data_dtype != np.float32: data = data.astype(np.float32) data_qtype = gguf.GGMLQuantizationType.F32 block_size, type_size = gguf.GGML_QUANT_SIZES[data_qtype] # reverse shape to make it similar to the internal ggml dimension order shape_str = f"""{{{', '.join(str(n) for n in reversed( (*data.shape[:-1], data.shape[-1] * data.dtype.itemsize // type_size * block_size)) )}}}""" # n_dims is implicit in the shape logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}") self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype) def write(self): self.write_tensors() self.gguf_writer.write_header_to_file() self.gguf_writer.write_kv_data_to_file() self.gguf_writer.write_tensors_to_file(progress=True) self.gguf_writer.close() def write_vocab(self): self.gguf_writer.write_header_to_file() self.gguf_writer.write_kv_data_to_file() self.gguf_writer.close() @staticmethod def get_model_part_names(dir_model: Path, suffix: str) -> list[str]: part_names: list[str] = [] for filename in os.listdir(dir_model): if filename.endswith(suffix): part_names.append(filename) part_names.sort() return part_names @staticmethod def load_hparams(dir_model: Path): with open(dir_model / "config.json", "r", encoding="utf-8") as f: return json.load(f) @classmethod def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]: assert names def func(modelcls: AnyModel) -> AnyModel: for name in names: cls._model_classes[name] = modelcls return modelcls return func @classmethod def from_model_architecture(cls, arch: str) -> type[Model]: try: return cls._model_classes[arch] except KeyError: raise NotImplementedError(f'Architecture {arch!r} not supported!') from None # used for GPT-2 BPE and WordPiece vocabs def get_vocab_base(self) -> tuple[list[str], list[int], str]: tokens: list[str] = [] toktypes: list[int] = [] from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(self.dir_model) vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab)) assert max(tokenizer.vocab.values()) < vocab_size tokpre = self.get_vocab_base_pre(tokenizer) reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()} added_vocab = tokenizer.get_added_vocab() for i in range(vocab_size): if i not in reverse_vocab: tokens.append(f"[PAD{i}]") toktypes.append(gguf.TokenType.USER_DEFINED) elif reverse_vocab[i] in added_vocab: tokens.append(reverse_vocab[i]) if tokenizer.added_tokens_decoder[i].special: toktypes.append(gguf.TokenType.CONTROL) else: toktypes.append(gguf.TokenType.USER_DEFINED) else: tokens.append(reverse_vocab[i]) toktypes.append(gguf.TokenType.NORMAL) return tokens, toktypes, tokpre # NOTE: this function is generated by convert-hf-to-gguf-update.py # do not modify it manually! # ref: https://github.com/ggerganov/llama.cpp/pull/6920 # Marker: Start get_vocab_base_pre def get_vocab_base_pre(self, tokenizer) -> str: # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that # is specific for the BPE pre-tokenizer used by the model # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can # use in llama.cpp to implement the same pre-tokenizer chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL' chktok = tokenizer.encode(chktxt) chkhsh = sha256(str(chktok).encode()).hexdigest() logger.debug(f"chktok: {chktok}") logger.debug(f"chkhsh: {chkhsh}") res = None # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script # or pull the latest version of the model from Huggingface # don't edit the hashes manually! if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5": # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B res = "llama-bpe" if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754": # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base res = "deepseek-llm" if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821": # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base res = "deepseek-coder" if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed": # ref: https://huggingface.co/tiiuae/falcon-7b res = "falcon" if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f": # ref: https://huggingface.co/BAAI/bge-small-en-v1.5 res = "bert-bge" if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166": # ref: https://huggingface.co/mosaicml/mpt-7b res = "mpt" if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34": # ref: https://huggingface.co/bigcode/starcoder2-3b res = "starcoder" if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454": # ref: https://huggingface.co/openai-community/gpt2 res = "gpt-2" if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3": # ref: https://huggingface.co/stabilityai/stablelm-2-1_6b res = "stablelm2" if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff": # ref: https://huggingface.co/smallcloudai/Refact-1_6-base res = "refact" if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8": # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01 res = "command-r" if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea": # ref: https://huggingface.co/Qwen/Qwen1.5-7B res = "qwen2" if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166": # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf res = "olmo" if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e": # ref: https://huggingface.co/databricks/dbrx-base res = "dbrx" if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f": # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en res = "jina-v2-en" if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643": # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es res = "jina-v2-es" if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6": # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de res = "jina-v2-de" if res is None: logger.warning("\n") logger.warning("**************************************************************************************") logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!") logger.warning("** There are 2 possible reasons for this:") logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet") logger.warning("** - the pre-tokenization config has changed upstream") logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.") logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920") logger.warning("**") logger.warning(f"** chkhsh: {chkhsh}") logger.warning("**************************************************************************************") logger.warning("\n") raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()") logger.debug(f"tokenizer.ggml.pre: {repr(res)}") logger.debug(f"chkhsh: {chkhsh}") return res # Marker: End get_vocab_base_pre def _set_vocab_gpt2(self) -> None: tokens, toktypes, tokpre = self.get_vocab_base() self.gguf_writer.add_tokenizer_model("gpt2") self.gguf_writer.add_tokenizer_pre(tokpre) self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_types(toktypes) special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True) special_vocab.add_to_gguf(self.gguf_writer) def _set_vocab_qwen(self): dir_model = self.dir_model hparams = self.hparams tokens: list[str] = [] toktypes: list[int] = [] from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True) vocab_size = hparams["vocab_size"] assert max(tokenizer.get_vocab().values()) < vocab_size tokpre = self.get_vocab_base_pre(tokenizer) merges = [] vocab = {} mergeable_ranks = tokenizer.mergeable_ranks for token, rank in mergeable_ranks.items(): vocab[QwenModel.token_bytes_to_string(token)] = rank if len(token) == 1: continue merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank) assert len(merged) == 2 merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged))) # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined added_vocab = tokenizer.special_tokens reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()} for i in range(vocab_size): if i not in reverse_vocab: tokens.append(f"[PAD{i}]") toktypes.append(gguf.TokenType.USER_DEFINED) elif reverse_vocab[i] in added_vocab: tokens.append(reverse_vocab[i]) toktypes.append(gguf.TokenType.CONTROL) else: tokens.append(reverse_vocab[i]) toktypes.append(gguf.TokenType.NORMAL) self.gguf_writer.add_tokenizer_model("gpt2") self.gguf_writer.add_tokenizer_pre(tokpre) self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_types(toktypes) special_vocab = gguf.SpecialVocab(dir_model, load_merges=False) special_vocab.merges = merges # only add special tokens when they were not already loaded from config.json if len(special_vocab.special_token_ids) == 0: special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"]) special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"]) # this one is usually not in config.json anyway