#if defined(_MSC_VER) #define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING #endif #include "common.h" // Change JSON_ASSERT from assert() to GGML_ASSERT: #define JSON_ASSERT GGML_ASSERT #include "json.hpp" #include "json-schema-to-grammar.h" #include "llama.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__APPLE__) && defined(__MACH__) #include #include #endif #if defined(_WIN32) #define WIN32_LEAN_AND_MEAN #ifndef NOMINMAX # define NOMINMAX #endif #include #include #include #include #else #include #include #include #endif #if defined(LLAMA_USE_CURL) #include #include #include #include #endif #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif #if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)) #define GGML_USE_CUDA_SYCL #endif #if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)) || defined(GGML_USE_VULKAN) #define GGML_USE_CUDA_SYCL_VULKAN #endif #if defined(LLAMA_USE_CURL) #ifdef __linux__ #include #elif defined(_WIN32) #define PATH_MAX MAX_PATH #else #include #endif #define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083 #endif // LLAMA_USE_CURL using json = nlohmann::ordered_json; // // CPU utils // int32_t cpu_get_num_physical_cores() { #ifdef __linux__ // enumerate the set of thread siblings, num entries is num cores std::unordered_set siblings; for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) { std::ifstream thread_siblings("/sys/devices/system/cpu/cpu" + std::to_string(cpu) + "/topology/thread_siblings"); if (!thread_siblings.is_open()) { break; // no more cpus } std::string line; if (std::getline(thread_siblings, line)) { siblings.insert(line); } } if (!siblings.empty()) { return static_cast(siblings.size()); } #elif defined(__APPLE__) && defined(__MACH__) int32_t num_physical_cores; size_t len = sizeof(num_physical_cores); int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0); if (result == 0) { return num_physical_cores; } result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0); if (result == 0) { return num_physical_cores; } #elif defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later // TODO: windows + arm64 + mingw64 unsigned int n_threads_win = std::thread::hardware_concurrency(); unsigned int default_threads = n_threads_win > 0 ? (n_threads_win <= 4 ? n_threads_win : n_threads_win / 2) : 4; DWORD buffer_size = 0; if (!GetLogicalProcessorInformationEx(RelationProcessorCore, nullptr, &buffer_size)) { if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) { return default_threads; } } std::vector buffer(buffer_size); if (!GetLogicalProcessorInformationEx(RelationProcessorCore, reinterpret_cast(buffer.data()), &buffer_size)) { return default_threads; } int32_t num_physical_cores = 0; PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info = reinterpret_cast(buffer.data()); while (buffer_size > 0) { if (info->Relationship == RelationProcessorCore) { num_physical_cores += info->Processor.GroupCount; } buffer_size -= info->Size; info = reinterpret_cast(reinterpret_cast(info) + info->Size); } return num_physical_cores > 0 ? num_physical_cores : default_threads; #endif unsigned int n_threads = std::thread::hardware_concurrency(); return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4; } #if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__) #include static void cpuid(unsigned leaf, unsigned subleaf, unsigned *eax, unsigned *ebx, unsigned *ecx, unsigned *edx) { __asm__("movq\t%%rbx,%%rsi\n\t" "cpuid\n\t" "xchgq\t%%rbx,%%rsi" : "=a"(*eax), "=S"(*ebx), "=c"(*ecx), "=d"(*edx) : "0"(leaf), "2"(subleaf)); } static int pin_cpu(int cpu) { cpu_set_t mask; CPU_ZERO(&mask); CPU_SET(cpu, &mask); return pthread_setaffinity_np(pthread_self(), sizeof(mask), &mask); } static bool is_hybrid_cpu(void) { unsigned eax, ebx, ecx, edx; cpuid(7, 0, &eax, &ebx, &ecx, &edx); return !!(edx & (1u << 15)); } static bool is_running_on_efficiency_core(void) { unsigned eax, ebx, ecx, edx; cpuid(0x1a, 0, &eax, &ebx, &ecx, &edx); int intel_atom = 0x20; int core_type = (eax & 0xff000000u) >> 24; return core_type == intel_atom; } static int cpu_count_math_cpus(int n_cpu) { int result = 0; for (int cpu = 0; cpu < n_cpu; ++cpu) { if (pin_cpu(cpu)) { return -1; } if (is_running_on_efficiency_core()) { continue; // efficiency cores harm lockstep threading } ++cpu; // hyperthreading isn't useful for linear algebra ++result; } return result; } #endif // __x86_64__ && __linux__ /** * Returns number of CPUs on system that are useful for math. */ int32_t cpu_get_num_math() { #if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__) int n_cpu = sysconf(_SC_NPROCESSORS_ONLN); if (n_cpu < 1) { return cpu_get_num_physical_cores(); } if (is_hybrid_cpu()) { cpu_set_t affinity; if (!pthread_getaffinity_np(pthread_self(), sizeof(affinity), &affinity)) { int result = cpu_count_math_cpus(n_cpu); pthread_setaffinity_np(pthread_self(), sizeof(affinity), &affinity); if (result > 0) { return result; } } } #endif return cpu_get_num_physical_cores(); } // Helper for setting process priority #if defined(_WIN32) bool set_process_priority(enum ggml_sched_priority prio) { if (prio == GGML_SCHED_PRIO_NORMAL) { return true; } DWORD p = NORMAL_PRIORITY_CLASS; switch (prio) { case GGML_SCHED_PRIO_NORMAL: p = NORMAL_PRIORITY_CLASS; break; case GGML_SCHED_PRIO_MEDIUM: p = ABOVE_NORMAL_PRIORITY_CLASS; break; case GGML_SCHED_PRIO_HIGH: p = HIGH_PRIORITY_CLASS; break; case GGML_SCHED_PRIO_REALTIME: p = REALTIME_PRIORITY_CLASS; break; } if (!SetPriorityClass(GetCurrentProcess(), p)) { fprintf(stderr, "warn: failed to set process priority class %d : (%d)\n", prio, (int) GetLastError()); return false; } return true; } #else // MacOS and POSIX #include #include bool set_process_priority(enum ggml_sched_priority prio) { if (prio == GGML_SCHED_PRIO_NORMAL) { return true; } int p = 0; switch (prio) { case GGML_SCHED_PRIO_NORMAL: p = 0; break; case GGML_SCHED_PRIO_MEDIUM: p = -5; break; case GGML_SCHED_PRIO_HIGH: p = -10; break; case GGML_SCHED_PRIO_REALTIME: p = -20; break; } if (!setpriority(PRIO_PROCESS, 0, p)) { fprintf(stderr, "warn: failed to set process priority %d : %s (%d)\n", prio, strerror(errno), errno); return false; } return true; } #endif // // CLI argument parsing // #ifdef __GNUC__ #ifdef __MINGW32__ #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__))) #else #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__))) #endif #else #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) #endif LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2) static std::string format(const char * fmt, ...) { va_list ap; va_list ap2; va_start(ap, fmt); va_copy(ap2, ap); int size = vsnprintf(NULL, 0, fmt, ap); GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT std::vector buf(size + 1); int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); GGML_ASSERT(size2 == size); va_end(ap2); va_end(ap); return std::string(buf.data(), size); } static void gpt_params_handle_model_default(gpt_params & params) { if (!params.hf_repo.empty()) { // short-hand to avoid specifying --hf-file -> default it to --model if (params.hf_file.empty()) { if (params.model.empty()) { throw std::invalid_argument("error: --hf-repo requires either --hf-file or --model\n"); } params.hf_file = params.model; } else if (params.model.empty()) { params.model = fs_get_cache_file(string_split(params.hf_file, '/').back()); } } else if (!params.model_url.empty()) { if (params.model.empty()) { auto f = string_split(params.model_url, '#').front(); f = string_split(f, '?').front(); params.model = fs_get_cache_file(string_split(f, '/').back()); } } else if (params.model.empty()) { params.model = DEFAULT_MODEL_PATH; } } void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model) { int32_t n_set = 0; if (cpuparams.n_threads < 0) { // Assuming everything about cpuparams is invalid if (role_model != nullptr) { cpuparams = *role_model; } else { cpuparams.n_threads = cpu_get_num_math(); } } for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) { if (cpuparams.cpumask[i]) { n_set++; } } if (n_set && n_set < cpuparams.n_threads) { // Not enough set bits, may experience performance issues. fprintf(stderr, "warn: Not enough set bits in CPU mask (%d) to satisfy requested thread count: %d\n", n_set, cpuparams.n_threads); } } bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params, std::vector & options) { std::string arg; const std::string arg_prefix = "--"; gpt_sampler_params & sparams = params.sparams; std::unordered_map arg_to_options; for (auto & opt : options) { for (const auto & arg : opt.args) { arg_to_options[arg] = &opt; } } // handle environment variables for (auto & opt : options) { std::string value; if (opt.get_value_from_env(value)) { try { if (opt.handler_void && (value == "1" || value == "true")) { opt.handler_void(params); } if (opt.handler_int) { opt.handler_int(params, std::stoi(value)); } if (opt.handler_string) { opt.handler_string(params, value); continue; } } catch (std::exception & e) { throw std::invalid_argument(format( "error while handling environment variable \"%s\": %s\n\n", opt.env, e.what())); } } } // handle command line arguments auto check_arg = [&](int i) { if (i+1 >= argc) { throw std::invalid_argument("expected value for argument"); } }; for (int i = 1; i < argc; i++) { const std::string arg_prefix = "--"; std::string arg = argv[i]; if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { std::replace(arg.begin(), arg.end(), '_', '-'); } if (arg_to_options.find(arg) == arg_to_options.end()) { throw std::invalid_argument(format("error: invalid argument: %s", arg.c_str())); } auto opt = *arg_to_options[arg]; if (opt.has_value_from_env()) { fprintf(stderr, "warn: %s environment variable is set, but will be overwritten by command line argument %s\n", opt.env, arg.c_str()); } try { if (opt.handler_void) { opt.handler_void(params); continue; } // arg with single value check_arg(i); std::string val = argv[++i]; if (opt.handler_int) { opt.handler_int(params, std::stoi(val)); continue; } if (opt.handler_string) { opt.handler_string(params, val); continue; } // arg with 2 values check_arg(i); std::string val2 = argv[++i]; if (opt.handler_str_str) { opt.handler_str_str(params, val, val2); continue; } } catch (std::exception & e) { throw std::invalid_argument(format( "error while handling argument \"%s\": %s\n\n" "usage:\n%s\n\nto show complete usage, run with -h", arg.c_str(), e.what(), arg_to_options[arg]->to_string().c_str())); } } postprocess_cpu_params(params.cpuparams, nullptr); postprocess_cpu_params(params.cpuparams_batch, ¶ms.cpuparams); postprocess_cpu_params(params.draft_cpuparams, ¶ms.cpuparams); postprocess_cpu_params(params.draft_cpuparams_batch, ¶ms.cpuparams_batch); if (params.prompt_cache_all && (params.interactive || params.interactive_first)) { throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n"); } gpt_params_handle_model_default(params); if (params.escape) { string_process_escapes(params.prompt); string_process_escapes(params.input_prefix); string_process_escapes(params.input_suffix); for (auto & antiprompt : params.antiprompt) { string_process_escapes(antiprompt); } } if (!params.kv_overrides.empty()) { params.kv_overrides.emplace_back(); params.kv_overrides.back().key[0] = 0; } if (sparams.seed == LLAMA_DEFAULT_SEED) { sparams.seed = time(NULL); } return true; } bool gpt_params_parse(int argc, char ** argv, gpt_params & params, std::vector & options) { const auto params_org = params; // the example can modify the default params try { if (!gpt_params_parse_ex(argc, argv, params, options)) { params = params_org; return false; } if (params.usage) { gpt_params_print_usage(params, options); if (params.print_usage) { params.print_usage(argc, argv); } exit(0); } } catch (const std::invalid_argument & ex) { fprintf(stderr, "%s\n", ex.what()); params = params_org; return false; } return true; } bool parse_cpu_range(const std::string & range, bool (&boolmask)[GGML_MAX_N_THREADS]) { size_t dash_loc = range.find('-'); if (dash_loc == std::string::npos) { fprintf(stderr, "Format of CPU range is invalid! Expected []-[].\n"); return false; } size_t start_i; size_t end_i; if (dash_loc == 0) { start_i = 0; } else { start_i = std::stoull(range.substr(0, dash_loc)); if (start_i >= GGML_MAX_N_THREADS) { fprintf(stderr, "Start index out of bounds!\n"); return false; } } if (dash_loc == range.length() - 1) { end_i = GGML_MAX_N_THREADS - 1; } else { end_i = std::stoull(range.substr(dash_loc + 1)); if (end_i >= GGML_MAX_N_THREADS) { fprintf(stderr, "End index out of bounds!