// Defines fileno on msys: #ifndef _GNU_SOURCE #define _GNU_SOURCE #include #include #endif #include "llama_util.h" #include "llama.h" #include "ggml.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define LLAMA_USE_SCRATCH #define LLAMA_MAX_SCRATCH_BUFFERS 16 // available llama models enum e_model { MODEL_UNKNOWN, MODEL_7B, MODEL_13B, MODEL_30B, MODEL_65B, }; static const size_t MB = 1024*1024; // computed for n_ctx == 2048 // TODO: dynamically determine these sizes // needs modifications in ggml static const std::map & MEM_REQ_SCRATCH0() { static std::map _MEM_REQ_SCRATCH0 = { { MODEL_7B, 512ull * MB }, { MODEL_13B, 512ull * MB }, { MODEL_30B, 512ull * MB }, { MODEL_65B, 1024ull * MB }, }; return _MEM_REQ_SCRATCH0; } static const std::map & MEM_REQ_SCRATCH1() { static std::map _MEM_REQ_SCRATCH1 = { { MODEL_7B, 512ull * MB }, { MODEL_13B, 512ull * MB }, { MODEL_30B, 512ull * MB }, { MODEL_65B, 1024ull * MB }, }; return _MEM_REQ_SCRATCH1; } // 2*n_embd*n_ctx*n_layer*sizeof(float16) static const std::map & MEM_REQ_KV_SELF() { static std::map _MEM_REQ_KV_SELF = { { MODEL_7B, 1026ull * MB }, { MODEL_13B, 1608ull * MB }, { MODEL_30B, 3124ull * MB }, { MODEL_65B, 5120ull * MB }, }; return _MEM_REQ_KV_SELF; } // this is mostly needed for temporary mul_mat buffers to dequantize the data // not actually needed if BLAS is disabled static const std::map & MEM_REQ_EVAL() { static std::map _MEM_REQ_EVAL = { { MODEL_7B, 768ull * MB }, { MODEL_13B, 1024ull * MB }, { MODEL_30B, 1280ull * MB }, { MODEL_65B, 1536ull * MB }, }; return _MEM_REQ_EVAL; } // default hparams (LLaMA 7B) struct llama_hparams { uint32_t n_vocab = 32000; uint32_t n_ctx = 512; // this is provided as user input? uint32_t n_embd = 4096; uint32_t n_mult = 256; uint32_t n_head = 32; uint32_t n_layer = 32; uint32_t n_rot = 64; enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16; bool operator!=(const llama_hparams & other) const { return memcmp(this, &other, sizeof(llama_hparams)); } }; struct llama_layer { // normalization struct ggml_tensor * attention_norm; // attention struct ggml_tensor * wq; struct ggml_tensor * wk; struct ggml_tensor * wv; struct ggml_tensor * wo; // normalization struct ggml_tensor * ffn_norm; // ff struct ggml_tensor * w1; struct ggml_tensor * w2; struct ggml_tensor * w3; }; struct llama_kv_cache { struct ggml_tensor * k; struct ggml_tensor * v; struct ggml_context * ctx = NULL; llama_buffer buf; int n; // number of tokens currently in the cache ~llama_kv_cache() { if (ctx) { ggml_free(ctx); } } }; struct llama_model { e_model type = MODEL_UNKNOWN; llama_hparams hparams; struct ggml_tensor * tok_embeddings; struct ggml_tensor * norm; struct ggml_tensor * output; std::vector layers; // context struct ggml_context * ctx = NULL; // key + value cache for the self attention // TODO: move to llama_state struct llama_kv_cache kv_self; // the model memory buffer llama_buffer buf; // model memory mapped file std::unique_ptr mapping; // objects representing data potentially being locked in memory llama_mlock mlock_buf; llama_mlock mlock_mmap; // for quantize-stats only std::vector> tensors_by_name; ~llama_model() { if (ctx) { ggml_free(ctx); } } }; struct llama_vocab { using id = int32_t; using token = std::string; struct token_score { token tok; float score; }; std::unordered_map token_to_id; std::vector id_to_token; }; struct llama_context { std::mt19937 rng; int64_t t_load_us = 0; int64_t t_start_us = 0; bool has_evaluated_once = false; int64_t t_sample_us = 0; int64_t t_eval_us = 0; int64_t t_p_eval_us = 0; int32_t n_sample = 0; // number of tokens sampled int32_t n_eval = 0; // number of eval calls int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1) llama_model model; llama_vocab vocab; size_t mem_per_token = 0; // decode output (2-dimensional array: [n_tokens][n_vocab]) std::vector logits; bool logits_all = false; // input embedding (1-dimensional array: [n_embd]) std::vector embedding; // memory buffers used to evaluate the model // TODO: move in llama_state llama_buffer buf_compute; llama_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS]; int buf_last = 0; size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 }; void use_buf(struct ggml_context * ctx, int i) { #if defined(LLAMA_USE_SCRATCH) size_t last_size = 0; if (i == -1) { last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, }); } else { auto & buf = buf_scratch[i]; last_size = ggml_set_scratch(ctx, { 0, buf.size, buf.addr, }); } if (buf_last >= 0) { buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size); } buf_last = i; #else (void) i; (void) ctx; #endif } size_t get_buf_max_mem(int i) const { #if defined(LLAMA_USE_SCRATCH) return buf_max_size[i]; #else (void) i; return 0; #endif } }; template static T checked_mul(T a, T b) { T ret = a * b; if (a != 0 && ret / a != b) { throw format("overflow multiplying %llu * %llu", (unsigned long long) a, (unsigned long long) b); } return ret; } static size_t checked_div(size_t a, size_t b) { if (b == 0 || a % b != 0) { throw format("error dividing %zu / %zu", a, b); } return a / b; } static std::string llama_format_tensor_shape(const std::vector & ne) { char buf[256]; snprintf(buf, sizeof(buf), "%5u", ne.at(0)); for (size_t i = 1; i < ne.size(); i++) { snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i)); } return buf; } static size_t llama_calc_tensor_size(const std::vector & ne, enum ggml_type type) { size_t size = ggml_type_size(type); for (uint32_t dim : ne) { size = checked_mul(size, dim); } return size / ggml_blck_size(type); } struct llama_load_tensor_shard { std::vector ne; size_t size; enum ggml_type type; size_t file_idx; size_t file_off; void calc_size() { size = llama_calc_tensor_size(ne, type); } }; enum llama_split_type { SPLIT_NONE, SPLIT_BY_COLUMNS, SPLIT_BY_ROWS }; struct llama_load_tensor { std::vector shards; std::string name; enum ggml_type type = GGML_TYPE_F32; llama_split_type split_type = SPLIT_NONE; std::vector ne; size_t size; struct ggml_tensor * ggml_tensor = NULL; uint8_t * data; llama_load_tensor(const std::string & name) : name(name) {} void calc_all() { calc_type(); calc_split_type(); calc_ne(); calc_size(); } void calc_type() { const auto & first_shard = shards.at(0); for (const auto & shard : shards) { if (shard.type != first_shard.type) { throw format("inconsistent tensor shard type in '%s'", name.c_str()); } } type = first_shard.type; } void calc_split_type() { if (shards.at(0).ne.size() == 1 || // 1D tensors are just duplicated in every file shards.size() == 1) { // only one file? split_type = SPLIT_NONE; } else if (name.find("tok_embeddings.") == 0 || name.find(".attention.wo.weight") != std::string::npos || name.find(".feed_forward.w2.weight") != std::string::npos) { split_type = SPLIT_BY_COLUMNS; } else { split_type = SPLIT_BY_ROWS; } } void calc_ne() { const auto & first_shard = shards.at(0); for (const auto & shard : shards) { if (shard.ne != first_shard.ne) { throw format("inconsistent tensor shard shape in '%s': first was %s, other was %s", name.c_str(), llama_format_tensor_shape(first_shard.ne).c_str(), llama_format_tensor_shape(shard.ne).c_str()); } } ne = first_shard.ne; LLAMA_ASSERT(shards.size() <= UINT32_MAX); uint32_t n_shards = (uint32_t) shards.size(); switch (split_type) { case SPLIT_NONE: ne = first_shard.ne; break; case SPLIT_BY_COLUMNS: ne = {checked_mul(first_shard.ne[0], n_shards), first_shard.ne[1]}; break; case SPLIT_BY_ROWS: ne = {first_shard.ne[0], checked_mul(first_shard.ne[1], n_shards)}; break; } } void calc_size() { size = llama_calc_tensor_size(ne, type); } }; struct llama_load_tensors_map { // tensors is kept in a separate vector to preserve file order std::vector tensors; std::unordered_map name_to_idx; }; enum llama_file_version { LLAMA_FILE_VERSION_GGML, LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab LLAMA_FILE_VERSION_GGJT_V1, // added padding }; struct llama_file_loader { llama_file file; llama_file_version file_version; llama_hparams hparams; llama_vocab vocab; llama_file_loader(const char * fname, size_t file_idx, llama_load_tensors_map & tensors_map) : file(fname, "rb") { fprintf(stderr, "llama.cpp: loading model from %s\n", fname); read_magic(); read_hparams(); read_vocab(); read_tensor_metadata(file_idx, tensors_map); } void read_magic() { uint32_t magic = file.read_u32(); uint32_t version = 0; if (magic != 'ggml') { version = file.read_u32(); } if (magic == 'ggml' && version == 0) { file_version = LLAMA_FILE_VERSION_GGML; } else if (magic == 'ggmf' && version == 1) { file_version = LLAMA_FILE_VERSION_GGMF_V1; } else if (magic == 'ggjt' && version == 1) { file_version = LLAMA_FILE_VERSION_GGJT_V1; } else { throw format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?", magic, version); } } void read_hparams() { hparams.n_vocab = file.read_u32(); hparams.n_embd = file.read_u32(); hparams.n_mult = file.read_u32(); hparams.n_head = file.read_u32(); hparams.n_layer = file.read_u32(); hparams.n_rot = file.read_u32(); hparams.ftype = (enum llama_ftype) file.read_u32(); } void read_vocab() { vocab.id_to_token.resize(hparams.n_vocab); for (uint32_t i = 0; i < hparams.n_vocab; i++) { uint32_t len = file.read_u32(); std::string word = file.read_string(len); float score = 0.0f; if (file_version >= LLAMA_FILE_VERSION_GGMF_V1) { file.read_raw(&score, sizeof(score)); } vocab.token_to_id[word] = i; auto & tok_score = vocab.id_to_token[i]; tok_score.tok = std::move(word); tok_score.score = score; } } void read_tensor_metadata(size_t file_idx, llama_load_tensors_map & tensors_map) { while (file.tell() < file.size) { llama_load_tensor_shard shard; uint32_t n_dims = file.read_u32(); uint32_t name_len = file.read_u32(); shard.type = (enum ggml_type) file.read_u32(); shard.ne.resize(n_dims); file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims); std::string name = file.read_string(name_len); if (n_dims < 1 || n_dims > 2) { throw format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims); } switch (shard.type) { case GGML_TYPE_F32: case GGML_TYPE_F16: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q4_2: case GGML_TYPE_Q4_3: break; default: { throw format("unrecognized tensor type %u\n", shard.type); } } if (file_version >= LLAMA_FILE_VERSION_GGJT_V1) { // skip to the next multiple of 32 bytes