special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"]) special_vocab.add_to_gguf(self.gguf_writer) def _set_vocab_sentencepiece(self): from sentencepiece import SentencePieceProcessor tokenizer_path = self.dir_model / 'tokenizer.model' tokens: list[bytes] = [] scores: list[float] = [] toktypes: list[int] = [] if not tokenizer_path.is_file(): raise FileNotFoundError(f"File not found: {tokenizer_path}") tokenizer = SentencePieceProcessor() tokenizer.LoadFromFile(str(tokenizer_path)) vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] scores: list[float] = [-10000.0] * vocab_size toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size for token_id in range(tokenizer.vocab_size()): piece = tokenizer.IdToPiece(token_id) text = piece.encode("utf-8") score = tokenizer.GetScore(token_id) toktype = SentencePieceTokenTypes.NORMAL if tokenizer.IsUnknown(token_id): toktype = SentencePieceTokenTypes.UNKNOWN elif tokenizer.IsControl(token_id): toktype = SentencePieceTokenTypes.CONTROL elif tokenizer.IsUnused(token_id): toktype = SentencePieceTokenTypes.UNUSED elif tokenizer.IsByte(token_id): toktype = SentencePieceTokenTypes.BYTE tokens[token_id] = text scores[token_id] = score toktypes[token_id] = toktype added_tokens_file = self.dir_model / 'added_tokens.json' if added_tokens_file.is_file(): with open(added_tokens_file, "r", encoding="utf-8") as f: added_tokens_json = json.load(f) for key in added_tokens_json: token_id = added_tokens_json[key] if (token_id >= vocab_size): logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}') continue tokens[token_id] = key.encode("utf-8") scores[token_id] = -1000.0 toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED if vocab_size > len(tokens): pad_count = vocab_size - len(tokens) logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]") for i in range(1, pad_count + 1): tokens.append(bytes(f"[PAD{i}]", encoding="utf-8")) scores.append(-1000.0) toktypes.append(SentencePieceTokenTypes.UNUSED) self.gguf_writer.add_tokenizer_model("llama") self.gguf_writer.add_tokenizer_pre("default") self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_scores(scores) self.gguf_writer.add_token_types(toktypes) special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) special_vocab.add_to_gguf(self.gguf_writer) def _set_vocab_llama_hf(self): vocab = LlamaHfVocab(self.dir_model) tokens = [] scores = [] toktypes = [] for text, score, toktype in vocab.all_tokens(): tokens.append(text) scores.append(score) toktypes.append(toktype) assert len(tokens) == vocab.vocab_size self.gguf_writer.add_tokenizer_model("llama") self.gguf_writer.add_tokenizer_pre("default") self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_scores(scores) self.gguf_writer.add_token_types(toktypes) special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) special_vocab.add_to_gguf(self.gguf_writer) @Model.register("GPTNeoXForCausalLM") class GPTNeoXModel(Model): model_arch = gguf.MODEL_ARCH.GPTNEOX def set_gguf_parameters(self): block_count = self.hparams["num_hidden_layers"] self.gguf_writer.add_name(self.dir_model.name) self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) self.gguf_writer.add_rope_dimension_count( int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])), ) self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True)) self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"]) @Model.register("BloomForCausalLM") class BloomModel(Model): model_arch = gguf.MODEL_ARCH.BLOOM def set_gguf_parameters(self): self.gguf_writer.add_name("Bloom") n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed")) n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads")) self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed)) self.gguf_writer.add_embedding_length(n_embed) self.gguf_writer.add_feed_forward_length(4 * n_embed) self.gguf_writer.add_block_count(self.hparams["n_layer"]) self.gguf_writer.add_head_count(n_head) self.gguf_writer.add_head_count_kv(n_head) self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) self.gguf_writer.add_file_type(self.ftype) def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: del bid # unused n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads")) n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed")) name = re.sub(r'transformer\.', '', name) tensors: list[tuple[str, Tensor]] = [] if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name): # Map bloom-style qkv_linear to gpt-style qkv_linear # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed)) data_torch = torch.cat( ( qkv_weights[:, 0, :, :].reshape((-1, n_embed)), qkv_weights[:, 1, :, :].reshape((-1, n_embed)), qkv_weights[:, 2, :, :].reshape((-1, n_embed)), ), dim=0, ) logger.info("re-format attention.linear_qkv.weight") elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name): qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head)) data_torch = torch.cat( ( qkv_bias[:, 0, :].reshape((n_embed,)), qkv_bias[:, 1, :].reshape((n_embed,)), qkv_bias[:, 2, :].reshape((n_embed,)), ), dim=0, ) logger.info("re-format attention.linear_qkv.bias") tensors.append((self.map_tensor_name(name), data_torch)) if name == "word_embeddings.weight": assert self.tensor_names is not None # TODO: tie them at runtime, don't duplicate in the model file if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")): tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch)) return tensors @Model.register("MPTForCausalLM") class MPTModel(Model): model_arch = gguf.MODEL_ARCH.MPT def set_vocab(self): try: self._set_vocab_gpt2() except Exception: # Fallback for SEA-LION model self._set_vocab_sentencepiece() self.gguf_writer.add_add_bos_token(False) self.gguf_writer.add_pad_token_id(3) self.gguf_writer.add_eos_token_id(1) self.gguf_writer.add_unk_token_id(0) def set_gguf_parameters(self): block_count = self.hparams["n_layers"] self.gguf_writer.add_name(self.dir_model.name) self.gguf_writer.add_context_length(self.hparams["max_seq_len"]) self.gguf_writer.add_embedding_length(self.hparams["d_model"]) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"]) self.gguf_writer.add_head_count(self.hparams["n_heads"]) if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"): self.gguf_writer.add_head_count_kv(kv_n_heads) self.gguf_writer.add_layer_norm_eps(1e-5) if self.hparams["attn_config"]["clip_qkv"] is not None: self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"]) if self.hparams["attn_config"]["alibi"]: self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"]) else: self.gguf_writer.add_max_alibi_bias(0.0) def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: del bid # unused if "scales" in name: new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales")) new_name = new_name.replace("scales", "act.scales") else: new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias")) return [(new_name, data_torch)] @Model.register("OrionForCausalLM") class OrionModel(Model): model_arch = gguf.MODEL_ARCH.ORION def set_vocab(self): self._set_vocab_sentencepiece() def set_gguf_parameters(self): block_count = self.hparams["num_hidden_layers"] head_count = self.hparams["num_attention_heads"] head_count_kv = self.hparams.get("num_key_value_heads", head_count) hf_repo = self.hparams.get("_name_or_path", "") ctx_length = 0 if "max_sequence_length" in self.hparams: ctx_length = self.hparams["max_sequence_length"] elif "max_position_embeddings" in self.hparams: ctx_length = self.hparams["max_position_embeddings"] elif "model_max_length" in self.hparams: ctx_length = self.hparams["model_max_length"] else: raise ValueError("gguf: can not find ctx length parameter.") self.gguf_writer.add_file_type(self.ftype) self.gguf_writer.add_name(self.dir_model.name) self.gguf_writer.add_source_hf_repo(hf_repo) self.gguf_writer.add_tensor_data_layout("Meta AI original pth") self.gguf_writer.add_context_length(ctx_length) self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) self.gguf_writer.add_head_count(head_count) self.gguf_writer.add_head_count_kv(head_count_kv) # note: config provides rms norm but it is actually layer norm # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571 self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"]) @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM") class BaichuanModel(Model): model_arch = gguf.MODEL_ARCH.BAICHUAN def set_vocab(self): self._set_vocab_sentencepiece() def set_gguf_parameters(self): block_count = self.hparams["num_hidden_layers"] head_count = self.hparams["num_attention_heads"] head_count_kv = self.hparams.get("num_key_value_heads", head_count) hf_repo = self.hparams.get("_name_or_path", "") ctx_length = 0 if "max_sequence_length" in self.hparams: ctx_length = self.hparams["max_sequence_length"] elif "max_position_embeddings" in self.hparams: ctx_length = self.hparams["max_position_embeddings"] elif "model_max_length" in self.hparams: ctx_length = self.hparams["model_max_length"] else: raise ValueError("gguf: can not find ctx length parameter.") self.gguf_writer.add_name(self.dir_model.name) self.gguf_writer.add_source_hf_repo(hf_repo) self.gguf_writer.add_tensor_data_layout("Meta AI original pth") self.gguf_writer.add_context_length(ctx_length) self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) self.gguf_writer.add_head_count(head_count) self.gguf_writer.add_head_count_kv(head_count_kv) self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) self.gguf_writer.add_file_type(self.ftype) if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: if self.hparams["rope_scaling"].get("type") == "linear": self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: head_count = self.hparams["num_attention_heads"] head_count_kv = self.hparams.get("num_key_value_heads", head_count) tensors: list[tuple[str, Tensor]] = [] if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight": logger.info(f"Unpacking and permuting layer {bid}") tensors = [ (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)), (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)), (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), self._reverse_hf_part(data_torch, 2)), ] else: tensors = [(self.map_tensor_name(name), data_torch)] return tensors def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor: if n_kv_head is not None and n_head != n_kv_head: n_head //= n_kv_head return ( weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) .swapaxes(1, 2) .reshape(weights.shape) ) def _reverse_hf_permute_part( self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None, ) -> Tensor: r = weights.shape[0] // 3 return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv) def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor: r = weights.shape[0] // 3 return weights[r * n_part:r * n_part + r, ...] @Model.register("XverseForCausalLM") class XverseModel(Model): model_arch = gguf.MODEL_ARCH.XVERSE def set_vocab(self): assert (self.dir_model / "tokenizer.json").is_file() dir_model = self.dir_model hparams = self.hparams tokens: list[bytes] = [] toktypes: list[int] = [] from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(dir_model) vocab_size = hparams.get("vocab_size", len(tokenizer.vocab)) assert max(tokenizer.vocab.values()) < vocab_size reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()} added_vocab = tokenizer.get_added_vocab() for token_id in range(vocab_size): token_text = reverse_vocab[token_id].encode('utf-8') # replace "\x00" to string with length > 0 if token_text == b"\x00": toktype = gguf.TokenType.BYTE # special token_text = f"<{token_text}>".encode('utf-8') elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text): toktype = gguf.TokenType.BYTE # special elif reverse_vocab[token_id] in added_vocab: if tokenizer.added_tokens_decoder[token_id].special: toktype = gguf.TokenType.CONTROL else: toktype = gguf.TokenType.USER_DEFINED else: toktype = gguf.TokenType.NORMAL tokens.append(token_text) toktypes.append(toktype) self.gguf_writer.add_tokenizer_model("llama") self.gguf_writer.add_tokenizer_pre("default") self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_types(toktypes) special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens)) special_vocab.add_to_gguf(self.gguf_writer) def set_gguf_parameters(self): block_count = self.hparams["num_hidden_layers"] head_count = self.hparams["num_attention_heads"] head_count_kv = self.hparams.get("num_key_value_heads", head_count) hf_repo = self.hparams.get("_name_or_path", "") ctx_length = 0 if "max_sequence_length" in self.hparams: ctx_length = self.hparams["max_sequence_length"] elif "max_position_embeddings" in self.hparams: ctx_length = self.hparams["max_position_embeddings"] elif "model_max_length" in self.hparams: ctx_length = self.hparams["model_max_length"] else: raise ValueError("gguf: can not find ctx length parameter.") self.gguf_writer.add_name(self.dir_model.name) self.gguf_writer.add_source_hf_repo(hf_repo) self.gguf_writer.add_tensor_data_layout("Meta AI original pth") self.gguf_writer.add_context_length(ctx_length) self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) self.gguf_writer.add_head_count(head_count) self.gguf_writer.add_head_count_kv(head_count_kv) self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) self.gguf_writer.add_file_type(self.ftype) if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: if self.hparams["rope_scaling"].get("type") == "linear": self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: del bid # unused head_count = self.hparams["num_attention_heads"] head_count_kv = self.hparams.get("num_key_value_heads", head_count) # HF models permute some of the tensors, so we need to undo that if name.endswith("q_proj.weight"): data_torch = self._reverse_hf_permute(data_torch, head_count, head_count) if name.endswith("k_proj.weight"): data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv) return [(self.map_tensor_name(name), data_torch)] def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor: if n_kv_head is not None and n_head != n_kv_head: n_head //= n_kv_head return ( weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) .swapaxes(1, 2) .reshape(weights.shape) ) @Model.register("FalconForCausalLM", "RWForCausalLM") class FalconModel(Model): model_arch = gguf.MODEL_ARCH.FALCON def set_gguf_parameters(self): block_count = self.hparams.get("num_hidden_layers") if block_count is None: block_count = self.hparams["n_layer"] # old name n_head = self.hparams.get("num_attention_heads") if n_head is None: n_head = self.hparams["n_head"] # old name n_head_kv = self.hparams.get("num_kv_heads") if n_head_kv is None: n_head_kv = self.hparams.get("n_head_kv", 1) # old name self.gguf_writer.add_name("Falcon") self.gguf_writer.add_context_length(2048) # not in config.json self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_head_count(n_head) self.gguf_writer.add_head_count_kv(n_head_kv) self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) self.gguf_writer.add_file_type(self.ftype) def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: del bid # unused # QKV tensor transform # The original query_key_value tensor contains n_head_kv "kv groups", # each consisting of n_head/n_head_kv query weights followed by one key # and one value weight (shared by all query heads in the kv group). # This layout makes it a big pain to work with in GGML. # So we rearrange them here,, so that we have n_head query weights # followed by n_head_kv key weights followed by n_head_kv value weights, # in contiguous fashion. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py if "query_key_value" in name: n_head = self.find_hparam(["num_attention_heads", "n_head"]) n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1 head_dim = self.hparams["hidden_size"] // n_head qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head) q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head) k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head) v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head) data_torch = torch.cat((q, k, v)).reshape_as(data_torch) return [(self.map_tensor_name(name), data_torch)] @Model.register("GPTBigCodeForCausalLM") class StarCoderModel(Model): model_arch = gguf.MODEL_ARCH.STARCODER def set_gguf_parameters(self): block_count = self.hparams["n_layer"] self.gguf_writer.add_name("StarCoder") self.gguf_writer.add_context_length(self.hparams["n_positions"]) self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"]) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_head_count(self.hparams["n_head"]) self.gguf_writer.add_head_count_kv(1) self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) self.gguf_writer.add_file_type(self.ftype) @Model.register("GPTRefactForCausalLM") class RefactModel(Model): model_arch = gguf.MODEL_ARCH.REFACT def set_vocab(self): super().set_vocab() # TODO: how to determine special FIM tokens automatically? special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False, special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot']) special_vocab._set_special_token("prefix", 1) special_vocab._set_special_token("suffix", 3) special_vocab._set_special_token("middle", 2) special_vocab._set_special_token("fsep", 4) # is this correct? special_vocab.add_to_gguf(self.gguf_writer) def set_gguf_parameters(self): hidden_dim = self.hparams["n_embd"] inner_dim = 4 * hidden_dim hidden_dim = int(2 * inner_dim / 3) multiple_of = 256 ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) block_count = self.hparams["n_layer"] self.gguf_writer.add_name("Refact") # refact uses Alibi. So this is from config.json which might be used by training. self.gguf_writer.add_context_length(self.hparams["n_positions"]) self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) self.gguf_writer.add_feed_forward_length(ff_dim) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_head_count(self.hparams["n_head"]) self.gguf_writer.add_head_count_kv(1) self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"]) self.gguf_writer.add_file_type(self.ftype) def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: hidden_dim = self.hparams["n_embd"] inner_dim = 4 * hidden_dim hidden_dim = int(2 * inner_dim / 3) multiple_of = 256 ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) n_head = self.hparams["n_head"] n_head_kv = 1 head_dim = self.hparams["n_embd"] // n_head tensors: list[tuple[str, Tensor]] = [] if bid is not None: if name == f"transformer.h.