\n"); return false; } } for (size_t i = start_i; i <= end_i; i++) { boolmask[i] = true; } return true; } bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREADS]) { // Discard potential 0x prefix size_t start_i = 0; if (mask.length() >= 2 && mask.substr(0, 2) == "0x") { start_i = 2; } size_t num_digits = mask.length() - start_i; if (num_digits > 128) num_digits = 128; size_t end_i = num_digits + start_i; for (size_t i = start_i, n = (num_digits*4 - 1); i < end_i; i++, n-=4) { char c = mask.at(i); int8_t id = c; if ((c >= '0' && c <= '9')) { id -= '0'; } else if (c >= 'a' && c <= 'f') { id -= 'a' - 10; } else if (c >= 'A' && c <= 'F') { id -= 'A' - 10; } else { fprintf(stderr, "Invalid hex character '%c' at position %d\n", c, int32_t(i)); return false; } boolmask[ n ] = boolmask[ n ] || ((id & 8) != 0); boolmask[n - 1] = boolmask[n - 1] || ((id & 4) != 0); boolmask[n - 2] = boolmask[n - 2] || ((id & 2) != 0); boolmask[n - 3] = boolmask[n - 3] || ((id & 1) != 0); } return true; } static std::vector break_str_into_lines(std::string input, size_t max_char_per_line) { std::vector result; std::istringstream iss(input); std::string line; auto add_line = [&](const std::string& l) { if (l.length() <= max_char_per_line) { result.push_back(l); } else { std::istringstream line_stream(l); std::string word, current_line; while (line_stream >> word) { if (current_line.length() + !current_line.empty() + word.length() > max_char_per_line) { if (!current_line.empty()) result.push_back(current_line); current_line = word; } else { current_line += (!current_line.empty() ? " " : "") + word; } } if (!current_line.empty()) result.push_back(current_line); } }; while (std::getline(iss, line)) { add_line(line); } return result; } std::string llama_arg::to_string() { // params for printing to console const static int n_leading_spaces = 40; const static int n_char_per_line_help = 70; // TODO: detect this based on current console std::string leading_spaces(n_leading_spaces, ' '); std::ostringstream ss; for (const auto arg : args) { if (arg == args.front()) { if (args.size() == 1) { ss << arg; } else { // first arg is usually abbreviation, we need padding to make it more beautiful auto tmp = std::string(arg) + ", "; ss << format("%-7s", tmp.c_str()); } } else { ss << arg << (arg != args.back() ? ", " : ""); } } if (value_hint) ss << " " << value_hint; if (value_hint_2) ss << " " << value_hint_2; if (ss.tellp() > n_leading_spaces - 3) { // current line is too long, add new line ss << "\n" << leading_spaces; } else { // padding between arg and help, same line ss << std::string(leading_spaces.size() - ss.tellp(), ' '); } const auto help_lines = break_str_into_lines(help, n_char_per_line_help); for (const auto & line : help_lines) { ss << (&line == &help_lines.front() ? "" : leading_spaces) << line << "\n"; } return ss.str(); } void gpt_params_print_usage(gpt_params & params, std::vector & options) { auto print_options = [](std::vector & options) { for (llama_arg * opt : options) { printf("%s", opt->to_string().c_str()); } }; std::vector common_options; std::vector specific_options; for (auto & opt : options) { // in case multiple LLAMA_EXAMPLE_* are set, we prioritize the LLAMA_EXAMPLE_* matching current example if (opt.in_example(params.curr_ex)) { specific_options.push_back(&opt); } else { common_options.push_back(&opt); } } printf("----- common options -----\n\n"); print_options(common_options); // TODO: maybe convert enum llama_example to string printf("\n\n----- example-specific options -----\n\n"); print_options(specific_options); } std::vector gpt_params_parser_init(gpt_params & params, llama_example ex) { return gpt_params_parser_init(params, ex, nullptr); } std::vector gpt_params_parser_init(gpt_params & params, llama_example ex, std::function print_usage) { std::vector options; params.print_usage = print_usage; params.curr_ex = ex; std::string sampler_type_chars; std::string sampler_type_names; for (const auto & sampler : params.sparams.samplers) { sampler_type_chars += gpt_sampler_type_to_chr(sampler); sampler_type_names += gpt_sampler_type_to_str(sampler) + ";"; } sampler_type_names.pop_back(); /** * filter options by example * rules: * - all examples inherit options from LLAMA_EXAMPLE_COMMON * - if LLAMA_EXAMPLE_* is set (other than COMMON), we only show the option in the corresponding example * - if both {LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_*,} are set, we will prioritize the LLAMA_EXAMPLE_* matching current example */ std::unordered_set seen_args; auto add_opt = [&](llama_arg arg) { if (arg.in_example(ex) || arg.in_example(LLAMA_EXAMPLE_COMMON)) { // make sure there is no argument duplications for (const auto & a : arg.args) { if (seen_args.find(a) == seen_args.end()) { seen_args.insert(a); } else { throw std::runtime_error(format("found duplicated argument in source code: %s", a)); } } options.push_back(std::move(arg)); } }; add_opt(llama_arg( {"-h", "--help", "--usage"}, "print usage and exit", [](gpt_params & params) { params.usage = true; } )); add_opt(llama_arg( {"--version"}, "show version and build info", [](gpt_params &) { fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT); fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET); exit(0); } )); add_opt(llama_arg( {"-v", "--verbose"}, "print verbose information", [](gpt_params & params) { params.verbosity = 1; } )); add_opt(llama_arg( {"--verbosity"}, "N", format("set specific verbosity level (default: %d)", params.verbosity), [](gpt_params & params, int value) { params.verbosity = value; } )); add_opt(llama_arg( {"--verbose-prompt"}, format("print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false"), [](gpt_params & params) { params.verbose_prompt = true; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(llama_arg( {"--no-display-prompt"}, format("don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false"), [](gpt_params & params) { params.display_prompt = false; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(llama_arg( {"-co", "--color"}, format("colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false"), [](gpt_params & params) { params.use_color = true; } ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL})); add_opt(llama_arg( {"-s", "--seed"}, "SEED", format("RNG seed (default: %d, use random seed for < 0)", params.sparams.seed), [](gpt_params & params, const std::string & value) { params.sparams.seed = std::stoul(value); } )); add_opt(llama_arg( {"-t", "--threads"}, "N", format("number of threads to use during generation (default: %d)", params.cpuparams.n_threads), [](gpt_params & params, int value) { params.cpuparams.n_threads = value; if (params.cpuparams.n_threads <= 0) { params.cpuparams.n_threads = std::thread::hardware_concurrency(); } } ).set_env("LLAMA_ARG_THREADS")); add_opt(llama_arg( {"-tb", "--threads-batch"}, "N", "number of threads to use during batch and prompt processing (default: same as --threads)", [](gpt_params & params, int value) { params.cpuparams_batch.n_threads = value; if (params.cpuparams_batch.n_threads <= 0) { params.cpuparams_batch.n_threads = std::thread::hardware_concurrency(); } } )); add_opt(llama_arg( {"-td", "--threads-draft"}, "N", "number of threads to use during generation (default: same as --threads)", [](gpt_params & params, int value) { params.draft_cpuparams.n_threads = value; if (params.draft_cpuparams.n_threads <= 0) { params.draft_cpuparams.n_threads = std::thread::hardware_concurrency(); } } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"-tbd", "--threads-batch-draft"}, "N", "number of threads to use during batch and prompt processing (default: same as --threads-draft)", [](gpt_params & params, int value) { params.draft_cpuparams_batch.n_threads = value; if (params.draft_cpuparams_batch.n_threads <= 0) { params.draft_cpuparams_batch.n_threads = std::thread::hardware_concurrency(); } } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"-C", "--cpu-mask"}, "M", "CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: \"\")", [](gpt_params & params, const std::string & value) { std::string mask = value; params.cpuparams.mask_valid = true; if (!parse_cpu_mask(mask, params.cpuparams.cpumask)) { throw std::invalid_argument("invalid cpumask"); } } )); add_opt(llama_arg( {"-Cr", "--cpu-range"}, "lo-hi", "range of CPUs for affinity. Complements --cpu-mask", [](gpt_params & params, const std::string & value) { std::string range = value; params.cpuparams.mask_valid = true; if (!parse_cpu_range(range, params.cpuparams.cpumask)) { throw std::invalid_argument("invalid range"); } } )); add_opt(llama_arg( {"--cpu-strict"}, "<0|1>", format("use strict CPU placement (default: %u)\n", (unsigned) params.cpuparams.strict_cpu), [](gpt_params & params, const std::string & value) { params.cpuparams.strict_cpu = std::stoul(value); } )); add_opt(llama_arg( {"--poll"}, "<0...100>", format("use polling level to wait for work (0 - no polling, default: %u)\n", (unsigned) params.cpuparams.poll), [](gpt_params & params, const std::string & value) { params.cpuparams.poll = std::stoul(value); } )); add_opt(llama_arg( {"-Cb", "--cpu-mask-batch"}, "M", "CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask)", [](gpt_params & params, const std::string & value) { std::string mask = value; params.cpuparams_batch.mask_valid = true; if (!parse_cpu_mask(mask, params.cpuparams_batch.cpumask)) { throw std::invalid_argument("invalid cpumask"); } } )); add_opt(llama_arg( {"-Crb", "--cpu-range-batch"}, "lo-hi", "ranges of CPUs for affinity. Complements --cpu-mask-batch", [](gpt_params & params, const std::string & value) { std::string range = value; params.cpuparams_batch.mask_valid = true; if (!parse_cpu_range(range, params.cpuparams_batch.cpumask)) { throw std::invalid_argument("invalid range"); } } )); add_opt(llama_arg( {"--cpu-strict-batch"}, "<0|1>", "use strict CPU placement (default: same as --cpu-strict)", [](gpt_params & params, int value) { params.cpuparams_batch.strict_cpu = value; } )); add_opt(llama_arg( {"--poll-batch"}, "<0|1>", "use polling to wait for work (default: same as --poll)", [](gpt_params & params, int value) { params.cpuparams_batch.poll = value; } )); add_opt(llama_arg( {"-Cd", "--cpu-mask-draft"}, "M", "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)", [](gpt_params & params, const std::string & value) { std::string mask = value; params.draft_cpuparams.mask_valid = true; if (!parse_cpu_mask(mask, params.draft_cpuparams.cpumask)) { throw std::invalid_argument("invalid cpumask"); } } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"-Crd", "--cpu-range-draft"}, "lo-hi", "Ranges of CPUs for affinity. Complements --cpu-mask-draft", [](gpt_params & params, const std::string & value) { std::string range = value; params.draft_cpuparams.mask_valid = true; if (!parse_cpu_range(range, params.draft_cpuparams.cpumask)) { throw std::invalid_argument("invalid range"); } } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"--cpu-strict-draft"}, "<0|1>", "Use strict CPU placement for draft model (default: same as --cpu-strict)", [](gpt_params & params, int value) { params.draft_cpuparams.strict_cpu = value; } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"--poll-draft"}, "<0|1>", "Use polling to wait for draft model work (default: same as --poll])", [](gpt_params & params, int value) { params.draft_cpuparams.poll = value; } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"-Crbd", "--cpu-range-batch-draft"}, "lo-hi", "Ranges of CPUs for affinity. Complements --cpu-mask-draft-batch)", [](gpt_params & params, const std::string & value) { std::string range = value; params.draft_cpuparams_batch.mask_valid = true; if (!parse_cpu_range(range, params.draft_cpuparams_batch.cpumask)) { throw std::invalid_argument("invalid cpumask"); } } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"--cpu-strict-batch-draft"}, "<0|1>", "Use strict CPU placement for draft model (default: --cpu-strict-draft)", [](gpt_params & params, int value) { params.draft_cpuparams_batch.strict_cpu = value; } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"--poll-batch-draft"}, "<0|1>", "Use polling to wait for draft model work (default: --poll-draft)", [](gpt_params & params, int value) { params.draft_cpuparams_batch.poll = value; } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"--draft"}, "N", format("number of tokens to draft for speculative decoding (default: %d)", params.n_draft), [](gpt_params & params, int value) { params.n_draft = value; } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"-ps", "--p-split"}, "N", format("speculative decoding split probability (default: %.1f)", (double)params.p_split), [](gpt_params & params, const std::string & value) { params.p_split = std::stof(value); } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"-lcs", "--lookup-cache-static"}, "FNAME", "path to static lookup cache to use for lookup decoding (not updated by generation)", [](gpt_params & params, const std::string & value) { params.lookup_cache_static = value; } )); add_opt(llama_arg( {"-lcd", "--lookup-cache-dynamic"}, "FNAME", "path to dynamic lookup cache to use for lookup decoding (updated by generation)", [](gpt_params & params, const std::string & value) { params.lookup_cache_dynamic = value; } )); add_opt(llama_arg( {"-c", "--ctx-size"}, "N", format("size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx), [](gpt_params & params, int value) { params.n_ctx = value; } ).set_env("LLAMA_ARG_CTX_SIZE")); add_opt(llama_arg( {"-n", "--predict", "--n-predict"}, "N", format("number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)", params.n_predict), [](gpt_params & params, int value) { params.n_predict = value; } ).set_env("LLAMA_ARG_N_PREDICT")); add_opt(llama_arg( {"-b", "--batch-size"}, "N", format("logical maximum batch size (default: %d)", params.n_batch), [](gpt_params & params, int value) { params.n_batch = value; } ).set_env("LLAMA_ARG_BATCH")); add_opt(llama_arg( {"-ub", "--ubatch-size"}, "N", format("physical maximum batch size (default: %d)", params.n_ubatch), [](gpt_params & params, int value) { params.n_ubatch = value; } ).set_env("LLAMA_ARG_UBATCH")); add_opt(llama_arg( {"--keep"}, "N", format("number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep), [](gpt_params & params, int value) { params.n_keep = value; } )); add_opt(llama_arg( {"--chunks"}, "N", format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks), [](gpt_params & params, int value) { params.n_chunks = value; } )); add_opt(llama_arg( {"-fa", "--flash-attn"}, format("enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled"), [](gpt_params & params) { params.flash_attn = true; } ).set_env("LLAMA_ARG_FLASH_ATTN")); add_opt(llama_arg( {"-p", "--prompt"}, "PROMPT", ex == LLAMA_EXAMPLE_MAIN ? "prompt to start generation with\nif -cnv is set, this will be used as system prompt" : "prompt to start generation with", [](gpt_params & params, const std::string & value) { params.prompt = value; } )); add_opt(llama_arg( {"-f", "--file"}, "FNAME", "a file containing the prompt (default: none)", [](gpt_params & params, const std::string & value) { std::ifstream file(value); if (!file) { throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str())); } // store the external file name in params params.prompt_file = value; std::copy(std::istreambuf_iterator(file), std::istreambuf_iterator(), back_inserter(params.prompt)); if (!params.prompt.empty() && params.prompt.back() == '\n') { params.prompt.pop_back(); } } )); add_opt(llama_arg( {"--in-file"}, "FNAME", "an input file (repeat to specify multiple files)", [](gpt_params & params, const std::string & value) { std::ifstream file(value); if (!file) { throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str())); } params.in_files.push_back(value); } )); add_opt(llama_arg( {"-bf", "--binary-file"}, "FNAME", "binary file containing the prompt (default: none)", [](gpt_params & params, const std::string & value) { std::ifstream file(value, std::ios::binary); if (!file) { throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str())); } // store the external file name in params params.prompt_file = value; std::ostringstream ss; ss << file.rdbuf(); params.prompt = ss.str(); fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), value.c_str()); } )); add_opt(llama_arg( {"-e", "--escape"}, format("process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false"), [](gpt_params & params) { params.escape = true; } )); add_opt(llama_arg( {"--no-escape"}, "do not process escape sequences", [](gpt_params & params) { params.escape = false; } )); add_opt(llama_arg( {"-ptc", "--print-token-count"}, "N", format("print token count every N tokens (default: %d)", params.n_print), [](gpt_params & params, int value) { params.n_print = value; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(llama_arg( {"--prompt-cache"}, "FNAME", "file to cache prompt state for faster startup (default: none)", [](gpt_params & params, const std::string & value) { params.path_prompt_cache = value; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(llama_arg( {"--prompt-cache-all"}, "if specified, saves user input and generations to cache as well\n", [](gpt_params & params) { params.prompt_cache_all = true; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(llama_arg( {"--prompt-cache-ro"}, "if specified, uses the prompt cache but does not update it", [](gpt_params & params) { params.prompt_cache_ro = true; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(llama_arg( {"-r", "--reverse-prompt"}, "PROMPT", "halt generation at PROMPT, return control in interactive mode\n", [](gpt_params & params, const std::string & value) { params.antiprompt.emplace_back(value); } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(llama_arg( {"-sp", "--special"}, format("special tokens output enabled (default: %s)", params.special ? "true" : "false"), [](gpt_params & params) { params.special = true; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(llama_arg( {"-cnv", "--conversation"}, format( "run in conversation mode:\n" "- does not print special tokens and suffix/prefix\n" "- interactive mode is also enabled\n" "(default: %s)", params.conversation ? "true" : "false" ), [](gpt_params & params) { params.conversation = true; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(llama_arg( {"-i", "--interactive"}, format("run in interactive mode (default: %s)", params.interactive ? "true" : "false"), [](gpt_params & params) { params.interactive = true; } ).set_examples({LLAMA_EXAMPLE_INFILL})); add_opt(llama_arg( {"-if", "--interactive-first"}, format("run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false"), [](gpt_params & params) { params.interactive_first = true; } ).set_examples({LLAMA_EXAMPLE_INFILL})); add_opt(llama_arg( {"-mli", "--multiline-input"}, "allows you to write or paste multiple lines without ending each in '\\'", [](gpt_params & params) { params.multiline_input = true; } ).set_examples({LLAMA_EXAMPLE_INFILL})); add_opt(llama_arg( {"--in-prefix-bos"}, "prefix BOS to user inputs, preceding the `--in-prefix` string", [](gpt_params & params) { params.input_prefix_bos = true; params.enable_chat_template = false; } ).set_examples({LLAMA_EXAMPLE_INFILL})); add_opt(llama_arg( {"--in-prefix"}, "STRING", "string to prefix user inputs with (default: empty)", [](gpt_params & params, const std::string & value) { params.input_prefix = value; params.enable_chat_template = false; } ).set_examples({LLAMA_EXAMPLE_INFILL})); add_opt(llama_arg( {"--in-suffix"}, "STRING", "string to suffix after user inputs with (default: empty)", [](gpt_params & params, const std::string & value) { params.input_suffix = value; params.enable_chat_template = false; } ).set_examples({LLAMA_EXAMPLE_INFILL})); add_opt(llama_arg( {"--no-warmup"}, "skip warming up the model with an empty run", [](gpt_params & params) { params.warmup = false; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(llama_arg( {"--spm-infill"}, format( "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)", params.spm_infill ? "enabled" : "disabled" ), [](gpt_params & params) { params.spm_infill = true; } ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_INFILL})); add_opt(llama_arg( {"--samplers"}, "SAMPLERS", format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()), [](gpt_params & params, const std::string & value) { const auto sampler_names = string_split(value, ';'); params.sparams.samplers = gpt_sampler_types_from_names(sampler_names, true); } )); add_opt(llama_arg( {"--sampling-seq"}, "SEQUENCE", format("simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str()), [](gpt_params & params, const std::string & value) { params.sparams.samplers = gpt_sampler_types_from_chars(value); } )); add_opt(llama_arg( {"--ignore-eos"}, "ignore end of stream token and continue generating (implies --logit-bias EOS-inf)", [](gpt_params & params) { params.sparams.ignore_eos = true; } )); add_opt(llama_arg( {"--penalize-nl"}, format("penalize newline tokens (default: %s)", params.sparams.penalize_nl ? "true" : "false"), [](gpt_params & params) { params.sparams.penalize_nl = true; } )); add_opt(llama_arg( {"--temp"}, "N", format("temperature (default: %.1f)", (double)params.sparams.temp), [](gpt_params & params, const std::string & value) { params.sparams.temp = std::stof(value); params.sparams.temp = std::max(params.sparams.temp, 0.0f); } )); add_opt(llama_arg( {"--top-k"}, "N", format("top-k sampling (default: %d, 0 = disabled)", params.sparams.top_k), [](gpt_params & params, int value) { params.sparams.top_k = value; } )); add_opt(llama_arg( {"--top-p"}, "N", format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sparams.top_p), [](gpt_params & params, const std::string & value) { params.sparams.top_p = std::stof(value); } )); add_opt(llama_arg( {"--min-p"}, "N", format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sparams.min_p), [](gpt_params & params, const std::string & value) { params.sparams.min_p = std::stof(value); } )); add_opt(llama_arg( {"--tfs"}, "N", format("tail free sampling, parameter z (default: %.1f, 1.0 = disabled)", (double)params.sparams.tfs_z), [](gpt_params & params, const std::string & value) { params.sparams.tfs_z = std::stof(value); } )); add_opt(llama_arg( {"--typical"}, "N", format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sparams.typ_p), [](gpt_params & params, const std::string & value) { params.sparams.typ_p = std::stof(value); } )); add_opt(llama_arg( {"--repeat-last-n"}, "N", format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sparams.penalty_last_n), [](gpt_params & params, int value) { params.sparams.penalty_last_n = value; params.sparams.n_prev = std::max(params.sparams.n_prev, params.sparams.penalty_last_n); } )); add_opt(llama_arg( {"--repeat-penalty"}, "N", format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sparams.penalty_repeat), [](gpt_params & params, const std::string & value) { params.sparams.penalty_repeat = std::stof(value); } )); add_opt(llama_arg( {"--presence-penalty"}, "N", format("repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)params.sparams.penalty_present), [](gpt_params & params, const std::string & value) { params.sparams.penalty_present = std::stof(value); } )); add_opt(llama_arg( {"--frequency-penalty"}, "N", format("repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)params.sparams.penalty_freq), [](gpt_params & params, const std::string & value) { params.sparams.penalty_freq = std::stof(value); } )); add_opt(llama_arg( {"--dynatemp-range"}, "N", format("dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)params.sparams.dynatemp_range), [](gpt_params & params, const std::string & value) { params.sparams.dynatemp_range = std::stof(value); } )); add_opt(llama_arg( {"--dynatemp-exp"}, "N", format("dynamic temperature exponent (default: %.1f)", (double)params.sparams.dynatemp_exponent), [](gpt_params & params, const std::string & value) { params.sparams.dynatemp_exponent = std::stof(value); } )); add_opt(llama_arg( {"--mirostat"}, "N", format("use Mirostat sampling.\nTop K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n" "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sparams.mirostat), [](gpt_params & params, int value) { params.sparams.mirostat = value; } )); add_opt(llama_arg( {"--mirostat-lr"}, "N", format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sparams.mirostat_eta), [](gpt_params & params, const std::string & value) { params.sparams.mirostat_eta = std::stof(value); } )); add_opt(llama_arg( {"--mirostat-ent"}, "N", format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sparams.mirostat_tau), [](gpt_params & params, const std::string & value) { params.sparams.mirostat_tau = std::stof(value); } )); add_opt(llama_arg( {"-l", "--logit-bias"}, "TOKEN_ID(+/-)BIAS", "modifies the likelihood of token appearing in the completion,\n" "i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n" "or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'", [](gpt_params & params, const std::string & value) { std::stringstream ss(value); llama_token key; char sign; std::string value_str; try { if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) { const float bias = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f); params.sparams.logit_bias.push_back({key, bias}); } else { throw std::invalid_argument("invalid input format"); } } catch (const std::exception&) { throw std::invalid_argument("invalid input format"); } } )); add_opt(llama_arg( {"--grammar"}, "GRAMMAR", format("BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", params.sparams.grammar.c_str()), [](gpt_params & params, const std::string & value) { params.sparams.grammar = value; } )); add_opt(llama_arg( {"--grammar-file"}, "FNAME", "file to read grammar from", [](gpt_params & params, const std::string & value) { std::ifstream file(value); if (!file) { throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str())); } std::copy( std::istreambuf_iterator(file), std::istreambuf_iterator(), std::back_inserter(params.sparams.grammar) ); } )); add_opt(llama_arg( {"-j", "--json-schema"}, "SCHEMA", "JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead", [](gpt_params & params, const std::string & value) { params.sparams.grammar = json_schema_to_grammar(json::parse(value)); } )); add_opt(llama_arg( {"--pooling"}, "{none,mean,cls,last}", "pooling type for embeddings, use model default if unspecified", [](gpt_params & params, const std::string & value) { /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; } else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; } else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; } else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; } else { throw std::invalid_argument("invalid value"); } } ).set_examples({LLAMA_EXAMPLE_EMBEDDING})); add_opt(llama_arg( {"--attention"}, "{causal,non,causal}", "attention type for embeddings, use model default if unspecified", [](gpt_params & params, const std::string & value) { /**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; } else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NON_CAUSAL; } else { throw std::invalid_argument("invalid value"); } } ).set_examples({LLAMA_EXAMPLE_EMBEDDING})); add_opt(llama_arg( {"--rope-scaling"}, "{none,linear,yarn}", "RoPE frequency scaling method, defaults to linear unless specified by the model", [](gpt_params & params, const std::string & value) { /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; } else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; } else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; } else { throw std::invalid_argument("invalid value"); } } )); add_opt(llama_arg( {"--rope-scale"}, "N", "RoPE context scaling factor, expands context by a factor of N", [](gpt_params & params, const std::string & value) { params.rope_freq_scale = 1.0f / std::stof(value); } )); add_opt(llama_arg( {"--rope-freq-base"}, "N", "RoPE base frequency, used by NTK-aware scaling (default: loaded from model)", [](gpt_params & params, const std::string & value) { params.rope_freq_base = std::stof(value); } )); add_opt(llama_arg( {"--rope-freq-scale"}, "N", "RoPE frequency scaling factor, expands context by a factor of 1/N", [](gpt_params & params, const std::string & value) { params.rope_freq_scale = std::stof(value); } )); add_opt(llama_arg( {"--yarn-orig-ctx"}, "N", format("YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx), [](gpt_params & params, int value) { params.yarn_orig_ctx = value; } )); add_opt(llama_arg( {"--yarn-ext-factor"}, "N", format("YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor), [](gpt_params & params, const std::string & value) { params.yarn_ext_factor = std::stof(value); } )); add_opt(llama_arg( {"--yarn-attn-factor"}, "N", format("YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor), [](gpt_params & params, const std::string & value) { params.yarn_attn_factor = std::stof(value); } )); add_opt(llama_arg( {"--yarn-beta-slow"}, "N", format("YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow), [](gpt_params & params, const std::string & value) { params.yarn_beta_slow = std::stof(value); } )); add_opt(llama_arg( {"--yarn-beta-fast"}, "N", format("YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast), [](gpt_params & params, const std::string & value) { params.yarn_beta_fast = std::stof(value); } )); add_opt(llama_arg( {"-gan", "--grp-attn-n"}, "N", format("group-attention factor (default: %d)", params.grp_attn_n), [](gpt_params & params, int value) { params.grp_attn_n = value; } )); add_opt(llama_arg( {"-gaw", "--grp-attn-w"}, "N", format("group-attention width (default: %.1f)", (double)params.grp_attn_w), [](gpt_params & params, int value) { params.grp_attn_w = value; } )); add_opt(llama_arg( {"-dkvc", "--dump-kv-cache"}, "verbose print of the KV cache", [](gpt_params & params) { params.dump_kv_cache = true; } )); add_opt(llama_arg( {"-nkvo", "--no-kv-offload"}, "disable KV offload", [](gpt_params & params) { params.no_kv_offload = true; } )); add_opt(llama_arg( {"-ctk", "--cache-type-k"}, "TYPE", format("KV cache data type for K (default: %s)", params.cache_type_k.c_str()), [](gpt_params & params, const std::string & value) { // TODO: get the type right here params.cache_type_k = value; } )); add_opt(llama_arg( {"-ctv", "--cache-type-v"}, "TYPE", format("KV cache data type for V (default: %s)", params.cache_type_v.c_str()), [](gpt_params & params, const std::string & value) { // TODO: get the type right here params.cache_type_v = value; } )); add_opt(llama_arg( {"--all-logits"}, format("return logits for all tokens in the batch (default: %s)", params.logits_all ? "true" : "false"), [](gpt_params & params) { params.logits_all = true; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(llama_arg( {"--hellaswag"}, "compute HellaSwag score over random tasks from datafile supplied with -f", [](gpt_params & params) { params.hellaswag = true; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(llama_arg( {"--hellaswag-tasks"}, "N", format("number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks), [](gpt_params & params, int value) { params.hellaswag_tasks = value; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(llama_arg( {"--winogrande"}, "compute Winogrande score over random tasks from datafile supplied with -f", [](gpt_params & params) { params.winogrande = true; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(llama_arg( {"--winogrande-tasks"}, "N", format("number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks), [](gpt_params & params, int value) { params.winogrande_tasks = value; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(llama_arg( {"--multiple-choice"}, "compute multiple choice score over random tasks from datafile supplied with -f", [](gpt_params & params) { params.multiple_choice = true; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(llama_arg( {"--multiple-choice-tasks"}, "N", format("number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks), [](gpt_params & params, int value) { params.multiple_choice_tasks = value; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(llama_arg( {"--kl-divergence"}, "computes KL-divergence to logits provided via --kl-divergence-base", [](gpt_params & params) { params.kl_divergence = true; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(llama_arg( {"--ppl-stride"}, "N", format("stride for perplexity calculation (default: %d)", params.ppl_stride), [](gpt_params & params, int value) { params.ppl_stride = value; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(llama_arg( {"--ppl-output-type"}, "<0|1>", format("output type for perplexity calculation (default: %d)", params.ppl_output_type), [](gpt_params & params, int value) { params.ppl_output_type = value; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(llama_arg( {"-dt", "--defrag-thold"}, "N", format("KV cache defragmentation threshold (default: %.1f, < 0 - disabled)", (double)params.defrag_thold), [](gpt_params & params, const std::string & value) { params.defrag_thold = std::stof(value); } ).set_env("LLAMA_ARG_DEFRAG_THOLD")); add_opt(llama_arg( {"-np", "--parallel"}, "N", format("number of parallel sequences to decode (default: %d)", params.n_parallel), [](gpt_params & params, int value) { params.n_parallel = value; } )); add_opt(llama_arg( {"-ns", "--sequences"}, "N", format("number of sequences to decode (default: %d)", params.n_sequences), [](gpt_params & params, int value) { params.n_sequences = value; } )); add_opt(llama_arg( {"-cb", "--cont-batching"}, format("enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled"), [](gpt_params & params) { params.cont_batching = true; } ).set_env("LLAMA_ARG_CONT_BATCHING")); add_opt(llama_arg( {"-nocb", "--no-cont-batching"}, "disable continuous batching", [](gpt_params & params) { params.cont_batching = false; } ).set_env("LLAMA_ARG_NO_CONT_BATCHING")); add_opt(llama_arg( {"--mmproj"}, "FILE", "path to a multimodal projector file for LLaVA. see examples/llava/README.md", [](gpt_params & params, const std::string & value) { params.mmproj = value; } ).set_examples({LLAMA_EXAMPLE_LLAVA})); add_opt(llama_arg( {"--image"}, "FILE", "path to an image file. use with multimodal models. Specify multiple times for batching", [](gpt_params & params, const std::string & value) { params.image.emplace_back(value); } ).set_examples({LLAMA_EXAMPLE_LLAVA})); #ifdef GGML_USE_RPC add_opt(llama_arg( {"--rpc"}, "SERVERS", "comma separated list of RPC servers", [](gpt_params & params, const std::string & value) { params.rpc_servers = value; } )); #endif add_opt(llama_arg( {"--mlock"}, "force system to keep model in RAM rather than swapping or compressing", [](gpt_params & params) { params.use_mlock = true; } )); add_opt(llama_arg( {"--no-mmap"}, "do not memory-map model (slower load but may reduce pageouts if not using mlock)", [](gpt_params & params) { params.use_mmap = false; } )); add_opt(llama_arg( {"--numa"}, "TYPE", "attempt optimizations that help on some NUMA systems\n" "- distribute: spread execution evenly over all nodes\n" "- isolate: only spawn threads on CPUs on the node that execution started on\n" "- numactl: use the CPU map provided by numactl\n" "if run without this previously, it is recommended to drop the system page cache before using this\n" "see https://github.com/ggerganov/llama.cpp/issues/1437", [](gpt_params & params, const std::string & value) { /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; } else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; } else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; } else { throw std::invalid_argument("invalid value"); } } )); add_opt(llama_arg( {"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N", "number of layers to store in VRAM", [](gpt_params & params, int value) { params.n_gpu_layers = value; if (!llama_supports_gpu_offload()) { fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers option will be ignored\n"); fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); } } ).set_env("LLAMA_ARG_N_GPU_LAYERS")); add_opt(llama_arg( {"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N", "number of layers to store in VRAM for the draft model", [](gpt_params & params, int value) { params.n_gpu_layers_draft = value; if (!llama_supports_gpu_offload()) { fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers-draft option will be ignored\n"); fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); } } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"-sm", "--split-mode"}, "{none,layer,row}", "how to split the model across multiple GPUs, one of:\n" "- none: use one GPU only\n" "- layer (default): split layers and KV across GPUs\n" "- row: split rows across GPUs", [](gpt_params & params, const std::string & value) { std::string arg_next = value; if (arg_next == "none") { params.split_mode = LLAMA_SPLIT_MODE_NONE; } else if (arg_next == "layer") { params.split_mode = LLAMA_SPLIT_MODE_LAYER; } else if (arg_next == "row") { #ifdef GGML_USE_SYCL fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n"); exit(1); #endif // GGML_USE_SYCL params.split_mode = LLAMA_SPLIT_MODE_ROW; } else { throw std::invalid_argument("invalid value"); } #ifndef GGML_USE_CUDA_SYCL_VULKAN fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting the split mode has no effect.\n"); #endif // GGML_USE_CUDA_SYCL_VULKAN } )); add_opt(llama_arg( {"-ts", "--tensor-split"}, "N0,N1,N2,...", "fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1", [](gpt_params & params, const std::string & value) { std::string arg_next = value; // split string by , and / const std::regex regex{ R"([,/]+)" }; std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 }; std::vector split_arg{ it, {} }; if (split_arg.size() >= llama_max_devices()) { throw std::invalid_argument( format("got %d input configs, but system only has %d devices", (int)split_arg.size(), (int)llama_max_devices()) ); } for (size_t i = 0; i < llama_max_devices(); ++i) { if (i < split_arg.size()) { params.tensor_split[i] = std::stof(split_arg[i]); } else { params.tensor_split[i] = 0.0f; } } #ifndef GGML_USE_CUDA_SYCL_VULKAN fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting a tensor split has no effect.\n"); #endif // GGML_USE_CUDA_SYCL_VULKAN } )); add_opt(llama_arg( {"-mg", "--main-gpu"}, "INDEX", format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu), [](gpt_params & params, int value) { params.main_gpu = value; #ifndef GGML_USE_CUDA_SYCL_VULKAN fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting the main GPU has no effect.\n"); #endif // GGML_USE_CUDA_SYCL_VULKAN } )); add_opt(llama_arg( {"--check-tensors"}, format("check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false"), [](gpt_params & params) { params.check_tensors = true; } )); add_opt(llama_arg( {"--override-kv"}, "KEY=TYPE:VALUE", "advanced option to override model metadata by key. may be specified multiple times.\n" "types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false", [](gpt_params & params, const std::string & value) { if (!string_parse_kv_override(value.c_str(), params.kv_overrides)) { throw std::runtime_error(format("error: Invalid type for KV override: %s\n", value.c_str())); } } )); add_opt(llama_arg( {"--lora"}, "FNAME", "path to LoRA adapter (can be repeated to use multiple adapters)", [](gpt_params & params, const std::string & value) { params.lora_adapters.push_back({ std::string(value), 1.0 }); } ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA})); add_opt(llama_arg( {"--lora-scaled"}, "FNAME", "SCALE", "path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters)", [](gpt_params & params, const std::string & fname, const std::string & scale) { params.lora_adapters.push_back({ fname, std::stof(scale) }); } ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA})); add_opt(llama_arg( {"--control-vector"}, "FNAME", "add a control vector\nnote: this argument can be repeated to add multiple control vectors", [](gpt_params & params, const std::string & value) { params.control_vectors.push_back({ 1.0f, value, }); } )); add_opt(llama_arg( {"--control-vector-scaled"}, "FNAME", "SCALE", "add a control vector with user defined scaling SCALE\n" "note: this argument can be repeated to add multiple scaled control vectors", [](gpt_params & params, const std::string & fname, const std::string & scale) { params.control_vectors.push_back({ std::stof(scale), fname }); } )); add_opt(llama_arg( {"--control-vector-layer-range"}, "START", "END", "layer range to apply the control vector(s) to, start and end inclusive", [](gpt_params & params, const std::string & start, const std::string & end) { params.control_vector_layer_start = std::stoi(start); params.control_vector_layer_end = std::stoi(end); } )); add_opt(llama_arg( {"-a", "--alias"}, "STRING", "set alias for model name (to be used by REST API)", [](gpt_params & params, const std::string & value) { params.model_alias = value; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL")); add_opt(llama_arg( {"-m", "--model"}, "FNAME", ex == LLAMA_EXAMPLE_EXPORT_LORA ? std::string("model path from which to load base model") : format( "model path (default: `models/$filename` with filename from `--hf-file` " "or `--model-url` if set, otherwise %s)", DEFAULT_MODEL_PATH ), [](gpt_params & params, const std::string & value) { params.model = value; } ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL")); add_opt(llama_arg( {"-md", "--model-draft"}, "FNAME", "draft model for speculative decoding (default: unused)", [](gpt_params & params, const std::string & value) { params.model_draft = value; } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"-mu", "--model-url"}, "MODEL_URL", "model download url (default: unused)", [](gpt_params & params, const std::string & value) { params.model_url = value; } ).set_env("LLAMA_ARG_MODEL_URL")); add_opt(llama_arg( {"-hfr", "--hf-repo"}, "REPO", "Hugging Face model repository (default: unused)", [](gpt_params & params, const std::string & value) { params.hf_repo = value; } ).set_env("LLAMA_ARG_HF_REPO")); add_opt(llama_arg( {"-hff", "--hf-file"}, "FILE", "Hugging Face model file (default: unused)", [](gpt_params & params, const std::string & value) { params.hf_file = value; } ).set_env("LLAMA_ARG_HF_FILE")); add_opt(llama_arg( {"-hft", "--hf-token"}, "TOKEN", "Hugging Face access token (default: value from HF_TOKEN environment variable)", [](gpt_params & params, const std::string & value) { params.hf_token = value; } ).set_env("HF_TOKEN")); add_opt(llama_arg( {"--context-file"}, "FNAME", "file to load context from (repeat to specify multiple files)", [](gpt_params & params, const std::string & value) { std::ifstream file(value, std::ios::binary); if (!file) { throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str())); } params.context_files.push_back(value); } ).set_examples({LLAMA_EXAMPLE_RETRIEVAL})); add_opt(llama_arg( {"--chunk-size"}, "N", format("minimum length of embedded text chunks (default: %d)", params.chunk_size), [](gpt_params & params, int value) { params.chunk_size = value; } ).set_examples({LLAMA_EXAMPLE_RETRIEVAL})); add_opt(llama_arg( {"--chunk-separator"}, "STRING", format("separator between chunks (default: '%s')", params.chunk_separator.c_str()), [](gpt_params & params, const std::string & value) { params.chunk_separator = value; } ).set_examples({LLAMA_EXAMPLE_RETRIEVAL})); add_opt(llama_arg( {"--junk"}, "N", format("number of times to repeat the junk text (default: %d)", params.n_junk), [](gpt_params & params, int value) { params.n_junk = value; } ).set_examples({LLAMA_EXAMPLE_PASSKEY})); add_opt(llama_arg( {"--pos"}, "N", format("position of the passkey in the junk text (default: %d)", params.i_pos), [](gpt_params & params, int value) { params.i_pos = value; } ).set_examples({LLAMA_EXAMPLE_PASSKEY})); add_opt(llama_arg( {"-o", "--output"}, "FNAME", format("output file (default: '%s')", ex == LLAMA_EXAMPLE_EXPORT_LORA ? params.lora_outfile.c_str() : ex == LLAMA_EXAMPLE_CVECTOR_GENERATOR ? params.cvector_outfile.c_str() : params.out_file.c_str()), [](gpt_params & params, const std::string & value) { params.out_file = value; params.cvector_outfile = value; params.lora_outfile = value; } ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA})); add_opt(llama_arg( {"-ofreq", "--output-frequency"}, "N", format("output the imatrix every N iterations (default: %d)", params.n_out_freq), [](gpt_params & params, int value) { params.n_out_freq = value; } ).set_examples({LLAMA_EXAMPLE_IMATRIX})); add_opt(llama_arg( {"--save-frequency"}, "N", format("save an imatrix copy every N iterations (default: %d)", params.n_save_freq), [](gpt_params & params, int value) { params.n_save_freq = value; } ).set_examples({LLAMA_EXAMPLE_IMATRIX})); add_opt(llama_arg( {"--process-output"}, format("collect data for the output tensor (default: %s)", params.process_output ? "true" : "false"), [](gpt_params & params) { params.process_output = true; } ).set_examples({LLAMA_EXAMPLE_IMATRIX})); add_opt(llama_arg( {"--no-ppl"}, format("do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false"), [](gpt_params & params) { params.compute_ppl = false; } ).set_examples({LLAMA_EXAMPLE_IMATRIX})); add_opt(llama_arg( {"--chunk"}, "N", format("start processing the input from chunk N (default: %d)", params.i_chunk), [](gpt_params & params, int value) { params.i_chunk = value; } ).set_examples({LLAMA_EXAMPLE_IMATRIX})); add_opt(llama_arg( {"-pps"}, format("is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false"), [](gpt_params & params) { params.is_pp_shared = true; } ).set_examples({LLAMA_EXAMPLE_BENCH})); add_opt(llama_arg( {"-npp"}, "n0,n1,...", "number of prompt tokens", [](gpt_params & params, const std::string & value) { auto p = string_split(value, ','); params.n_pp.insert(params.n_pp.end(), p.begin(), p.end()); } ).set_examples({LLAMA_EXAMPLE_BENCH})); add_opt(llama_arg( {"-ntg"}, "n0,n1,...", "number of text generation tokens", [](gpt_params & params, const std::string & value) { auto p = string_split(value, ','); params.n_tg.insert(params.n_tg.end(), p.begin(), p.end()); } ).set_examples({LLAMA_EXAMPLE_BENCH})); add_opt(llama_arg( {"-npl"}, "n0,n1,...", "number of parallel prompts", [](gpt_params & params, const std::string & value) { auto p = string_split(value, ','); params.n_pl.insert(params.n_pl.end(), p.begin(), p.end()); } ).set_examples({LLAMA_EXAMPLE_BENCH})); add_opt(llama_arg( {"--embd-normalize"}, "N", format("normalisation for embendings (default: %d) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)", params.embd_normalize), [](gpt_params & params, int value) { params.embd_normalize = value; } ).set_examples({LLAMA_EXAMPLE_EMBEDDING})); add_opt(llama_arg( {"--embd-output-format"}, "FORMAT", "empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix", [](gpt_params & params, const std::string & value) { params.embd_out = value; } ).set_examples({LLAMA_EXAMPLE_EMBEDDING})); add_opt(llama_arg( {"--embd-separator"}, "STRING", "separator of embendings (default \\n) for example \"<#sep#>\"", [](gpt_params & params, const std::string & value) { params.embd_sep = value; } ).set_examples({LLAMA_EXAMPLE_EMBEDDING})); add_opt(llama_arg( {"--host"}, "HOST", format("ip address to listen (default: %s)", params.hostname.c_str()), [](gpt_params & params, const std::string & value) { params.hostname = value; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_HOST")); add_opt(llama_arg( {"--port"}, "PORT", format("port to listen (default: %d)", params.port), [](gpt_params & params, int value) { params.port = value; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_PORT")); add_opt(llama_arg( {"--path"}, "PATH", format("path to serve static files from (default: %s)", params.public_path.c_str()), [](gpt_params & params, const std::string & value) { params.public_path = value; } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(llama_arg( {"--embedding", "--embeddings"}, format("restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled"), [](gpt_params & params) { params.embedding = true; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS")); add_opt(llama_arg( {"--api-key"}, "KEY", "API key to use for authentication (default: none)", [](gpt_params & params, const std::string & value) { params.api_keys.push_back(value); } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_API_KEY")); add_opt(llama_arg( {"--api-key-file"}, "FNAME", "path to file containing API keys (default: none)", [](gpt_params & params, const std::string & value) { std::ifstream key_file(value); if (!key_file) { throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str())); } std::string key; while (std::getline(key_file, key)) { if (!key.empty()) { params.api_keys.push_back(key); } } key_file.close(); } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(llama_arg( {"--ssl-key-file"}, "FNAME", "path to file a PEM-encoded SSL private key", [](gpt_params & params, const std::string & value) { params.ssl_file_key = value; } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(llama_arg( {"--ssl-cert-file"}, "FNAME", "path to file a PEM-encoded SSL certificate", [](gpt_params & params, const std::string & value) { params.ssl_file_cert = value; } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(llama_arg( {"--timeout"}, "N", format("server read/write timeout in seconds (default: %d)", params.timeout_read), [](gpt_params & params, int value) { params.timeout_read = value; params.timeout_write = value; } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(llama_arg( {"--threads-http"}, "N", format("number of threads used to process HTTP requests (default: %d)", params.n_threads_http), [](gpt_params & params, int value) { params.n_threads_http = value; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP")); add_opt(llama_arg( {"-spf", "--system-prompt-file"}, "FNAME", "set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications", [](gpt_params & params, const std::string & value) { std::ifstream file(value); if (!file) { throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str())); } std::string system_prompt; std::copy( std::istreambuf_iterator(file), std::istreambuf_iterator(), std::back_inserter(system_prompt) ); params.system_prompt = system_prompt; } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(llama_arg( {"--log-format"}, "{text, json}", "log output format: json or text (default: json)", [](gpt_params & params, const std::string & value) { if (value == "json") { params.log_json = true; } else if (value == "text") { params.log_json = false; } else { throw std::invalid_argument("invalid value"); } } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(llama_arg( {"--metrics"}, format("enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled"), [](gpt_params & params) { params.endpoint_metrics = true; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS")); add_opt(llama_arg( {"--no-slots"}, format("disables slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"), [](gpt_params & params) { params.endpoint_slots = false; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_ENDPOINT_SLOTS")); add_opt(llama_arg( {"--slot-save-path"}, "PATH", "path to save slot kv cache (default: disabled)", [](gpt_params & params, const std::string & value) { params.slot_save_path = value; // if doesn't end with DIRECTORY_SEPARATOR, add it if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) { params.slot_save_path += DIRECTORY_SEPARATOR; } } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(llama_arg( {"--chat-template"}, "JINJA_TEMPLATE", "set custom jinja chat template (default: template taken from model's metadata)\n" "if suffix/prefix are specified, template will be disabled\n" "only commonly used templates are accepted:\nhttps://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template", [](gpt_params & params, const std::string & value) { if (!llama_chat_verify_template(value)) { throw std::runtime_error(format( "error: the supplied chat template is not supported: %s\n" "note: llama.cpp does not use jinja parser, we only support commonly used templates\n", value.c_str() )); } params.chat_template = value; } ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE")); add_opt(llama_arg( {"-sps", "--slot-prompt-similarity"}, "SIMILARITY", format("how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity), [](gpt_params & params, const std::string & value) { params.slot_prompt_similarity = std::stof(value); } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(llama_arg( {"--lora-init-without-apply"}, format("load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: %s)", params.lora_init_without_apply ? "enabled" : "disabled"), [](gpt_params & params) { params.lora_init_without_apply = true; } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(llama_arg( {"--simple-io"}, "use basic IO for better compatibility in subprocesses and limited consoles", [](gpt_params & params) { params.simple_io = true; } ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL})); add_opt(llama_arg( {"-ld", "--logdir"}, "LOGDIR", "path under which to save YAML logs (no logging if unset)", [](gpt_params & params, const std::string & value) { params.logdir = value; if (params.logdir.back() != DIRECTORY_SEPARATOR) { params.logdir += DIRECTORY_SEPARATOR; } } )); add_opt(llama_arg( {"--positive-file"}, "FNAME", format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()), [](gpt_params & params, const std::string & value) { params.cvector_positive_file = value; } ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); add_opt(llama_arg( {"--negative-file"}, "FNAME", format("negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str()), [](gpt_params & params, const std::string & value) { params.cvector_negative_file = value; } ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); add_opt(llama_arg( {"--pca-batch"}, "N", format("batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch), [](gpt_params & params, int value) { params.n_pca_batch = value; } ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); add_opt(llama_arg( {"--pca-iter"}, "N", format("number of iterations used for PCA (default: %d)", params.n_pca_iterations), [](gpt_params & params, int value) { params.n_pca_iterations = value; } ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); add_opt(llama_arg( {"--method"}, "{pca, mean}", "dimensionality reduction method to be used (default: pca)", [](gpt_params & params, const std::string & value) { /**/ if (value == "pca") { params.cvector_dimre_method = DIMRE_METHOD_PCA; } else if (value == "mean") { params.cvector_dimre_method = DIMRE_METHOD_MEAN; } else { throw std::invalid_argument("invalid value"); } } ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); add_opt(llama_arg( {"--output-format"}, "{md,jsonl}", "output format for batched-bench results (default: md)", [](gpt_params & params, const std::string & value) { /**/ if (value == "jsonl") { params.batched_bench_output_jsonl = true; } else if (value == "md") { params.batched_bench_output_jsonl = false; } else { std::invalid_argument("invalid value"); } } ).set_examples({LLAMA_EXAMPLE_BENCH})); #ifndef LOG_DISABLE_LOGS // TODO: make this looks less weird add_opt(llama_arg( {"--log-test"}, "Log test", [](gpt_params &) { log_param_single_parse("--log-test"); } )); add_opt(llama_arg( {"--log-disable"}, "Log disable", [](gpt_params &) { log_param_single_parse("--log-disable"); } )); add_opt(llama_arg( {"--log-enable"}, "Log enable", [](gpt_params &) { log_param_single_parse("--log-enable"); } )); add_opt(llama_arg( {"--log-new"}, "Log new", [](gpt_params &) { log_param_single_parse("--log-new"); } )); add_opt(llama_arg( {"--log-append"}, "Log append", [](gpt_params &) { log_param_single_parse("--log-append"); } )); add_opt(llama_arg( {"--log-file"}, "FNAME", "Log file", [](gpt_params &, const std::string & value) { log_param_pair_parse(false, "--log-file", value); } )); #endif // LOG_DISABLE_LOGS return options; } std::string gpt_params_get_system_info(const gpt_params & params) { std::ostringstream os; os << "system_info: n_threads = " << params.cpuparams.n_threads; if (params.cpuparams_batch.n_threads != -1) { os << " (n_threads_batch = " << params.cpuparams_batch.n_threads << ")"; } #if defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later // TODO: windows + arm64 + mingw64 DWORD logicalProcessorCount = GetActiveProcessorCount(ALL_PROCESSOR_GROUPS); os << " / " << logicalProcessorCount << " | " << llama_print_system_info(); #else os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info(); #endif return os.str(); } // // String utils // std::vector string_split(std::string input, char separator) { std::vector parts; size_t separator_pos = input.find(separator); while (separator_pos != std::string::npos) { std::string part = input.substr(0, separator_pos); parts.emplace_back(part); input = input.substr(separator_pos + 1); separator_pos = input.find(separator); } parts.emplace_back(input); return parts; } std::string string_strip(const std::string & str) { size_t start = 0; size_t end = str.size(); while (start < end && std::isspace(str[start])) { start++; } while (end > start && std::isspace(str[end - 1])) { end--; } return str.substr(start, end - start); } std::string string_get_sortable_timestamp() { using clock = std::chrono::system_clock; const clock::time_point current_time = clock::now(); const time_t as_time_t = clock::to_time_t(current_time); char timestamp_no_ns[100]; std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t)); const int64_t ns = std::chrono::duration_cast( current_time.time_since_epoch() % 1000000000).count(); char timestamp_ns[11]; snprintf(timestamp_ns, 11, "%09" PRId64, ns); return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns); } void string_replace_all(std::string & s, const std::string & search, const std::string & replace) { if (search.empty()) { return; } std::string builder; builder.reserve(s.length()); size_t pos = 0; size_t last_pos = 0; while ((pos = s.find(search, last_pos)) != std::string::npos) { builder.append(s, last_pos, pos - last_pos); builder.append(replace); last_pos = pos + search.length(); } builder.append(s, last_pos, std::string::npos); s = std::move(builder); } void string_process_escapes(std::string & input) { std::size_t input_len = input.length(); std::size_t output_idx = 0; for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) { if (input[input_idx] == '\\' && input_idx + 1 < input_len) { switch (input[++input_idx]) { case 'n': input[output_idx++] = '\n'; break; case 'r': input[output_idx++] = '\r'; break; case 't': input[output_idx++] = '\t'; break; case '\'': input[output_idx++] = '\''; break; case '\"': input[output_idx++] = '\"'; break; case '\\': input[output_idx++] = '\\'; break; case 'x': // Handle \x12, etc if (input_idx + 2 < input_len) { const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 }; char *err_p = nullptr; const long val = std::strtol(x, &err_p, 16); if (err_p == x + 2) { input_idx += 2; input[output_idx++] = char(val); break; } } // fall through default: input[output_idx++] = '\\'; input[output_idx++] = input[input_idx]; break; } } else { input[output_idx++] = input[input_idx]; } } input.resize(output_idx); } bool string_parse_kv_override(const char * data, std::vector & overrides) { const char * sep = strchr(data, '='); if (sep == nullptr || sep - data >= 128) { fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data); return