file.seek(-file.tell() & 31, SEEK_CUR); } shard.file_idx = file_idx; shard.file_off = file.tell(); shard.calc_size(); file.seek(shard.size, SEEK_CUR); auto it = tensors_map.name_to_idx.find(name); size_t idx; if (it != tensors_map.name_to_idx.end()) { idx = it->second; } else { tensors_map.tensors.emplace_back(name); idx = tensors_map.tensors.size() - 1; tensors_map.name_to_idx.emplace(name, idx); } tensors_map.tensors.at(idx).shards.push_back(shard); } } }; struct llama_file_saver { llama_file file; llama_file_loader * any_file_loader; llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype) : file(fname, "wb"), any_file_loader(any_file_loader) { fprintf(stderr, "llama.cpp: saving model to %s\n", fname); write_magic(); write_hparams(new_ftype); write_vocab(); } void write_magic() { file.write_u32('ggjt'); // magic file.write_u32(1); // version } void write_hparams(enum llama_ftype new_ftype) { const llama_hparams & hparams = any_file_loader->hparams; file.write_u32(hparams.n_vocab); file.write_u32(hparams.n_embd); file.write_u32(hparams.n_mult); file.write_u32(hparams.n_head); file.write_u32(hparams.n_layer); file.write_u32(hparams.n_rot); file.write_u32(new_ftype); } void write_vocab() { if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) { fprintf(stderr, "llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n"); } uint32_t n_vocab = any_file_loader->hparams.n_vocab; for (uint32_t i = 0; i < n_vocab; i++) { const auto & token_score = any_file_loader->vocab.id_to_token.at(i); file.write_u32((uint32_t) token_score.tok.size()); file.write_raw(token_score.tok.data(), token_score.tok.size()); file.write_raw(&token_score.score, sizeof(token_score.score)); } } void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) { switch (new_type) { case GGML_TYPE_F32: case GGML_TYPE_F16: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q4_2: case GGML_TYPE_Q4_3: break; default: LLAMA_ASSERT(false); } file.write_u32((uint32_t) tensor.ne.size()); file.write_u32((uint32_t) tensor.name.size()); file.write_u32(new_type); file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size()); file.write_raw(tensor.name.data(), tensor.name.size()); file.seek(-file.tell() & 31, SEEK_CUR); LLAMA_ASSERT(new_size == llama_calc_tensor_size(tensor.ne, new_type)); file.write_raw(new_data, new_size); } }; struct llama_model_loader { std::vector> file_loaders; llama_load_tensors_map tensors_map; bool use_mmap; size_t num_ggml_tensors_created = 0; struct ggml_context * ggml_ctx = NULL; std::unique_ptr mapping; llama_model_loader(const std::string & fname_base, bool use_mmap, bool vocab_only) { auto first_file = new llama_file_loader(fname_base.c_str(), 0, tensors_map); file_loaders.emplace_back(first_file); uint32_t n_parts = vocab_only ? 1 : guess_n_parts(); for (uint32_t i = 1; i < n_parts; i++) { std::string fname = fname_base + "." + std::to_string(i); auto ith_file = new llama_file_loader(fname.c_str(), i, tensors_map); file_loaders.emplace_back(ith_file); if (ith_file->hparams != first_file->hparams) { throw format("llama.cpp: hparams inconsistent between files"); } } if (!llama_mmap::SUPPORTED) { use_mmap = false; } if (use_mmap && alignment_prevents_mmap()) { fprintf(stderr, "llama.cpp: can't use mmap because tensors are not aligned; convert to new format to avoid this\n"); use_mmap = false; } this->use_mmap = use_mmap; for (llama_load_tensor & lt : tensors_map.tensors) { lt.calc_all(); } } bool alignment_prevents_mmap() { for (const llama_load_tensor & lt : tensors_map.tensors) { for (const llama_load_tensor_shard & shard : lt.shards) { if (shard.file_off & 3) { return true; } } } return false; } uint32_t guess_n_parts() const { auto it = tensors_map.name_to_idx.find("tok_embeddings.weight"); if (it == tensors_map.name_to_idx.end()) { throw std::string("missing tok_embeddings.weight"); } const llama_load_tensor & lt = tensors_map.tensors.at(it->second); return file_loaders.at(0)->hparams.n_embd / lt.shards.at(0).ne.at(0); } void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const { *ctx_size_p = *mmapped_size_p = 0; for (const llama_load_tensor & lt : tensors_map.tensors) { *ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE; *(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size; } } struct ggml_tensor * get_tensor(const std::string & name, std::vector ne) { auto it = tensors_map.name_to_idx.find(name); if (it == tensors_map.name_to_idx.end()) { throw format("llama.cpp: tensor '%s' is missing from model", name.c_str()); } llama_load_tensor & lt = tensors_map.tensors.at(it->second); if (lt.ne != ne) { throw format("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s", name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str()); } return get_tensor_for(lt); } struct ggml_tensor * get_tensor_for(llama_load_tensor & lt) { struct ggml_tensor * tensor; if (lt.ne.size() == 2) { tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1)); } else { LLAMA_ASSERT(lt.ne.size() == 1); tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0)); } LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor lt.ggml_tensor = tensor; num_ggml_tensors_created++; return