{bid}.attn.kv.weight": tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim])) tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:])) elif name == f"transformer.h.{bid}.attn.q.weight": tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch)) elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight": tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])) tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])) if len(tensors) == 0: tensors.append((self.map_tensor_name(name), data_torch)) return tensors @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM") class StableLMModel(Model): model_arch = gguf.MODEL_ARCH.STABLELM def set_vocab(self): if (self.dir_model / "tokenizer.json").is_file(): self._set_vocab_gpt2() else: # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab self._set_vocab_qwen() def set_gguf_parameters(self): hparams = self.hparams block_count = hparams["num_hidden_layers"] self.gguf_writer.add_name(self.dir_model.name) self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) self.gguf_writer.add_embedding_length(hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"]) self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"]))) self.gguf_writer.add_head_count(hparams["num_attention_heads"]) self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"]) self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True) self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"])) self.gguf_writer.add_file_type(self.ftype) _q_norms: list[dict[str, Tensor]] | None = None _k_norms: list[dict[str, Tensor]] | None = None def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: n_head = self.hparams["num_attention_heads"] n_kv_head = self.hparams["num_key_value_heads"] if name.find("q_layernorm.norms") != -1: assert bid is not None if self._q_norms is None: self._q_norms = [{} for _ in range(self.block_count)] self._q_norms[bid][name] = data_torch if len(self._q_norms[bid]) >= n_head: return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm") else: return [] if name.find("k_layernorm.norms") != -1: assert bid is not None if self._k_norms is None: self._k_norms = [{} for _ in range(self.block_count)] self._k_norms[bid][name] = data_torch if len(self._k_norms[bid]) >= n_kv_head: return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm") else: return [] return [(self.map_tensor_name(name), data_torch)] def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"): datas: list[Tensor] = [] # extract the norms in order for xid in range(n_head): ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight" datas.append(norms[ename]) del norms[ename] data_torch = torch.stack(datas, dim=0) merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight" new_name = self.map_tensor_name(merged_name) return [(new_name, data_torch)] def write_tensors(self): super().write_tensors() if self._q_norms is not None or self._k_norms is not None: # flatten two `list[dict[str, Tensor]]` into a single `list[str]` norms = ( [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else [] ) + ( [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else [] ) if len(norms) > 0: raise ValueError(f"Unprocessed norms: {norms}") @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM") class LlamaModel(Model): model_arch = gguf.MODEL_ARCH.LLAMA def set_vocab(self): try: self. _set_vocab_sentencepiece() except FileNotFoundError: try: self._set_vocab_llama_hf() except (FileNotFoundError, TypeError): # Llama 3 self._set_vocab_gpt2() # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256) if self.hparams.get("vocab_size", 32000) == 32016: special_vocab = gguf.SpecialVocab( self.dir_model, load_merges=False, special_token_types = ['prefix', 'suffix', 'middle', 'eot'] ) special_vocab._set_special_token("prefix", 32007) special_vocab._set_special_token("suffix", 32008) special_vocab._set_special_token("middle", 32009) special_vocab._set_special_token("eot", 32010) special_vocab.add_to_gguf(self.gguf_writer) def set_gguf_parameters(self): super().set_gguf_parameters() hparams = self.hparams self.gguf_writer.add_vocab_size(hparams["vocab_size"]) self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"]) if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: if self.hparams["rope_scaling"].get("type") == "linear": self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) @staticmethod def permute(weights: Tensor, n_head: int, n_head_kv: int | None): if n_head_kv is not None and n_head != n_head_kv: n_head = n_head_kv return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) .swapaxes(1, 2) .reshape(weights.shape)) _experts: list[dict[str, Tensor]] | None = None def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: n_head = self.hparams["num_attention_heads"] n_kv_head = self.hparams.get("num_key_value_heads") if name.endswith("q_proj.weight"): data_torch = LlamaModel.permute(data_torch, n_head, n_head) if name.endswith("k_proj.weight"): data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head) # process the experts separately if name.find("block_sparse_moe.experts") != -1: n_experts = self.hparams["num_local_experts"] assert bid is not None if self._experts is None: self._experts = [{} for _ in range(self.block_count)] self._experts[bid][name] = data_torch if len(self._experts[bid]) >= n_experts * 3: tensors: list[tuple[str, Tensor]] = [] # merge the experts into a single 3d tensor for wid in ["w1", "w2", "w3"]: datas: list[Tensor] = [] for xid in range(n_experts): ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight" datas.append(self._experts[bid][ename]) del self._experts[bid][ename] data_torch = torch.stack(datas, dim=0) merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight" new_name = self.map_tensor_name(merged_name) tensors.append((new_name, data_torch)) return tensors else: return [] return [(self.map_tensor_name(name), data_torch)] def write_tensors(self): super().write_tensors() if self._experts is not None: # flatten `list[dict[str, Tensor]]` into `list[str]` experts = [k for d in self._experts for k in d.keys()] if len(experts) > 0: raise ValueError(f"Unprocessed experts: {experts}") @Model.register("GrokForCausalLM") class GrokModel(Model): model_arch = gguf.MODEL_ARCH.GROK def set_vocab(self): self._set_vocab_sentencepiece() def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def set_gguf_parameters(self): super().set_gguf_parameters() self.gguf_writer.add_name("Grok") _experts: list[dict[str, Tensor]] | None = None def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: # process the experts separately if name.find(".moe.") != -1: n_experts = self.hparams["num_local_experts"] assert bid is not None if self._experts is None: self._experts = [{} for _ in range(self.block_count)] self._experts[bid][name] = data_torch if len(self._experts[bid]) >= n_experts * 3: tensors: list[tuple[str, Tensor]] = [] # merge the experts into a single 3d tensor for wid in ["linear", "linear_1", "linear_v"]: datas: list[Tensor] = [] for xid in range(n_experts): ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight" datas.append(self._experts[bid][ename]) del self._experts[bid][ename] data_torch = torch.stack(datas, dim=0) merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight" new_name = self.map_tensor_name(merged_name) tensors.append((new_name, data_torch)) return tensors else: return [] return [(self.map_tensor_name(name), data_torch)] @Model.register("DbrxForCausalLM") class DbrxModel(Model): model_arch = gguf.MODEL_ARCH.DBRX def set_gguf_parameters(self): ffn_config = self.hparams["ffn_config"] attn_config = self.hparams["attn_config"] self.gguf_writer.add_name(self.hparams["model_type"]) self.gguf_writer.add_block_count(self.hparams["n_layers"]) self.gguf_writer.add_context_length(self.hparams["max_seq_len"]) self.gguf_writer.add_embedding_length(self.hparams["d_model"]) self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"]) self.gguf_writer.add_head_count(self.hparams["n_heads"]) self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"]) self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"]) self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"]) self.gguf_writer.add_file_type(self.ftype) self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"]) self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"]) self.gguf_writer.add_layer_norm_eps(1e-5) self.gguf_writer.add_file_type(self.ftype) logger.info(f"gguf: file type = {self.ftype}") def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: del bid # unused n_expert = self.hparams["ffn_config"]["moe_num_experts"] n_ff = self.hparams["ffn_config"]["ffn_hidden_size"] n_embd = self.hparams["d_model"] # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose # original implementation expects (n_expert, n_ff, n_embd) for all experts weights # But llama.cpp moe graph works differently # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert} "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert} "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert} experts = False for exp_tensor_name in exp_tensor_names.keys(): if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1: experts = True data_torch = data_torch.view(n_expert, n_ff, n_embd) if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None: data_torch = data_torch.permute(*permute_tensor) break # map tensor names # In MoE models the ffn tensors are typically most of the model weights, # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight. # Every other model has the weight names ending in .weight, # let's assume that is the convention which is not the case for dbrx: # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15 new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",)) return [(new_name, data_torch)] def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool: del name, new_name, bid # unused return n_dims > 1 @Model.register("MiniCPMForCausalLM") class MiniCPMModel(Model): model_arch = gguf.MODEL_ARCH.MINICPM def set_gguf_parameters(self): block_count = self.hparams["num_hidden_layers"] self.gguf_writer.add_name("MiniCPM") self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"]) self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) self.gguf_writer.add_file_type(self.ftype) def set_vocab(self): self._set_vocab_llama_hf() def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor: if n_kv_head is not None and n_head != n_kv_head: n_head //= n_kv_head return ( weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) .swapaxes(1, 2) .reshape(weights.shape) ) def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: del bid # unused n_head = self.hparams["num_attention_heads"] n_kv_head = self.hparams.get("num_key_value_heads") # HF models permute some of the tensors, so we need to undo that if name.endswith(("q_proj.weight")): data_torch = self._reverse_hf_permute(data_torch, n_head, n_head) if name.endswith(("k_proj.weight")): data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head) return [(self.map_tensor_name(name), data_torch)] @Model.register("QWenLMHeadModel") class QwenModel(Model): model_arch = gguf.MODEL_ARCH.QWEN @staticmethod def token_bytes_to_string(b): from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode byte_encoder = bytes_to_unicode() return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')]) @staticmethod def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]: parts = [bytes([b]) for b in token] while True: min_idx = None min_rank = None for i, pair in enumerate(zip(parts[:-1], parts[1:])): rank = mergeable_ranks.get(pair[0] + pair[1]) if rank is not None and (min_rank is None or rank < min_rank): min_idx = i min_rank = rank if min_rank is None or (max_rank is not None and min_rank >= max_rank): break assert min_idx is not None parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:] return parts def set_vocab(self): self._set_vocab_qwen() def set_gguf_parameters(self): self.gguf_writer.add_name("Qwen") self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"]) self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"]) self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"]) self.gguf_writer.add_file_type(self.ftype) @Model.register("Qwen2ForCausalLM") class Qwen2Model(Model): model_arch = gguf.MODEL_ARCH.QWEN2 def set_vocab(self): try: self._set_vocab_sentencepiece() except FileNotFoundError: self._set_vocab_gpt2() @Model.register("Qwen2MoeForCausalLM") class Qwen2MoeModel(Model): model_arch = gguf.MODEL_ARCH.QWEN2MOE def set_gguf_parameters(self): super().set_gguf_parameters() if (n_experts := self.hparams.get("num_experts")) is not None: self.gguf_writer.add_expert_count(n_experts) _experts: list[dict[str, Tensor]] | None = None def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: # process the experts separately if name.find("experts") != -1: n_experts = self.hparams["num_experts"] assert bid is not None if self._experts is None: self._experts = [{} for _ in range(self.block_count)] self._experts[bid][name] = data_torch if len(self._experts[bid]) >= n_experts * 3: tensors: list[tuple[str, Tensor]] = [] # merge the experts into a single 3d tensor for w_name in ["down_proj", "gate_proj", "up_proj"]: datas: list[Tensor] = [] for xid in range(n_experts): ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight" datas.append(self._experts[bid][ename]) del self._experts[bid][ename] data_torch = torch.stack(datas, dim=0) merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight" new_name = self.map_tensor_name(merged_name) tensors.append((new_name, data_torch)) return tensors else: return [] return [(self.map_tensor_name(name), data_torch)] def write_tensors(self): super().write_tensors() if self._experts is not None: # flatten `list[dict[str, Tensor]]` into `list[str]` experts = [k for d in self._experts for k in d.keys()] if len(experts) > 0: raise ValueError(f"Unprocessed experts: {experts}") @Model.register("GPT2LMHeadModel") class GPT2Model(Model): model_arch = gguf.MODEL_ARCH.GPT2 def set_gguf_parameters(self): self.gguf_writer.add_name(self.dir_model.name) self.gguf_writer.add_block_count(self.hparams["n_layer"]) self.gguf_writer.add_context_length(self.hparams["n_ctx"]) self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"]) self.gguf_writer.add_head_count(self.hparams["n_head"]) self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) self.gguf_writer.add_file_type(self.ftype) def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: del bid # unused tensors: list[tuple[str, Tensor]] = [] # we don't need these if name.endswith((".attn.bias", ".attn.masked_bias")): return tensors if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")): data_torch = data_torch.transpose(1, 0) new_name = self.map_tensor_name(name) tensors.append((new_name, data_torch)) # note: GPT2 output is tied to (same as) wte in original model if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD): tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch)) return tensors @Model.register("PhiForCausalLM") class Phi2Model(Model): model_arch = gguf.MODEL_ARCH.PHI2 def set_gguf_parameters(self): block_count = self.find_hparam(["num_hidden_layers", "n_layer"]) rot_pct = self.find_hparam(["partial_rotary_factor"]) n_embd = self.find_hparam(["hidden_size", "n_embd"]) n_head = self.find_hparam(["num_attention_heads", "n_head"]) self.gguf_writer.add_name("Phi2") self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"])) self.gguf_writer.add_embedding_length(n_embd) self.gguf_writer.add_feed_forward_length(4 * n_embd) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_head_count(n_head) self.gguf_writer.add_head_count_kv(n_head) self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"])) self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head) self.gguf_writer.add_file_type(self.ftype) self.gguf_writer.add_add_bos_token(False) @Model.register("Phi3ForCausalLM") class Phi3MiniModel(Model): model_arch = gguf.MODEL_ARCH.PHI3 def set_vocab(self): from sentencepiece import SentencePieceProcessor tokenizer_path = self.dir_model / 