false; } llama_model_kv_override kvo; std::strncpy(kvo.key, data, sep - data); kvo.key[sep - data] = 0; sep++; if (strncmp(sep, "int:", 4) == 0) { sep += 4; kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT; kvo.val_i64 = std::atol(sep); } else if (strncmp(sep, "float:", 6) == 0) { sep += 6; kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT; kvo.val_f64 = std::atof(sep); } else if (strncmp(sep, "bool:", 5) == 0) { sep += 5; kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL; if (std::strcmp(sep, "true") == 0) { kvo.val_bool = true; } else if (std::strcmp(sep, "false") == 0) { kvo.val_bool = false; } else { fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data); return false; } } else if (strncmp(sep, "str:", 4) == 0) { sep += 4; kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR; if (strlen(sep) > 127) { fprintf(stderr, "%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data); return false; } strncpy(kvo.val_str, sep, 127); kvo.val_str[127] = '\0'; } else { fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data); return false; } overrides.emplace_back(std::move(kvo)); return true; } // // Filesystem utils // // Validate if a filename is safe to use // To validate a full path, split the path by the OS-specific path separator, and validate each part with this function bool fs_validate_filename(const std::string & filename) { if (!filename.length()) { // Empty filename invalid return false; } if (filename.length() > 255) { // Limit at common largest possible filename on Linux filesystems // to avoid unnecessary further validation // (On systems with smaller limits it will be caught by the OS) return false; } std::u32string filename_utf32; try { std::wstring_convert, char32_t> converter; filename_utf32 = converter.from_bytes(filename); // If the reverse conversion mismatches, it means overlong UTF-8 sequences were used, // or invalid encodings were encountered. Reject such attempts std::string filename_reencoded = converter.to_bytes(filename_utf32); if (filename_reencoded != filename) { return false; } } catch (const std::exception &) { return false; } // Check for forbidden codepoints: // - Control characters // - Unicode equivalents of illegal characters // - UTF-16 surrogate pairs // - UTF-8 replacement character // - Byte order mark (BOM) // - Illegal characters: / \ : * ? " < > | for (char32_t c : filename_utf32) { if (c <= 0x1F // Control characters (C0) || c == 0x7F // Control characters (DEL) || (c >= 0x80 && c <= 0x9F) // Control characters (C1) || c == 0xFF0E // Fullwidth Full Stop (period equivalent) || c == 0x2215 // Division Slash (forward slash equivalent) || c == 0x2216 // Set Minus (backslash equivalent) || (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs || c == 0xFFFD // Replacement Character (UTF-8) || c == 0xFEFF // Byte Order Mark (BOM) || c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters || c == '?' || c == '"' || c == '<' || c == '>' || c == '|') { return false; } } // Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename // Unicode and other whitespace is not affected, only 0x20 space if (filename.front() == ' ' || filename.back() == ' ' || filename.back() == '.') { return false; } // Reject any ".." (currently stricter than necessary, it should be fine to just check for == ".." instead) if (filename.find("..") != std::string::npos) { return false; } // Reject "." if (filename == ".") { return false; } return true; } // returns true if successful, false otherwise bool fs_create_directory_with_parents(const std::string & path) { #ifdef _WIN32 std::wstring_convert> converter; std::wstring wpath = converter.from_bytes(path); // if the path already exists, check whether it's a directory const DWORD attributes = GetFileAttributesW(wpath.c_str()); if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) { return true; } size_t pos_slash = 0; // process path from front to back, procedurally creating directories while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) { const std::wstring subpath = wpath.substr(0, pos_slash); const wchar_t * test = subpath.c_str(); const bool success = CreateDirectoryW(test, NULL); if (!success) { const DWORD error = GetLastError(); // if the path already exists, ensure that it's a directory if (error == ERROR_ALREADY_EXISTS) { const DWORD attributes = GetFileAttributesW(subpath.c_str()); if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) { return false; } } else { return false; } } pos_slash += 1; } return true; #else // if the path already exists, check whether it's a directory struct stat info; if (stat(path.c_str(), &info) == 0) { return S_ISDIR(info.st_mode); } size_t pos_slash = 1; // skip leading slashes for directory creation // process path from front to back, procedurally creating directories while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) { const std::string subpath = path.substr(0, pos_slash); struct stat info; // if the path already exists, ensure that it's a directory if (stat(subpath.c_str(), &info) == 0) { if (!S_ISDIR(info.st_mode)) { return false; } } else { // create parent directories const int ret = mkdir(subpath.c_str(), 0755); if (ret != 0) { return false; } } pos_slash += 1; } return true; #endif // _WIN32 } std::string fs_get_cache_directory() { std::string cache_directory = ""; auto ensure_trailing_slash = [](std::string p) { // Make sure to add trailing slash if (p.back() != DIRECTORY_SEPARATOR) { p += DIRECTORY_SEPARATOR; } return p; }; if (getenv("LLAMA_CACHE")) { cache_directory = std::getenv("LLAMA_CACHE"); } else { #ifdef __linux__ if (std::getenv("XDG_CACHE_HOME")) { cache_directory = std::getenv("XDG_CACHE_HOME"); } else { cache_directory = std::getenv("HOME") + std::string("/.cache/"); } #elif defined(__APPLE__) cache_directory = std::getenv("HOME") + std::string("/Library/Caches/"); #elif defined(_WIN32) cache_directory = std::getenv("LOCALAPPDATA"); #endif // __linux__ cache_directory = ensure_trailing_slash(cache_directory); cache_directory += "llama.cpp"; } return ensure_trailing_slash(cache_directory); } std::string fs_get_cache_file(const std::string & filename) { GGML_ASSERT(filename.find(DIRECTORY_SEPARATOR) == std::string::npos); std::string cache_directory = fs_get_cache_directory(); const bool success = fs_create_directory_with_parents(cache_directory); if (!success) { throw std::runtime_error("failed to create cache directory: " + cache_directory); } return cache_directory + filename; } // // Model utils // struct llama_init_result llama_init_from_gpt_params(gpt_params & params) { llama_init_result iparams; auto mparams = llama_model_params_from_gpt_params(params); llama_model * model = nullptr; if (!params.hf_repo.empty() && !params.hf_file.empty()) { model = llama_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams); } else if (!params.model_url.empty()) { model = llama_load_model_from_url(params.model_url.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams); } else { model = llama_load_model_from_file(params.model.c_str(), mparams); } if (model == NULL) { fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); return iparams; } auto cparams = llama_context_params_from_gpt_params(params); llama_context * lctx = llama_new_context_with_model(model, cparams); if (lctx == NULL) { fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str()); llama_free_model(model); return iparams; } if (!params.control_vectors.empty()) { if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1; if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model); const auto cvec = llama_control_vector_load(params.control_vectors); if (cvec.n_embd == -1) { llama_free(lctx); llama_free_model(model); return iparams; } int err = llama_control_vector_apply(lctx, cvec.data.data(), cvec.data.size(), cvec.n_embd, params.control_vector_layer_start, params.control_vector_layer_end); if (err) { llama_free(lctx); llama_free_model(model); return iparams; } } // load and optionally apply lora adapters for (auto & la : params.lora_adapters) { llama_lora_adapter_container loaded_la; loaded_la.path = la.path; loaded_la.scale = la.scale; loaded_la.adapter = llama_lora_adapter_init(model, la.path.c_str()); if (loaded_la.adapter == nullptr) { fprintf(stderr, "%s: error: failed to apply lora adapter '%s'\n", __func__, la.path.c_str()); llama_free(lctx); llama_free_model(model); return iparams; } iparams.lora_adapters.push_back(loaded_la); // copy to list of loaded adapters } if (!params.lora_init_without_apply) { llama_lora_adapters_apply(lctx, iparams.lora_adapters); } if (params.sparams.ignore_eos && llama_token_eos(model) == -1) { fprintf(stderr, "%s: warning: model does not have an EOS token, ignoring --ignore-eos\n", __func__); params.sparams.ignore_eos = false; } if (params.warmup) { LOG("warming up the model with an empty run\n"); std::vector tmp; llama_token bos = llama_token_bos(model); llama_token eos = llama_token_eos(model); // some models (e.g. T5) don't have a BOS token if (bos != LLAMA_TOKEN_NULL) { tmp.push_back(bos); } if (eos != LLAMA_TOKEN_NULL) { tmp.push_back(eos); } if (tmp.empty()) { tmp.push_back(0); } if (llama_model_has_encoder(model)) { llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size(), 0, 0)); llama_token decoder_start_token_id = llama_model_decoder_start_token(model); if (decoder_start_token_id == -1) { decoder_start_token_id = bos; } tmp.clear(); tmp.push_back(decoder_start_token_id); } if (llama_model_has_decoder(model)) { llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0)); } llama_kv_cache_clear(lctx); llama_synchronize(lctx); llama_perf_reset(lctx, LLAMA_PERF_TYPE_CONTEXT); } iparams.model = model; iparams.context = lctx; return iparams; } void llama_lora_adapters_apply(struct llama_context * ctx, std::vector & lora_adapters) { llama_lora_adapter_clear(ctx); for (auto & la : lora_adapters) { if (la.scale != 0.0f) { llama_lora_adapter_set(ctx, la.adapter, la.scale); } } } struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) { auto mparams = llama_model_default_params(); if (params.n_gpu_layers != -1) { mparams.n_gpu_layers = params.n_gpu_layers; } mparams.rpc_servers = params.rpc_servers.c_str(); mparams.main_gpu = params.main_gpu; mparams.split_mode = params.split_mode; mparams.tensor_split = params.tensor_split; mparams.use_mmap = params.use_mmap; mparams.use_mlock = params.use_mlock; mparams.check_tensors = params.check_tensors; if (params.kv_overrides.empty()) { mparams.kv_overrides = NULL; } else { GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key"); mparams.kv_overrides = params.kv_overrides.data(); } return mparams; } static ggml_type kv_cache_type_from_str(const std::string & s) { if (s == "f32") { return GGML_TYPE_F32; } if (s == "f16") { return GGML_TYPE_F16; } if (s == "q8_0") { return GGML_TYPE_Q8_0; } if (s == "q4_0") { return GGML_TYPE_Q4_0; } if (s == "q4_1") { return GGML_TYPE_Q4_1; } if (s == "iq4_nl") { return GGML_TYPE_IQ4_NL; } if (s == "q5_0") { return GGML_TYPE_Q5_0; } if (s == "q5_1") { return GGML_TYPE_Q5_1; } throw std::runtime_error("Invalid cache type: " + s); } struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) { auto cparams = llama_context_default_params(); cparams.n_ctx = params.n_ctx; cparams.n_seq_max = params.n_parallel; cparams.n_batch = params.n_batch; cparams.n_ubatch = params.n_ubatch; cparams.n_threads = params.cpuparams.n_threads; cparams.n_threads_batch = params.cpuparams_batch.n_threads == -1 ? params.cpuparams.n_threads : params.cpuparams_batch.n_threads; cparams.logits_all = params.logits_all; cparams.embeddings = params.embedding; cparams.rope_scaling_type = params.rope_scaling_type; cparams.rope_freq_base = params.rope_freq_base; cparams.rope_freq_scale = params.rope_freq_scale; cparams.yarn_ext_factor = params.yarn_ext_factor; cparams.yarn_attn_factor = params.yarn_attn_factor; cparams.yarn_beta_fast = params.yarn_beta_fast; cparams.yarn_beta_slow = params.yarn_beta_slow; cparams.yarn_orig_ctx = params.yarn_orig_ctx; cparams.pooling_type = params.pooling_type; cparams.attention_type = params.attention_type; cparams.defrag_thold = params.defrag_thold; cparams.cb_eval = params.cb_eval; cparams.cb_eval_user_data = params.cb_eval_user_data; cparams.offload_kqv = !params.no_kv_offload; cparams.flash_attn = params.flash_attn; cparams.type_k = kv_cache_type_from_str(params.cache_type_k); cparams.type_v = kv_cache_type_from_str(params.cache_type_v); return cparams; } struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params) { struct ggml_threadpool_params tpp; ggml_threadpool_params_init(&tpp, params.n_threads); // setup the defaults if (params.mask_valid) { std::memcpy(&tpp.cpumask, ¶ms.cpumask, GGML_MAX_N_THREADS); } tpp.prio = params.priority; tpp.poll = params.poll; tpp.strict_cpu = params.strict_cpu; return tpp; } #ifdef LLAMA_USE_CURL static bool starts_with(const std::string & str, const std::string & prefix) { // While we wait for C++20's std::string::starts_with... return str.rfind(prefix, 0) == 0; } static bool llama_download_file(const std::string & url, const std::string & path, const std::string & hf_token) { // Initialize libcurl std::unique_ptr curl(curl_easy_init(), &curl_easy_cleanup); if (!curl) { fprintf(stderr, "%s: error initializing libcurl\n", __func__); return false; } bool force_download = false; // Set the URL, allow to follow http redirection curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str()); curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L); // Check if hf-token or bearer-token was specified if (!hf_token.empty()) { std::string auth_header = "Authorization: Bearer "; auth_header += hf_token.c_str(); struct curl_slist *http_headers = NULL; http_headers = curl_slist_append(http_headers, auth_header.c_str()); curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers); } #if defined(_WIN32) // CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of // operating system. Currently implemented under MS-Windows. curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA); #endif // Check if the file already exists locally struct stat model_file_info; auto file_exists = (stat(path.c_str(), &model_file_info) == 0); // If the file exists, check its JSON metadata companion file. std::string metadata_path = path + ".json"; nlohmann::json metadata; std::string etag; std::string last_modified; if (file_exists) { // Try and read the JSON metadata file (note: stream autoclosed upon exiting this block). std::ifstream metadata_in(metadata_path); if (metadata_in.good()) { try { metadata_in >> metadata; fprintf(stderr, "%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str()); if (metadata.contains("url") && metadata.at("url").is_string()) { auto previous_url = metadata.at("url").get(); if (previous_url != url) { fprintf(stderr, "%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str()); return false; } } if (metadata.contains("etag") && metadata.at("etag").is_string()) { etag = metadata.at("etag"); } if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) { last_modified = metadata.at("lastModified"); } } catch (const nlohmann::json::exception & e) { fprintf(stderr, "%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what()); return false; } } } else { fprintf(stderr, "%s: no previous model file found %s\n", __func__, path.c_str()); } // Send a HEAD request to retrieve the etag and last-modified headers struct llama_load_model_from_url_headers { std::string etag; std::string last_modified; }; llama_load_model_from_url_headers headers; { typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *); auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t { llama_load_model_from_url_headers *headers = (llama_load_model_from_url_headers *) userdata; static std::regex header_regex("([^:]+): (.