tensor; } void done_getting_tensors() { if (num_ggml_tensors_created != tensors_map.tensors.size()) { throw std::string("llama.cpp: file contained more tensors than expected"); } } void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) { size_t data_size = 0; for (const llama_load_tensor & lt : tensors_map.tensors) { data_size += lt.size; } if (use_mmap) { mapping.reset(new llama_mmap(&file_loaders.at(0)->file)); if (!lmlock) { // Don't call the callback since the actual loading will be lazy // and we can't measure it. progress_callback = NULL; } if (lmlock) { lmlock->init(mapping->addr); } } size_t done_size = 0; for (llama_load_tensor & lt : tensors_map.tensors) { if (progress_callback) { progress_callback((float) done_size / data_size, progress_callback_user_data); } LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already lt.data = (uint8_t *) lt.ggml_tensor->data; load_data_for(lt); lt.ggml_tensor->data = lt.data; done_size += lt.size; if (use_mmap && lmlock) { lmlock->grow_to(done_size); } } if (progress_callback) { progress_callback(1.0f, progress_callback_user_data); } } void load_data_for(llama_load_tensor & lt) { if (use_mmap) { LLAMA_ASSERT(lt.shards.size() == 1); lt.data = (uint8_t *) mapping->addr + lt.shards.at(0).file_off; } else if (lt.split_type == SPLIT_NONE) { llama_file & file = file_loaders.at(lt.shards.at(0).file_idx)->file; file.seek(lt.shards.at(0).file_off, SEEK_SET); file.read_raw(lt.data, lt.size); } else if (lt.split_type == SPLIT_BY_ROWS) { size_t offset = 0; for (llama_load_tensor_shard & shard : lt.shards) { llama_file & file = file_loaders.at(shard.file_idx)->file; file.seek(shard.file_off, SEEK_SET); file.read_raw(lt.data + offset, shard.size); offset += shard.size; } LLAMA_ASSERT(offset == lt.size); } else if (lt.split_type == SPLIT_BY_COLUMNS) { // Let's load the data into temporary buffers to ensure the OS performs large loads. std::vector tmp_bufs; tmp_bufs.resize(lt.shards.size()); for (size_t i = 0; i < lt.shards.size(); i++) { llama_load_tensor_shard & shard = lt.shards.at(i); llama_file & file = file_loaders.at(shard.file_idx)->file; file.seek(shard.file_off, SEEK_SET); tmp_bufs.at(i).resize(shard.size); file.read_raw(tmp_bufs.at(i).addr, shard.size); } // Then reshape. size_t num_rows = lt.ne.at(1); size_t per_shard_row_size = lt.shards.at(0).size / num_rows; size_t out_offset = 0; for (size_t row = 0; row < num_rows; row++) { for (llama_buffer & tmp_buf : tmp_bufs) { memcpy(lt.data + out_offset, tmp_buf.addr + row * per_shard_row_size, per_shard_row_size); out_offset += per_shard_row_size; } } LLAMA_ASSERT(out_offset == lt.size); } if (0) { print_checksum(lt); } } static void print_checksum(llama_load_tensor & lt) { uint32_t sum = 0; for (size_t i = 0; i < lt.size; i++) { uint8_t byte = lt.data[i]; sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash } fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum, llama_format_tensor_shape(lt.ne).c_str(), lt.size); } }; // // kv cache // static bool kv_cache_init( const struct llama_hparams & hparams, struct llama_kv_cache & cache, ggml_type wtype, int n_ctx) { const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int64_t n_mem = (int64_t)n_layer*n_ctx; const int64_t n_elements = n_embd*n_mem; cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB); struct ggml_init_params params; params.mem_size = cache.buf.size; params.mem_buffer = cache.buf.addr; params.no_alloc = false; cache.ctx = ggml_init(params); if (!cache.ctx) { fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__); return false; } cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); return true; } struct llama_context_params llama_context_default_params() { struct llama_context_params result = { /*.n_ctx =*/ 512, /*.n_parts =*/ -1, /*.seed =*/ 0, /*.f16_kv =*/ false, /*.logits_all =*/ false, /*.vocab_only =*/ false, /*.use_mmap =*/ true, /*.use_mlock =*/ false, /*.embedding =*/ false, /*.progress_callback =*/ nullptr, /*.progress_callback_user_data =*/ nullptr, }; return result; } bool llama_mmap_supported() { return llama_mmap::SUPPORTED; } bool llama_mlock_supported() { return llama_mlock::SUPPORTED; } // // model loading // static const char *llama_file_version_name(llama_file_version version) { switch (version) { case LLAMA_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)"; case LLAMA_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)"; case LLAMA_FILE_VERSION_GGJT_V1: return "ggjt v1 (latest)"; default: LLAMA_ASSERT(false); } } static const char *llama_ftype_name(enum llama_ftype ftype) { switch (ftype) { case LLAMA_FTYPE_ALL_F32: return "all F32"; case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16"; case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0"; case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1"; case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16: return "mostly Q4_1, some F16"; case LLAMA_FTYPE_MOSTLY_Q4_2: return "mostly Q4_2"; case LLAMA_FTYPE_MOSTLY_Q4_3: return "mostly Q4_3"; default: return "unknown, may not work"; } } static const char *llama_model_type_name(e_model type) { switch (type) { case MODEL_7B: return "7B"; case MODEL_13B: return "13B"; case MODEL_30B: return "30B"; case MODEL_65B: return "65B"; default: LLAMA_ASSERT(false); } } static void llama_model_load_internal( const std::string & fname, llama_context & lctx, int n_ctx, ggml_type memory_type, bool use_mmap, bool use_mlock, bool vocab_only, llama_progress_callback progress_callback, void * progress_callback_user_data) { lctx.t_start_us = ggml_time_us(); std::unique_ptr ml(new llama_model_loader(fname, use_mmap, vocab_only)); lctx.vocab = std::move(ml->file_loaders.at(0)->vocab); auto & model = lctx.model; model.hparams = ml->file_loaders.at(0)->hparams; llama_file_version file_version = ml->file_loaders.at(0)->file_version; auto & hparams = model.hparams; uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult; { switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_7B; break; case 40: model.type = e_model::MODEL_13B; break; case 60: model.type = e_model::MODEL_30B; break; case 80: model.type = e_model::MODEL_65B; break; } hparams.n_ctx = n_ctx; } { fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version)); fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab); fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx); fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd); fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult); fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head); fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer); fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot); fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype)); fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff); fprintf(stderr, "%s: n_parts = %zu\n", __func__, ml->file_loaders.size()); fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type)); } if (vocab_only) { return; } auto & ctx = model.ctx; size_t ctx_size, mmapped_size; ml->calc_sizes(&ctx_size, &mmapped_size); fprintf(stderr, "%s: ggml ctx size = %6.2f KB\n", __func__, ctx_size/1024.0); // print memory requirements { const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1; // this is the total memory required to run the inference const size_t mem_required = ctx_size + mmapped_size + MEM_REQ_SCRATCH0().at(model.type) + MEM_REQ_SCRATCH1().at(model.type) + MEM_REQ_EVAL().at(model.type); // this is the memory required by one llama_state const size_t mem_required_state = scale*MEM_REQ_KV_SELF().at(model.type); fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__, mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0); } // create the ggml context { lctx.model.buf.resize(ctx_size); if (use_mlock) { lctx.model.mlock_buf.init(lctx.model.buf.addr); lctx.model.mlock_buf.grow_to(lctx.model.buf.size); } struct ggml_init_params params = { /*.mem_size =*/ lctx.model.buf.size, /*.mem_buffer =*/ lctx.model.buf.addr, /*.no_alloc =*/ ml->use_mmap, }; model.ctx = ggml_init(params); if (!model.ctx) { throw format("ggml_init() failed"); } } // prepare memory for the weights { const auto & hparams = model.hparams; const uint32_t n_embd = hparams.n_embd; const uint32_t n_layer = hparams.n_layer; const uint32_t n_vocab = hparams.n_vocab; ml->ggml_ctx = ctx; model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}); model.norm = ml->get_tensor("norm.weight", {n_embd}); model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}); model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { auto & layer = model.layers[i]; std::string layers_i = "layers." + std::to_string(i); layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}); layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}); layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd}); layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd}); layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}); layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}); layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}); layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}); layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}); } } ml->done_getting_tensors(); // populate `tensors_by_name` for (llama_load_tensor & lt : ml->tensors_map.tensors) { model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor); } ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL); model.mapping = std::move(ml->mapping); // loading time will be recalculate after the first eval, so // we take page faults deferred by mmap() into consideration lctx.t_load_us = ggml_time_us() - lctx.t_start_us; } static bool llama_model_load( const std::string & fname, llama_context & lctx, int n_ctx, ggml_type memory_type, bool use_mmap, bool use_mlock, bool vocab_only, llama_progress_callback progress_callback, void *progress_callback_user_data) { try { llama_model_load_internal(fname, lctx, n_ctx, memory_type, use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data); return true; } catch (const std::string & err) { fprintf(stderr, "error loading model: %s\n", err.c_str()); return false; } } // evaluate the transformer // // - lctx: llama context // - tokens: new batch of tokens to process // - n_past: the context size so far // - n_threads: number of threads