'tokenizer.model' if not tokenizer_path.is_file(): raise ValueError(f'Error: Missing {tokenizer_path}') tokenizer = SentencePieceProcessor() tokenizer.LoadFromFile(str(tokenizer_path)) vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] scores: list[float] = [-10000.0] * vocab_size toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size for token_id in range(tokenizer.vocab_size()): piece = tokenizer.IdToPiece(token_id) text = piece.encode("utf-8") score = tokenizer.GetScore(token_id) toktype = SentencePieceTokenTypes.NORMAL if tokenizer.IsUnknown(token_id): toktype = SentencePieceTokenTypes.UNKNOWN elif tokenizer.IsControl(token_id): toktype = SentencePieceTokenTypes.CONTROL elif tokenizer.IsUnused(token_id): toktype = SentencePieceTokenTypes.UNUSED elif tokenizer.IsByte(token_id): toktype = SentencePieceTokenTypes.BYTE tokens[token_id] = text scores[token_id] = score toktypes[token_id] = toktype added_tokens_file = self.dir_model / 'added_tokens.json' if added_tokens_file.is_file(): with open(added_tokens_file, "r", encoding="utf-8") as f: added_tokens_json = json.load(f) for key in added_tokens_json: token_id = added_tokens_json[key] if (token_id >= vocab_size): logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}') continue tokens[token_id] = key.encode("utf-8") scores[token_id] = -1000.0 toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED self.gguf_writer.add_tokenizer_model("llama") self.gguf_writer.add_tokenizer_pre("default") self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_scores(scores) self.gguf_writer.add_token_types(toktypes) special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) special_vocab.add_to_gguf(self.gguf_writer) def set_gguf_parameters(self): block_count = self.find_hparam(["num_hidden_layers", "n_layer"]) rot_pct = 1.0 n_embd = self.find_hparam(["hidden_size", "n_embd"]) n_head = self.find_hparam(["num_attention_heads", "n_head"]) rms_eps = self.find_hparam(["rms_norm_eps"]) self.gguf_writer.add_name("Phi3") self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"])) self.gguf_writer.add_embedding_length(n_embd) self.gguf_writer.add_feed_forward_length(8192) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_head_count(n_head) self.gguf_writer.add_head_count_kv(n_head) self.gguf_writer.add_layer_norm_rms_eps(rms_eps) self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head) self.gguf_writer.add_file_type(self.ftype) @Model.register("PlamoForCausalLM") class PlamoModel(Model): model_arch = gguf.MODEL_ARCH.PLAMO def set_vocab(self): self._set_vocab_sentencepiece() def set_gguf_parameters(self): hparams = self.hparams block_count = hparams["num_hidden_layers"] self.gguf_writer.add_name("PLaMo") self.gguf_writer.add_context_length(4096) # not in config.json self.gguf_writer.add_embedding_length(hparams["hidden_size"]) self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_head_count(hparams["num_attention_heads"]) self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"]) self.gguf_writer.add_file_type(self.ftype) def shuffle_attn_q_weight(self, data_torch): assert data_torch.size() == (5120, 5120) data_torch = data_torch.reshape(8, 5, 128, 5120) data_torch = torch.permute(data_torch, (1, 0, 2, 3)) data_torch = torch.reshape(data_torch, (5120, 5120)) return data_torch def shuffle_attn_output_weight(self, data_torch): assert data_torch.size() == (5120, 5120) data_torch = data_torch.reshape(5120, 8, 5, 128) data_torch = torch.permute(data_torch, (0, 2, 1, 3)) data_torch = torch.reshape(data_torch, (5120, 5120)) return data_torch def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: del bid # unused new_name = self.map_tensor_name(name) # shuffle for broadcasting of gqa in ggml_mul_mat if new_name.endswith("attn_q.weight"): data_torch = self.shuffle_attn_q_weight(data_torch) elif new_name.endswith("attn_output.weight"): data_torch = self.shuffle_attn_output_weight(data_torch) return [(new_name, data_torch)] @Model.register("CodeShellForCausalLM") class CodeShellModel(Model): model_arch = gguf.MODEL_ARCH.CODESHELL def set_gguf_parameters(self): block_count = self.hparams["n_layer"] self.gguf_writer.add_name("CodeShell") self.gguf_writer.add_context_length(self.hparams["n_positions"]) self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"]) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_head_count(self.hparams["n_head"]) self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"]) self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) self.gguf_writer.add_file_type(self.ftype) self.gguf_writer.add_rope_freq_base(10000.0) self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) self.gguf_writer.add_rope_scaling_factor(1.0) def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: del bid # unused new_name = self.map_tensor_name(name) tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)] if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD): assert self.tensor_names is not None if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")): # copy tok_embd.weight to output.weight tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch)) return tensors @Model.register("InternLM2ForCausalLM") class InternLM2Model(Model): model_arch = gguf.MODEL_ARCH.INTERNLM2 def set_vocab(self): # (TODO): Is there a better way? # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character # \x00 specially and convert it into an emoji character to prevent it from being mistakenly # recognized as an empty string in C++. from sentencepiece import SentencePieceProcessor from sentencepiece import sentencepiece_model_pb2 as model tokenizer_path = self.dir_model / 'tokenizer.model' tokens: list[bytes] = [] scores: list[float] = [] toktypes: list[int] = [] if not tokenizer_path.is_file(): logger.error(f'Error: Missing {tokenizer_path}') sys.exit(1) sentencepiece_model = model.ModelProto() sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read()) add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix tokenizer = SentencePieceProcessor() tokenizer.LoadFromFile(str(tokenizer_path)) vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) for token_id in range(vocab_size): piece = tokenizer.IdToPiece(token_id) text = piece.encode("utf-8") score = tokenizer.GetScore(token_id) if text == b"\x00": # (TODO): fixme # Hack here and replace the \x00 characters. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!") text = "🐉".encode("utf-8") toktype = SentencePieceTokenTypes.NORMAL if tokenizer.IsUnknown(token_id): toktype = SentencePieceTokenTypes.UNKNOWN elif tokenizer.IsControl(token_id): toktype = SentencePieceTokenTypes.CONTROL elif tokenizer.IsUnused(token_id): toktype = SentencePieceTokenTypes.UNUSED elif tokenizer.IsByte(token_id): toktype = SentencePieceTokenTypes.BYTE tokens.append(text) scores.append(score) toktypes.append(toktype) added_tokens_file = self.dir_model / 'added_tokens.json' if added_tokens_file.is_file(): with open(added_tokens_file, "r", encoding="utf-8") as f: added_tokens_json = json.load(f) for key in added_tokens_json: tokens.append(key.encode("utf-8")) scores.append(-1000.0) toktypes.append(SentencePieceTokenTypes.USER_DEFINED) self.gguf_writer.add_tokenizer_model("llama") self.gguf_writer.add_tokenizer_pre("default") self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_scores(scores) self.gguf_writer.add_token_types(toktypes) self.gguf_writer.add_add_space_prefix(add_prefix) special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) old_eos = special_vocab.special_token_ids["eos"] if "chat" in os.path.basename(self.dir_model.absolute()): # For the chat model, we replace the eos with '<|im_end|>'. # TODO: this is a hack, should be fixed # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048 special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer) logger.warning(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \ in chat mode so that the conversation can end normally.") special_vocab.add_to_gguf(self.gguf_writer) def _try_get_sft_eos(self, tokenizer): unused_145_list = tokenizer.Encode('[UNUSED_TOKEN_145]') im_end_list = tokenizer.Encode('<|im_end|>') eos_token = None assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1) if len(unused_145_list) == 1: eos_token = unused_145_list[0] if len(im_end_list) == 1: eos_token = im_end_list[0] assert eos_token return eos_token def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int): if n_head_kv is not None and n_head != n_head_kv: n_head = n_head_kv return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) .swapaxes(1, 2) .reshape(weights.shape)) def