*)\r\n"); static std::regex etag_regex("ETag", std::regex_constants::icase); static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase); std::string header(buffer, n_items); std::smatch match; if (std::regex_match(header, match, header_regex)) { const std::string & key = match[1]; const std::string & value = match[2]; if (std::regex_match(key, match, etag_regex)) { headers->etag = value; } else if (std::regex_match(key, match, last_modified_regex)) { headers->last_modified = value; } } return n_items; }; curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast(header_callback)); curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers); CURLcode res = curl_easy_perform(curl.get()); if (res != CURLE_OK) { fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res)); return false; } long http_code = 0; curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code); if (http_code != 200) { // HEAD not supported, we don't know if the file has changed // force trigger downloading force_download = true; fprintf(stderr, "%s: HEAD invalid http status code received: %ld\n", __func__, http_code); } } bool should_download = !file_exists || force_download; if (!should_download) { if (!etag.empty() && etag != headers.etag) { fprintf(stderr, "%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str()); should_download = true; } else if (!last_modified.empty() && last_modified != headers.last_modified) { fprintf(stderr, "%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str()); should_download = true; } } if (should_download) { std::string path_temporary = path + ".downloadInProgress"; if (file_exists) { fprintf(stderr, "%s: deleting previous downloaded file: %s\n", __func__, path.c_str()); if (remove(path.c_str()) != 0) { fprintf(stderr, "%s: unable to delete file: %s\n", __func__, path.c_str()); return false; } } // Set the output file struct FILE_deleter { void operator()(FILE * f) const { fclose(f); } }; std::unique_ptr outfile(fopen(path_temporary.c_str(), "wb")); if (!outfile) { fprintf(stderr, "%s: error opening local file for writing: %s\n", __func__, path.c_str()); return false; } typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd); auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t { return fwrite(data, size, nmemb, (FILE *)fd); }; curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L); curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast(write_callback)); curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get()); // display download progress curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L); // helper function to hide password in URL auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string { std::size_t protocol_pos = url.find("://"); if (protocol_pos == std::string::npos) { return url; // Malformed URL } std::size_t at_pos = url.find('@', protocol_pos + 3); if (at_pos == std::string::npos) { return url; // No password in URL } return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos); }; // start the download fprintf(stderr, "%s: downloading from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__, llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str()); auto res = curl_easy_perform(curl.get()); if (res != CURLE_OK) { fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res)); return false; } long http_code = 0; curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code); if (http_code < 200 || http_code >= 400) { fprintf(stderr, "%s: invalid http status code received: %ld\n", __func__, http_code); return false; } // Causes file to be closed explicitly here before we rename it. outfile.reset(); // Write the updated JSON metadata file. metadata.update({ {"url", url}, {"etag", headers.etag}, {"lastModified", headers.last_modified} }); std::ofstream(metadata_path) << metadata.dump(4); fprintf(stderr, "%s: file metadata saved: %s\n", __func__, metadata_path.c_str()); if (rename(path_temporary.c_str(), path.c_str()) != 0) { fprintf(stderr, "%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str()); return false; } } return true; } struct llama_model * llama_load_model_from_url( const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params) { // Basic validation of the model_url if (!model_url || strlen(model_url) == 0) { fprintf(stderr, "%s: invalid model_url\n", __func__); return NULL; } if (!llama_download_file(model_url, path_model, hf_token)) { return NULL; } // check for additional GGUFs split to download int n_split = 0; { struct gguf_init_params gguf_params = { /*.no_alloc = */ true, /*.ctx = */ NULL, }; auto * ctx_gguf = gguf_init_from_file(path_model, gguf_params); if (!ctx_gguf) { fprintf(stderr, "\n%s: failed to load input GGUF from %s\n", __func__, path_model); return NULL; } auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT); if (key_n_split >= 0) { n_split = gguf_get_val_u16(ctx_gguf, key_n_split); } gguf_free(ctx_gguf); } if (n_split > 1) { char split_prefix[PATH_MAX] = {0}; char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0}; // Verify the first split file format // and extract split URL and PATH prefixes { if (!llama_split_prefix(split_prefix, sizeof(split_prefix), path_model, 0, n_split)) { fprintf(stderr, "\n%s: unexpected model file name: %s" " n_split=%d\n", __func__, path_model, n_split); return NULL; } if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url, 0, n_split)) { fprintf(stderr, "\n%s: unexpected model url: %s" " n_split=%d\n", __func__, model_url, n_split); return NULL; } } // Prepare download in parallel std::vector> futures_download; for (int idx = 1; idx < n_split; idx++) { futures_download.push_back(std::async(std::launch::async, [&split_prefix, &split_url_prefix, &n_split, hf_token](int download_idx) -> bool { char split_path[PATH_MAX] = {0}; llama_split_path(split_path, sizeof(split_path), split_prefix, download_idx, n_split); char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0}; llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split); return llama_download_file(split_url, split_path, hf_token); }, idx)); } // Wait for all downloads to complete for (auto & f : futures_download) { if (!f.get()) { return NULL; } } } return llama_load_model_from_file(path_model, params); } struct llama_model * llama_load_model_from_hf( const char * repo, const char * model, const char * path_model, const char * hf_token, const struct llama_model_params & params) { // construct hugging face model url: // // --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf // https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf // // --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf // https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf // std::string model_url = "https://huggingface.co/"; model_url += repo; model_url += "/resolve/main/"; model_url += model; return llama_load_model_from_url(model_url.c_str(), path_model, hf_token, params); } #else struct llama_model * llama_load_model_from_url( const char * /*model_url*/, const char * /*path_model*/, const char * /*hf_token*/, const struct llama_model_params & /*params*/) { fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__); return nullptr; } struct llama_model * llama_load_model_from_hf( const char * /*repo*/, const char * /*model*/, const char * /*path_model*/, const char * /*hf_token*/, const struct llama_model_params & /*params*/) { fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__); return nullptr; } #endif // LLAMA_USE_CURL // // Batch utils // void llama_batch_clear(struct llama_batch & batch) { batch.n_tokens = 0; } void llama_batch_add( struct llama_batch & batch, llama_token id, llama_pos pos, const std::vector & seq_ids, bool logits) { batch.token [batch.n_tokens] = id; batch.pos [batch.n_tokens] = pos; batch.n_seq_id[batch.n_tokens] = seq_ids.size(); for (size_t i = 0; i < seq_ids.size(); ++i) { batch.seq_id[batch.n_tokens][i] = seq_ids[i]; } batch.logits [batch.n_tokens] = logits; batch.n_tokens++; } // // Vocab utils // std::vector llama_tokenize( const struct llama_context * ctx, const std::string & text, bool add_special, bool parse_special) { return llama_tokenize(llama_get_model(ctx), text, add_special, parse_special); } std::vector llama_tokenize( const struct llama_model * model, const std::string & text, bool add_special, bool parse_special) { // upper limit for the number of tokens int n_tokens = text.length() + 2 * add_special; std::vector result(n_tokens); n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special); if (n_tokens < 0) { result.resize(-n_tokens); int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special); GGML_ASSERT(check == -n_tokens); } else { result.resize(n_tokens); } return result; } std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) { std::string piece; piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n' const int n_chars = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special); if (n_chars < 0) { piece.resize(-n_chars); int check = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special); GGML_ASSERT(check == -n_chars); } else { piece.resize(n_chars); } return piece; } std::string llama_detokenize(llama_context * ctx, const std::vector & tokens, bool special) { std::string text; text.resize(std::max(text.capacity(), tokens.size())); int32_t n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special); if (n_chars < 0) { text.resize(-n_chars); n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special); GGML_ASSERT(n_chars <= (int32_t)text.size()); // whitespace trimming is performed after per-token detokenization } text.resize(n_chars); // NOTE: the original tokenizer decodes bytes after collecting the pieces. return text; } // // Chat template utils // bool llama_chat_verify_template(const std::string & tmpl) { llama_chat_message chat[] = {{"user", "test"}}; int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0); return res >= 0; } std::string llama_chat_apply_template(const struct llama_model * model, const std::string & tmpl, const std::vector & msgs, bool add_ass) { int alloc_size = 0; bool fallback = false; // indicate if we must fallback to default chatml std::vector chat; for (auto & msg : msgs) { chat.push_back({msg.role.c_str(), msg.content.c_str()}); alloc_size += (msg.role.size() + msg.content.size()) * 1.25; } const char * ptr_tmpl = tmpl.empty() ? nullptr : tmpl.c_str(); std::vector buf(alloc_size); // run the first time to get the total output length int32_t res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), add_ass, buf.data(), buf.size()); // error: chat template is not supported if (res < 0) { if (ptr_tmpl != nullptr) { // if the custom "tmpl" is not supported, we throw an error // this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template() throw std::runtime_error("this custom template is not supported"); } else { // If the built-in template is not supported, we default to chatml res = llama_chat_apply_template(nullptr, "chatml", chat.data(), chat.size(), add_ass, buf.data(), buf.size()); fallback = true; } } // if it turns out that our buffer is too small, we resize it if ((size_t) res > buf.size()) { buf.resize(res); res = llama_chat_apply_template( fallback ? nullptr : model, fallback ? "chatml" : ptr_tmpl, chat.data(), chat.size(), add_ass, buf.data(), buf.size()); } std::string formatted_chat(buf.data(), res); return formatted_chat; } std::string llama_chat_format_single(const struct llama_model * model, const std::string & tmpl, const std::vector & past_msg, const llama_chat_msg & new_msg, bool add_ass) { std::ostringstream ss; auto fmt_past_msg = past_msg.empty() ? "" : llama_chat_apply_template(model, tmpl, past_msg, false); std::vector chat_new(past_msg); // if the past_msg ends with a newline, we must preserve it in the formatted version if (add_ass && !fmt_past_msg.empty() && fmt_past_msg.back() == '\n') { ss << "\n"; }; // format chat with new_msg chat_new.push_back(new_msg); auto fmt_new_msg = llama_chat_apply_template(model, tmpl, chat_new, add_ass); // get the diff part ss << fmt_new_msg.substr(fmt_past_msg.size(), fmt_new_msg.size() - fmt_past_msg.size()); return ss.str(); } std::string llama_chat_format_example(const struct llama_model * model, const std::string & tmpl) { std::vector msgs = { {"system", "You are a helpful assistant"}, {"user", "Hello"}, {"assistant", "Hi there"}, {"user", "How are you?"