to use // static bool llama_eval_internal( llama_context & lctx, const llama_token * tokens, const int n_tokens, const int n_past, const int n_threads) { const int64_t t_start_us = ggml_time_us(); const int N = n_tokens; const auto & model = lctx.model; const auto & hparams = model.hparams; auto & kv_self = model.kv_self; LLAMA_ASSERT(!!kv_self.ctx); const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_head = hparams.n_head; const int n_vocab = hparams.n_vocab; const int n_rot = hparams.n_embd/hparams.n_head; auto & mem_per_token = lctx.mem_per_token; auto & buf_compute = lctx.buf_compute; struct ggml_init_params params = { /*.mem_size =*/ buf_compute.size, /*.mem_buffer =*/ buf_compute.addr, /*.no_alloc =*/ false, }; struct ggml_context * ctx0 = ggml_init(params); // for big prompts, if BLAS is enabled, it is better to use only one thread // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance ggml_cgraph gf = {}; gf.n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_cublas() ? 1 : n_threads; struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(embd->data, tokens, N*ggml_element_size(embd)); struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; struct ggml_tensor * cur; lctx.use_buf(ctx0, 0); // norm { cur = ggml_rms_norm(ctx0, inpL); // cur = attention_norm*cur cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].attention_norm, cur), cur); } // self-attention { // compute Q and K and RoPE them struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0); struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0); // store key and value to memory { // compute the transposed [N, n_embd] V matrix struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), n_embd, N)); struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd, ( n_ctx)*ggml_element_size(kv_self.v), (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v)); // important: storing RoPE-ed version of K in the KV cache! ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); } struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); struct ggml_tensor * K = ggml_permute(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd), n_embd/n_head, n_head, n_past + N), 0, 2, 1, 3); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); // KQ_scaled = KQ / sqrt(n_embd/n_head) struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head))); // KQ_masked = mask_past(KQ_scaled) struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past); // KQ = soft_max(KQ_masked) struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); // split cached V into n_head heads struct ggml_tensor * V = ggml_view_3d(ctx0, kv_self.v, n_past + N, n_embd/n_head, n_head, n_ctx*ggml_element_size(kv_self.v), n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head, il*n_ctx*ggml_element_size(kv_self.v)*n_embd); #if 1 struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); #else // make V contiguous in memory to speed up the matmul, however we waste time on the copy // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation // is there a better way? struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head)); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max); #endif // KQV_merged = KQV.permute(0, 2, 1, 3) struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); // cur = KQV_merged.contiguous().view(n_embd, N) cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); // projection (no bias) cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur); } lctx.use_buf(ctx0, 1); struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA); // feed-forward network { // norm { cur = ggml_rms_norm(ctx0, inpFF); // cur = ffn_norm*cur cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ffn_norm, cur), cur); } struct ggml_tensor * tmp = ggml_mul_mat(ctx0, model.layers[il].w3, cur); cur = ggml_mul_mat(ctx0, model.layers[il].w1, cur); // SILU activation cur = ggml_silu(ctx0, cur); cur = ggml_mul(ctx0, cur, tmp); cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur); } cur = ggml_add(ctx0, cur, inpFF); // input for next layer inpL = cur; } lctx.use_buf(ctx0, 0); // used at the end to optionally extract the embeddings struct ggml_tensor * embeddings = NULL; // norm { inpL = ggml_rms_norm(ctx0, inpL); // inpL = norm*inpL inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model.norm, inpL), inpL); embeddings = inpL; } // lm_head inpL = ggml_mul_mat(ctx0, model.output, inpL); lctx.use_buf(ctx0, -1); // logits -> probs //inpL = ggml_soft_max(ctx0, inpL); // run the computation ggml_build_forward_expand(&gf, inpL); ggml_graph_compute (ctx0, &gf); #ifdef GGML_PERF // print timing information per ggml operation (for debugging purposes) // requires GGML_PERF to be defined ggml_graph_print(&gf); #endif // plot the computation graph in dot format (for debugging purposes) //if (n_past%100 == 0) { // ggml_graph_dump_dot(&gf, NULL, "llama.dot"); //} //embd_w.resize(n_vocab*N); //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N); // extract logits { auto & logits_out = lctx.logits; if (lctx.logits_all) { logits_out.resize(n_vocab * N); memcpy(logits_out.data(), (float *) ggml_get_data(inpL), sizeof(float)*n_vocab*N); } else { // return result for just the last token logits_out.resize(n_vocab); memcpy(logits_out.