set_gguf_parameters(self): self.gguf_writer.add_name("InternLM2") self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"]) self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"]) self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"]) self.gguf_writer.add_file_type(self.ftype) def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: num_heads = self.hparams["num_attention_heads"] num_kv_heads = self.hparams["num_key_value_heads"] hidden_size = self.hparams["hidden_size"] q_per_kv = num_heads // num_kv_heads head_dim = hidden_size // num_heads num_groups = num_heads // q_per_kv qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv" if re.match(qkv_pattern, name): bid = re.findall(qkv_pattern, name)[0] qkv = data_torch # qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim) qkv = qkv.T.reshape((-1, num_groups, q_per_kv + 2, head_dim)) q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :] # The model weights of q and k equire additional reshape. # q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads) q = self._hf_permute_qk(q.reshape((q.shape[0], -1)).T, num_heads, num_heads) # k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads) k = self._hf_permute_qk(k.reshape((k.shape[0], -1)).T, num_heads, num_kv_heads) # v = rearrange(v, " o g n i -> o (g n i)").T v = v.reshape((v.shape[0], -1)).T return [ (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q), (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k), (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v), ] else: return [(self.map_tensor_name(name), data_torch)] @Model.register("BertModel", "CamembertModel") class BertModel(Model): model_arch = gguf.MODEL_ARCH.BERT def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.vocab_size = None def set_gguf_parameters(self): super().set_gguf_parameters() self.gguf_writer.add_causal_attention(False) # get pooling path pooling_path = None module_path = self.dir_model / "modules.json" if module_path.is_file(): with open(module_path, encoding="utf-8") as f: modules = json.load(f) for mod in modules: if mod["type"] == "sentence_transformers.models.Pooling": pooling_path = mod["path"] break # get pooling type if pooling_path is not None: with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f: pooling = json.load(f) if pooling["pooling_mode_mean_tokens"]: pooling_type = gguf.PoolingType.MEAN elif pooling["pooling_mode_cls_token"]: pooling_type = gguf.PoolingType.CLS else: raise NotImplementedError("Only MEAN and CLS pooling types supported") self.gguf_writer.add_pooling_type(pooling_type) def set_vocab(self): tokens, toktypes, tokpre = self.get_vocab_base() self.vocab_size = len(tokens) # we need this to validate the size of the token_type embeddings # though currently we are passing all zeros to the token_type embeddings self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B" # convert to phantom space vocab def phantom(tok): if tok.startswith("[") and tok.endswith("]"): return tok if tok.startswith("##"): return tok[2:] return "\u2581" + tok tokens = list(map(phantom, tokens)) # add vocab to gguf self.gguf_writer.add_tokenizer_model("bert") self.gguf_writer.add_tokenizer_pre(tokpre) self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_types(toktypes) # handle special tokens special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) special_vocab.add_to_gguf(self.gguf_writer) def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: del bid # unused # we are only using BERT for embeddings so we don't need the pooling layer if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"): return [] # we don't need these return [(self.map_tensor_name(name), data_torch)] @Model.register("NomicBertModel") class NomicBertModel(BertModel): model_arch = gguf.MODEL_ARCH.NOMIC_BERT def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # the HF config claims n_ctx=8192, but it uses RoPE scaling self.hparams["n_ctx"] = 2048 # SwigLU activation assert self.hparams["activation_function"] == "swiglu" # this doesn't do anything in the HF version assert self.hparams["causal"] is False # no bias tensors assert self.hparams["qkv_proj_bias"] is False assert self.hparams["mlp_fc1_bias"] is False assert self.hparams["mlp_fc2_bias"] is False # norm at end of layer assert self.hparams["prenorm"] is False # standard RoPE assert self.hparams["rotary_emb_fraction"] == 1.0 assert self.hparams["rotary_emb_interleaved"] is False assert self.hparams["rotary_emb_scale_base"] is None def set_gguf_parameters(self): super().set_gguf_parameters() self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"]) @Model.register("GemmaForCausalLM") class GemmaModel(Model): model_arch = gguf.MODEL_ARCH.GEMMA def set_vocab(self): self._set_vocab_sentencepiece() # TODO: these special tokens should be exported only for the CodeGemma family special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False, special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot']) special_vocab._set_special_token("prefix", 67) special_vocab._set_special_token("suffix", 69) special_vocab._set_special_token("middle", 68) special_vocab._set_special_token("fsep", 70) special_vocab._set_special_token("eot", 107) special_vocab.add_to_gguf(self.gguf_writer) def set_gguf_parameters(self): hparams = self.hparams block_count = hparams["num_hidden_layers"] self.gguf_writer.add_name(self.dir_model.name) self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) self.gguf_writer.add_embedding_length(hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) self.gguf_writer.add_head_count(hparams["num_attention_heads"]) self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"]) self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) self.gguf_writer.add_key_length(hparams["head_dim"]) self.gguf_writer.add_value_length(hparams["head_dim"]) self.gguf_writer.add_file_type(self.ftype) def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: del bid # unused # lm_head is not used in llama.cpp, while autoawq will include this tensor in model # To prevent errors, skip loading lm_head.weight. if name == "lm_head.weight": logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.") return [] # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89 if name.endswith("norm.weight"): data_torch = data_torch + 1 return [(self.map_tensor_name(name), data_torch)] @Model.register("Starcoder2ForCausalLM") class StarCoder2Model(Model): model_arch = gguf.MODEL_ARCH.STARCODER2 @Model.register("MambaForCausalLM", "MambaLMHeadModel") class MambaModel(Model): model_arch = gguf.MODEL_ARCH.MAMBA def set_vocab(self): vocab_size = self.hparams["vocab_size"] # Round vocab size to next multiple of 8 pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8) # pad using ceiling division # ref: https://stackoverflow.com/a/17511341/22827863 vocab_size = -(vocab_size // -pad_vocab) * pad_vocab self.hparams["vocab_size"] = vocab_size if (self.dir_model / "tokenizer.json").is_file(): self._set_vocab_gpt2() elif (self.dir_model / "tokenizer.model").is_file(): self._set_vocab_sentencepiece() else: # Use the GPT-NeoX tokenizer when no tokenizer files are present tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf" logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'") neox_reader = gguf.GGUFReader(tokenizer_path, "r") field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL) self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8") if field else "gpt2") field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE) self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else "mpt") field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST) assert field self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size]) field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE) assert field self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size]) field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES) assert field self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data]) field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID) self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0] if field else 1) field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID) self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0] if field else 0) field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID) self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0] if field else 0) field = neox_reader.get_field(gguf.Keys.Tokenizer.PAD_ID) self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0] if field else 0) def set_gguf_parameters(self): d_model = self.find_hparam(["hidden_size", "d_model"]) d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4 