}, }; return llama_chat_apply_template(model, tmpl, msgs, true); } // // KV cache utils // void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) { static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+"; printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d", view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx); llama_kv_cache_view_cell * c_curr = view.cells; llama_seq_id * cs_curr = view.cells_sequences; for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) { if (i % row_size == 0) { printf("\n%5d: ", i); } int seq_count = 0; for (int j = 0; j < view.n_seq_max; j++) { if (cs_curr[j] >= 0) { seq_count++; } } putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]); } printf("\n=== Done dumping\n"); } void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size) { static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n", view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx); std::unordered_map seqs; llama_kv_cache_view_cell * c_curr = view.cells; llama_seq_id * cs_curr = view.cells_sequences; for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) { for (int j = 0; j < view.n_seq_max; j++) { if (cs_curr[j] < 0) { continue; } if (seqs.find(cs_curr[j]) == seqs.end()) { if (seqs.size() + 1 >= sizeof(slot_chars)) { break; } const size_t sz = seqs.size(); seqs[cs_curr[j]] = sz; } } if (seqs.size() + 1 >= sizeof(slot_chars)) { break; } } printf("=== Sequence legend: "); for (const auto & it : seqs) { printf("%zu=%d, ", it.second, it.first); } printf("'+'=other sequence ids"); c_curr = view.cells; cs_curr = view.cells_sequences; for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) { if (i % row_size == 0) { printf("\n%5d: ", i); } for (int j = 0; j < view.n_seq_max; j++) { if (cs_curr[j] >= 0) { const auto & it = seqs.find(cs_curr[j]); putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+'); } else { putchar('.'); } } putchar(' '); } printf("\n=== Done dumping\n"); } // // Embedding utils // void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm) { double sum = 0.0; switch (embd_norm) { case -1: // no normalisation sum = 1.0; break; case 0: // max absolute for (int i = 0; i < n; i++) { if (sum < std::abs(inp[i])) sum = std::abs(inp[i]); } sum /= 32760.0; // make an int16 range break; case 2: // euclidean for (int i = 0; i < n; i++) { sum += inp[i] * inp[i]; } sum = std::sqrt(sum); break; default: // p-norm (euclidean is p-norm p=2) for (int i = 0; i < n; i++) { sum += std::pow(std::abs(inp[i]), embd_norm); } sum = std::pow(sum, 1.0 / embd_norm); break; } const float norm = sum > 0.0 ? 1.0 / sum : 0.0f; for (int i = 0; i < n; i++) { out[i] = inp[i] * norm; } } float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n){ double sum = 0.0; double sum1 = 0.0; double sum2 = 0.0; for (int i = 0; i < n; i++) { sum += embd1[i] * embd2[i]; sum1 += embd1[i] * embd1[i]; sum2 += embd2[i] * embd2[i]; } // Handle the case where one or both vectors are zero vectors if (sum1 == 0.0 || sum2 == 0.0) { if (sum1 == 0.0 && sum2 == 0.0) { return 1.0f; // two zero vectors are similar } return 0.0f; } return sum / (sqrt(sum1) * sqrt(sum2)); } // // Control vector utils // static llama_control_vector_data llama_control_vector_load_one(const llama_control_vector_load_info & load_info) { llama_control_vector_data result = { -1, {} }; ggml_context * ctx = nullptr; struct gguf_init_params meta_gguf_params = { /* .no_alloc = */ false, /* .ctx = */ &ctx, }; struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params); if (!ctx_gguf) { fprintf(stderr, "%s: failed to load control vector file from %s\n", __func__, load_info.fname.c_str()); return result; } int32_t n_tensors = gguf_get_n_tensors(ctx_gguf); if (n_tensors == 0) { fprintf(stderr, "%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str()); } for (int i = 0; i < n_tensors; i++) { std::string name = gguf_get_tensor_name(ctx_gguf, i); int layer_idx = -1; // split on '.' size_t dotpos = name.find('.'); if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") { try { layer_idx = std::stoi(name.substr(dotpos + 1)); } catch (...) { layer_idx = -1; } } if (layer_idx < 0) { fprintf(stderr, "%s: invalid/unparsable direction tensor layer index in %s\n", __func__, load_info.fname.c_str()); result.n_embd = -1; break; } else if (layer_idx == 0) { fprintf(stderr, "%s: invalid (zero) direction tensor layer index in %s\n", __func__, load_info.fname.c_str()); result.n_embd = -1; break; } struct ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str()); if (tensor->type != GGML_TYPE_F32) { fprintf(stderr, "%s: invalid (non-F32) direction tensor type in %s\n", __func__, load_info.fname.c_str()); result.n_embd = -1; break; } if (ggml_n_dims(tensor) != 1) { fprintf(stderr, "%s: invalid (non-1D) direction tensor shape in %s\n", __func__, load_info.fname.c_str()); result.n_embd = -1; break; } if (result.n_embd == -1) { result.n_embd = ggml_nelements(tensor); } else if (ggml_nelements(tensor) != result.n_embd) { fprintf(stderr, "%s: direction tensor in %s does not match previous dimensions\n", __func__, load_info.fname.c_str()); result.n_embd = -1; break; } // extend if necessary - do not store data for layer 0 (it's not used) result.data.resize(std::max(result.data.size(), static_cast(result.n_embd * layer_idx)), 0.0f); const float * src = (const float *) tensor->data; float * dst = result.data.data() + result.n_embd * (layer_idx - 1); // layer 1 at [0] for (int j = 0; j < result.n_embd; j++) { dst[j] += src[j] * load_info.strength; // allows multiple directions for same layer in same file } } if (result.n_embd == -1) { fprintf(stderr, "%s: skipping %s due to invalid direction tensors\n", __func__, load_info.fname.c_str()); result.data.clear(); } gguf_free(ctx_gguf); ggml_free(ctx); return result; } llama_control_vector_data llama_control_vector_load(const std::vector & load_infos) { llama_control_vector_data result = { -1, {} }; for (const auto & info : load_infos) { auto cur = llama_control_vector_load_one(info); if (cur.n_embd == -1) { result.n_embd = -1; break; } if (result.n_embd != -1 && result.n_embd != cur.n_embd) { fprintf(stderr, "%s: control vectors in %s does not match previous dimensions\n", __func__, info.fname.c_str()); result.n_embd = -1; break; } if (result.n_embd == -1) { result = std::move(cur); } else { result.data.resize(std::max(result.data.size(), cur.data.size()), 0.0f); // extend if necessary for (size_t i = 0; i < cur.data.size(); i++) { result.data[i] += cur.data[i]; } } } if (result.n_embd == -1) { fprintf(stderr, "%s: no valid control vector files passed\n", __func__); result.data.clear(); } return result; } // // YAML utils // void yaml_dump_vector_float(FILE * stream, const char * prop_name, const std::vector & data) { if (data.empty()) { fprintf(stream, "%s:\n", prop_name); return; } fprintf(stream, "%s: [", prop_name); for (size_t i = 0; i < data.size() - 1; ++i) { fprintf(stream, "%e, ", data[i]); } fprintf(stream, "%e]\n", data.back()); } void yaml_dump_vector_int(FILE * stream, const char * prop_name, const std::vector & data) { if (data.empty()) { fprintf(stream, "%s:\n", prop_name); return; } fprintf(stream, "%s: [", prop_name); for (size_t i = 0; i < data.size() - 1; ++i) { fprintf(stream, "%d, ", data[i]); } fprintf(stream, "%d]\n", data.back()); } void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data) { std::string data_str(data == NULL ? "" : data); if (data_str.empty()) { fprintf(stream, "%s:\n", prop_name); return; } size_t pos_start = 0; size_t pos_found = 0; if (std::isspace(data_str[0]) || std::isspace(data_str.back())) { data_str = std::regex_replace(data_str, std::regex("\n"), "\\n"); data_str = std::regex_replace(data_str, std::regex("\""), "\\\""); data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)"); data_str = "\"" + data_str + "\""; fprintf(stream, "%s: %s\n", prop_name, data_str.c_str()); return; } if (data_str.find('\n') == std::string::npos) { fprintf(stream, "%s: %s\n", prop_name, data_str.c_str()); return; } fprintf(stream, "%s: |\n", prop_name); while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) { fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str()); pos_start = pos_found + 1; } } void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const llama_context * lctx, const std::string & timestamp, const std::vector & prompt_tokens, const char * model_desc) { const auto & sparams = params.sparams; fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT); fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER); fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false"); fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false"); fprintf(stream, "cpu_has_avx_vnni: %s\n", ggml_cpu_has_avx_vnni() ? "true" : "false"); fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false"); fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false"); fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false"); fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false"); fprintf(stream, "cpu_has_cuda: %s\n", ggml_cpu_has_cuda() ? "true" : "false"); fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false"); fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false"); fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false"); fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false"); fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false"); fprintf(stream, "cpu_has_sve: %s\n", ggml_cpu_has_sve() ? "true" : "false"); fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false"); fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false"); fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false"); fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false"); fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false"); fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false"); fprintf(stream, "cpu_has_matmul_int8: %s\n", ggml_cpu_has_matmul_int8() ? "true" : "false"); #ifdef NDEBUG fprintf(stream, "debug: false\n"); #else fprintf(stream, "debug: true\n"); #endif // NDEBUG fprintf(stream, "model_desc: %s\n", model_desc); fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx))); #ifdef __OPTIMIZE__ fprintf(stream, "optimize: true\n"); #else fprintf(stream, "optimize: false\n"); #endif // __OPTIMIZE__ fprintf(stream, "time: %s\n", timestamp.c_str()); fprintf(stream, "\n"); fprintf(stream, "###############\n"); fprintf(stream, "# User Inputs #\n"); fprintf(stream, "###############\n"); fprintf(stream, "\n"); fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str()); fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch); fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks); fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false"); fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx); fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false"); fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n"); fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq); yaml_dump_string_multiline(stream, "grammar", sparams.grammar.c_str()); fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n"); fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false"); fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks); fprintf(stream, "ignore_eos: %s # default: false\n", sparams.ignore_eos ? "true" : "false"); yaml_dump_string_multiline(stream, "in_prefix", params.input_prefix.c_str()); fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false"); yaml_dump_string_multiline(stream, "in_suffix", params.input_prefix.c_str()); fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false"); fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false"); fprintf(stream, "keep: %d # default: 0\n", params.n_keep); fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str()); fprintf(stream, "logit_bias:\n"); for (const auto & logit_bias : sparams.logit_bias) { fprintf(stream, " %d: %f", logit_bias.token, logit_bias.bias); } fprintf(stream, "lora:\n"); for (auto & la : params.lora_adapters) { if (la.scale == 1.0f) { fprintf(stream, " - %s\n", la.path.c_str()); } } fprintf(stream, "lora_scaled:\n"); for (auto & la : params.lora_adapters) { if (la.scale != 1.0f) { fprintf(stream, " - %s: %f\n", la.path.c_str(), la.scale); } } fprintf(stream, "lora_init_without_apply: %s # default: false\n", params.lora_init_without_apply ? "true" : "false"); fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu); fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep); fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat); fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau); fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta); fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false"); fprintf(stream, "model: %s # default: %s\n", params.model.c_str(), DEFAULT_MODEL_PATH); fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str()); fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false"); fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers); fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict); fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs); fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false"); fprintf(stream, "penalize_nl: %s # default: false\n", sparams.penalize_nl ? "true" : "false"); fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type); fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride); fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present); yaml_dump_string_multiline(stream, "prompt", params.prompt.c_str()); fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str()); fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false"); fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false"); yaml_dump_vector_int(stream, "prompt_tokens", prompt_tokens); fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat); fprintf(stream, "reverse_prompt:\n"); for (std::string ap : params.antiprompt) { size_t pos = 0; while ((pos = ap.find('\n', pos)) != std::string::npos) { ap.replace(pos, 1, "\\n"); pos += 1; } fprintf(stream, " - %s\n", ap.c_str()); } fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base); fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale); fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false"); fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false"); fprintf(stream, "flash_attn: %s # default: false\n", params.flash_attn ? "true" : "false"); fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp); const std::vector tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices()); yaml_dump_vector_float(stream, "tensor_split", tensor_split_vector); fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z); fprintf(stream, "threads: %d # default: %u\n", params.cpuparams.n_threads, std::thread::hardware_concurrency()); fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k); fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p); fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p); fprintf(stream, "typ_p: %f # default: 1.0\n", sparams.typ_p); fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false"); fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false"); }