#pragma once #include "llama.h" #include "llama-batch.h" #include "llama-cparams.h" #include "llama-model.h" #include "llama-kv-cache.h" #include "llama-adapter.h" #include "ggml-cpp.h" #include #include #include #include struct llama_context { llama_context(const llama_model & model) : model(model) , t_start_us(model.t_start_us) , t_load_us(model.t_load_us) {} const struct llama_model & model; struct llama_cparams cparams; struct llama_sbatch sbatch; // TODO: revisit if needed struct llama_kv_cache kv_self; struct llama_control_vector cvec; std::unordered_map lora_adapters; std::vector backends; std::vector> set_n_threads_fns; ggml_backend_t backend_cpu = nullptr; ggml_threadpool_t threadpool = nullptr; ggml_threadpool_t threadpool_batch = nullptr; bool has_evaluated_once = false; mutable int64_t t_start_us; mutable int64_t t_load_us; mutable int64_t t_p_eval_us = 0; mutable int64_t t_eval_us = 0; mutable int64_t t_compute_start_us = 0; mutable int64_t n_queued_tokens = 0; mutable int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1) mutable int32_t n_eval = 0; // number of eval calls // host buffer for the model output (logits and embeddings) ggml_backend_buffer_ptr buf_output; // decode output (2-dimensional array: [n_outputs][n_vocab]) size_t logits_size = 0; // capacity (of floats) for logits float * logits = nullptr; std::vector output_ids; // map batch token positions to ids of the logits and embd buffers size_t output_size = 0; // capacity (of tokens positions) for the output buffers int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch bool logits_all = false; // embeddings output (2-dimensional array: [n_outputs][n_embd]) // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE size_t embd_size = 0; // capacity (of floats) for embeddings float * embd = nullptr; // sequence embeddings output (map of [n_embd] vectors) // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE std::map> embd_seq; // whether we are computing encoder output or decoder output bool is_encoding = false; // TODO: find a better way to accommodate mutli-dimension position encoding methods // number of position id each token get, 1 for each token in most cases. // when using m-rope, it will be 3 position ids per token to representing 3 dimension coordinate. int n_pos_per_token = 1; // output of the encoder part of the encoder-decoder models std::vector embd_enc; std::vector> seq_ids_enc; // memory buffers used to evaluate the model std::vector buf_compute_meta; ggml_backend_sched_ptr sched; ggml_abort_callback abort_callback = nullptr; void * abort_callback_data = nullptr; // input tensors struct ggml_tensor * inp_tokens; // I32 [n_batch] struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch] struct ggml_tensor * inp_pos; // I32 [n_batch] struct ggml_tensor * inp_out_ids; // I32 [n_outputs] struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch] struct ggml_tensor * inp_KQ_mask_swa; // F32 [kv_size, n_batch] struct ggml_tensor * inp_K_shift; // I32 [kv_size] struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch] struct ggml_tensor * inp_cls; // I32 [n_batch] struct ggml_tensor * inp_s_copy; // I32 [kv_size] struct ggml_tensor * inp_s_mask; // F32 [1, n_kv] struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch] struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch] struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc] struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch] }; // TODO: make these methods of llama_context void llama_set_k_shift(struct llama_context & lctx); void llama_set_s_copy(struct llama_context & lctx); void llama_set_inputs(llama_context & lctx, const llama_ubatch & ubatch); // Make sure enough space is available for outputs. // Returns max number of outputs for which space was reserved. size_t llama_output_reserve(struct llama_context & lctx, size_t n_outputs); // make the outputs have the same order they had in the user-provided batch void llama_output_reorder(struct llama_context & ctx); // For internal test use // TODO: remove const std::vector> & llama_internal_get_tensor_map(struct llama_context * ctx);