d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16 # ceiling division # ref: https://stackoverflow.com/a/17511341/22827863 # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58 dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16) rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5 # Fail early for models which don't have a block expansion factor of 2 assert d_inner == 2 * d_model self.gguf_writer.add_name(self.dir_model.name) self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default self.gguf_writer.add_embedding_length(d_model) self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading self.gguf_writer.add_block_count(self.hparams["n_layer"]) self.gguf_writer.add_ssm_conv_kernel(d_conv) self.gguf_writer.add_ssm_inner_size(d_inner) self.gguf_writer.add_ssm_state_size(d_state) self.gguf_writer.add_ssm_time_step_rank(dt_rank) self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps) self.gguf_writer.add_file_type(self.ftype) _tok_embd = None def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: del bid # unused output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT) tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD) new_name = self.map_tensor_name(name) if name.endswith(".A_log"): logger.debug("A_log --> A ==> " + new_name) data_torch = -torch.exp(data_torch) # assuming token_embd.weight is seen before output.weight if self._tok_embd is not None and new_name == output_name: if torch.equal(self._tok_embd, data_torch): logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting") return [] elif new_name == tok_embd_name: self._tok_embd = data_torch return [(new_name, data_torch)] def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool: del n_dims # unused return bid is not None and new_name in ( self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [ gguf.MODEL_TENSOR.SSM_CONV1D, gguf.MODEL_TENSOR.SSM_X, gguf.MODEL_TENSOR.SSM_DT, gguf.MODEL_TENSOR.SSM_A, gguf.MODEL_TENSOR.SSM_D, ] ) @Model.register("CohereForCausalLM") class CommandR2Model(Model): model_arch = gguf.MODEL_ARCH.COMMAND_R def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # max_position_embeddings = 8192 in config.json but model was actually # trained on 128k context length self.hparams["max_position_embeddings"] = self.hparams["model_max_length"] def set_gguf_parameters(self): super().set_gguf_parameters() self.gguf_writer.add_logit_scale(self.hparams["logit_scale"]) self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE) @Model.register("OlmoForCausalLM") @Model.register("OLMoForCausalLM") class OlmoModel(Model): model_arch = gguf.MODEL_ARCH.OLMO def set_gguf_parameters(self): super().set_gguf_parameters() self.gguf_writer.add_layer_norm_eps(1e-5) clip_qkv = self.hparams.get("clip_qkv") if clip_qkv is not None: self.gguf_writer.add_clamp_kqv(clip_qkv) # Same as super class, but permuting q_proj, k_proj # Copied from: LlamaModel def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: del bid # unused n_head = self.hparams["num_attention_heads"] n_kv_head = self.hparams.get("num_key_value_heads") if name.endswith("q_proj.weight"): data_torch = LlamaModel.permute(data_torch, n_head, n_head) if name.endswith("k_proj.weight"): data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head) return [(self.map_tensor_name(name), data_torch)] @Model.register("JinaBertModel", "JinaBertForMaskedLM") class JinaBertV2Model(BertModel): model_arch = gguf.MODEL_ARCH.JINA_BERT_V2 def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.intermediate_size = self.hparams["intermediate_size"] def get_tensors(self): for name, data in super().get_tensors(): if 'gated_layers' in name: d1 = data[:self.intermediate_size, :] name1 = name.replace('gated_layers', 'gated_layers_w') d2 = data[self.intermediate_size:, :] name2 = name.replace('gated_layers', 'gated_layers_v') yield name1, d1 yield name2, d2 continue yield name, data def set_vocab(self, *args, **kwargs): tokenizer_class = 'BertTokenizer' with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f: tokenizer_class = json.load(f)['tokenizer_class'] if tokenizer_class == 'BertTokenizer': super().set_vocab() elif tokenizer_class == 'RobertaTokenizer': self._set_vocab_gpt2() self.gguf_writer.add_token_type_count(2) else: raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel') self.gguf_writer.add_add_bos_token(True) self.gguf_writer.add_add_eos_token(True) ###### CONVERSION LOGIC ###### # tree of lazy tensors class LazyTorchTensor(gguf.LazyBase): _tensor_type = torch.Tensor # to keep the type-checker happy dtype: torch.dtype shape: torch.Size # only used when converting a torch.Tensor to a np.ndarray _dtype_map: dict[torch.dtype, type] = { torch.float16: np.float16, torch.float32: np.float32, } def numpy(self) -> gguf.LazyNumpyTensor: dtype = self._dtype_map[self.dtype] return gguf.LazyNumpyTensor( meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape), lazy=self._lazy, args=(self,), func=(lambda s: s[0].numpy()) ) @classmethod def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: torch.Size) -> Tensor: return torch.empty(size=shape, dtype=dtype, device="meta") @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): del types # unused if kwargs is None: kwargs = {} if func is torch.Tensor.numpy: return args[0].numpy() return LazyTorchTensor._wrap_fn(func)(*args, **kwargs) def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser( description="Convert a huggingface model to a GGML compatible file") parser.add_argument( "--vocab-only", action="store_true", help="extract only the vocab", ) parser.add_argument( "--awq-path", type=Path, default=None, help="Path to scale awq cache file", ) parser.add_argument( "--outfile", type=Path, help="path to write to; default: based on input. {ftype} will be replaced by the outtype.", ) parser.add_argument( "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16", help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type", ) parser.add_argument( "--bigendian", action="store_true", help="model is executed on big endian machine", ) parser.add_argument( "model", type=Path, help="directory containing model file", ) parser.add_argument( "--use-temp-file", action="store_true", help="use the tempfile library while processing (helpful when running out of memory, process killed)", ) parser.add_argument( "--no-lazy", action="store_true", help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)", ) parser.add_argument( "--model-name", type=str, default=None, help="name of the model", ) parser.add_argument( "--verbose", action="store_true", help="increase output verbosity", ) return parser.parse_args() def main() -> None: args = parse_args() logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO) dir_model = args.model if args.awq_path: sys.path.insert(1, str(Path(__file__).parent / 'awq-py')) from awq.apply_awq import add_scale_weights # type: ignore[import-not-found] tmp_model_path = args.model / "weighted_model" dir_model = tmp_model_path if tmp_model_path.is_dir(): logger.info(f"{tmp_model_path} exists as a weighted model.") else: tmp_model_path.mkdir(parents=True, exist_ok=True) logger.info("Saving new weighted model ...") add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path)) logger.info(f"Saved weighted model at {tmp_model_path}.") if not dir_model.is_dir(): logger.error(f'Error: {args.model} is not a directory') sys.exit(1) ftype_map: dict[str, gguf.LlamaFileType] = { "f32": gguf.LlamaFileType.ALL_F32, "f16": gguf.LlamaFileType.MOSTLY_F16, "bf16": gguf.LlamaFileType.MOSTLY_BF16, "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0, "auto": gguf.LlamaFileType.GUESSED, } if args.outfile is not None: fname_out = args.outfile else: # output in the same directory as the model by default fname_out = dir_model / 'ggml-model-{ftype}.gguf' logger.info(f"Loading model: {dir_model.name}") hparams = Model.load_hparams(dir_model) with torch.inference_mode(): model_class = Model.from_model_architecture(hparams["architectures"][0]) model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file, args.no_lazy) logger.info("Set model parameters") model_instance.set_gguf_parameters() logger.info("Set model tokenizer") model_instance.set_vocab() model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION) if args.vocab_only: logger.info(f"Exporting model vocab to '{model_instance.fname_out}'") model_instance.write_vocab() else: logger.info(f"Exporting model to '{model_instance.fname_out}'") model_instance.write() logger.info(f"Model successfully exported to '{model_instance.fname_out}'") if __name__ == '__main__': main()