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab); } } // extract embeddings if (lctx.embedding.size()) { auto & embedding_out = lctx.embedding; embedding_out.resize(n_embd); memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd); } if (mem_per_token == 0) { mem_per_token = ggml_used_mem(ctx0)/N; } #if 0 printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, lctx.get_buf_max_mem(0)/1024.0/1024.0, lctx.get_buf_max_mem(1)/1024.0/1024.0); #endif ggml_free(ctx0); // measure the performance only for the single-token evals if (N == 1) { lctx.t_eval_us += ggml_time_us() - t_start_us; lctx.n_eval++; } else if (N > 1) { lctx.t_p_eval_us += ggml_time_us() - t_start_us; lctx.n_p_eval += N; } return true; } // // tokenizer // static size_t utf8_len(char src) { const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 }; uint8_t highbits = static_cast(src) >> 4; return lookup[highbits]; } struct llama_sp_symbol { using index = int; index prev; index next; const char * text; size_t n; }; struct llama_sp_bigram { struct comparator { bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) { return (l.score < r.score) || (l.score == r.score && l.left > r.left); } }; using queue_storage = std::vector; using queue = std::priority_queue; llama_sp_symbol::index left; llama_sp_symbol::index right; float score; size_t size; }; // original implementation: // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4 struct llama_tokenizer { llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {} void tokenize(const std::string & text, std::vector & output) { // split string into utf8 chars int index = 0; size_t offs = 0; while (offs < text.size()) { llama_sp_symbol sym; size_t char_len = std::min(text.size() - offs, utf8_len(text[offs])); sym.text = text.c_str() + offs; sym.n = char_len; offs += char_len; sym.prev = index - 1; sym.next = offs == text.size() ? -1 : index + 1; index++; symbols_.emplace_back(std::move(sym)); } // seed the work queue with all possible 2-character tokens. for (size_t i = 1; i < symbols_.size(); ++i) { try_add_bigram(i - 1, i); } // keep substituting the highest frequency pairs for as long as we can. while (!work_queue_.empty()) { auto bigram = work_queue_.top(); work_queue_.pop(); auto & left_sym = symbols_[bigram.left]; auto & right_sym = symbols_[bigram.right]; // if one of the symbols already got merged, skip it. if (left_sym.n == 0 || right_sym.n == 0 || left_sym.n + right_sym.n != bigram.size) { continue; } // merge the right sym into the left one left_sym.n += right_sym.n; right_sym.n = 0; //printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size); // remove the right sym from the chain left_sym.next = right_sym.next; if (right_sym.next >= 0) { symbols_[right_sym.next].prev = bigram.left; } // find more substitutions try_add_bigram(left_sym.prev, bigram.left); try_add_bigram(bigram.left, left_sym.next); } for (int i = 0; i != -1; i = symbols_[i].next) { auto & symbol = symbols_[i]; auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n)); if (token == vocab_.token_to_id.end()) { // output any symbols that did not form tokens as bytes. for (int j = 0; j < (int) symbol.n; ++j) { llama_vocab::id token_id = static_cast(symbol.text[j]) + 3; output.push_back(token_id); } } else { output.push_back((*token).second); } } } private: void try_add_bigram(int left, int right) { if (left == -1 || right == -1) { return; } const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n); auto token = vocab_.token_to_id.find(text); if (token == vocab_.token_to_id.end()) { return; } if (static_cast((*token).second) >= vocab_.id_to_token.size()) { return; } const auto &tok_score = vocab_.id_to_token[(*token).second]; llama_sp_bigram bigram; bigram.left = left; bigram.right = right; bigram.score = tok_score.score; bigram.size = text.size(); work_queue_.push(bigram); } const llama_vocab & vocab_; std::vector symbols_; llama_sp_bigram::queue work_queue_; }; static std::vector llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) { llama_tokenizer tokenizer(vocab); std::vector output; if (text.size() == 0) { return output; } if (bos) { output.push_back(1); } tokenizer.tokenize(text, output); return output; } // // sampling // static void sample_top_k(std::vector> & logits_id, int top_k) { // find the top k tokens std::partial_sort( logits_id.begin(), logits_id.begin() + top_k, logits_id.end(), [](const std::pair & a, const std::pair & b) { return a.first > b.first; }); logits_id.resize(top_k); } static llama_vocab::id llama_sample_top_p_top_k( llama_context & lctx, const std::vector & last_n_tokens, int top_k, float top_p, float temp, float repeat_penalty) { auto & rng = lctx.rng; const int n_logits = lctx.model.hparams.n_vocab; const auto & logits = lctx.logits; const auto * plogits = logits.data() + logits.size() - n_logits; if (temp <= 0) { // select the token with the highest logit directly float max_logit = plogits[0]; llama_vocab::id max_id = 0; for (int i = 1; i < n_logits; ++i) { if (plogits[i] > max_logit) { max_logit = plogits[i]; max_id = i; } } return max_id; } std::vector> logits_id; logits_id.reserve(n_logits); { const float scale = 1.0f/temp; for (int i = 0; i < n_logits; ++i) { // repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858) // credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) { // if score < 0 then repetition penalty has to multiplied to reduce the previous token probability if (plogits[i] < 0.0f) { logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i)); } else { logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i)); } } else { logits_id.push_back(std::make_pair(plogits[i]*scale, i)); } } } sample_top_k(logits_id, top_k > 0 ? std::min(top_k, n_logits) : n_logits); // compute probs for the top k tokens std::vector probs; probs.reserve(logits_id.size()); float maxl = logits_id[0].first; double sum = 0.0; for (const auto & kv : logits_id) { const float p = expf(kv.first - maxl); probs.push_back(p); sum += p; } // normalize the probs for (auto & p : probs) { p /= sum; } if (top_p < 1.0) { double cumsum = 0.0; for (int i = 0; i < (int) probs.size(); i++) { cumsum += probs[i]; if (cumsum >= top_p) { probs.resize(i + 1); logits_id.resize(i + 1); break; } } } //printf("\n"); //for (int i = 0; i < (int) 10; i++) { // printf("%d: '%s' %f\n", i, lctx.vocab.id_to_token.at(logits_id[i].second).tok.c_str(), probs[i]); //} //printf("\n\n"); //exit(0); std::discrete_distribution<> dist(probs.begin(), probs.end()); int idx = dist(rng); return logits_id[idx].second; } // // quantization // static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, enum llama_ftype ftype, int nthread) { ggml_type quantized_type; switch (ftype) { case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break; case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break; case LLAMA_FTYPE_MOSTLY_Q4_2: quantized_type = GGML_TYPE_Q4_2; break; case LLAMA_FTYPE_MOSTLY_Q4_3: quantized_type = GGML_TYPE_Q4_3; break; default: throw format("invalid output file type %d\n", ftype); }; if (nthread <= 0) { nthread = std::thread::hardware_concurrency(); } std::unique_ptr model_loader(new llama_model_loader(fname_inp.c_str(), /*use_mmap*/ false, /*vocab_only*/ false)); llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), ftype); size_t total_size_org = 0; size_t total_size_new = 0; std::vector hist_all(1 << 4, 0); std::vector workers; std::mutex mutex; size_t idx = 0; for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) { llama_buffer read_data; read_data.resize(tensor.size); tensor.data = read_data.addr; model_loader->load_data_for(tensor); printf("[%4zu/%4zu] %36s - %16s, type = %6s, ", ++idx, model_loader->tensors_map.tensors.size(), tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(), ggml_type_name(tensor.type)); // This used to be a regex, but has an extreme cost to compile times. bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; // ends with 'weight'? // quantize only 2D tensors quantize &= (tensor.ne.size() == 2); // uncomment this to keep the output layer in FP16 //if (tensor.name == "output.weight") { // quantize = false; //} enum ggml_type new_type; void * new_data; size_t new_size; llama_buffer work; if (!quantize) { new_type = tensor.type; new_data = tensor.data; new_size = tensor.size; printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0); } else { new_type = quantized_type; float * f32_data; size_t nelements = tensor.ne.at(0) * tensor.ne.at(1); llama_buffer f32_conv_buf; if (tensor.type == GGML_TYPE_F32) { f32_data = (float *) tensor.data; } else if (tensor.type == GGML_TYPE_F16) { f32_conv_buf.resize(nelements * sizeof(float)); f32_data = (float *) f32_conv_buf.addr; auto f16_data = (const ggml_fp16_t *) tensor.data; for (size_t i = 0; i < nelements; i++) { f32_data[i] = ggml_fp16_to_fp32(f16_data[i]); } } else { throw format("type %s unsupported for integer quantization", ggml_type_name(tensor.type)); } printf("quantizing .. "); fflush(stdout); work.resize(nelements * 4); // upper bound on size new_data = work.addr; std::vector hist_cur(1 << 4, 0); int chunk_size = 32 * 512; const int nchunk = (nelements + chunk_size - 1)/chunk_size; const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1; if (nthread_use < 2) { new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data()); } else { size_t counter = 0; new_size = 0; auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements, chunk_size] () { std::vector local_hist; size_t local_size = 0; while (true) { std::unique_lock lock(mutex); size_t first = counter; counter += chunk_size; if (first >= nelements) { if (!local_hist.empty()) { for (int j=0; j %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0); for (size_t i = 0; i < hist_cur.size(); i++) { hist_all[i] += hist_cur[i]; } for (size_t i = 0; i < hist_cur.size(); i++) { printf("%5.3f ", hist_cur[i] / float(nelements)); } printf("\n"); } total_size_org += tensor.size; total_size_new += new_size; file_saver.write_tensor(tensor, new_type, new_data, new_size); } printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0); printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0); { int64_t sum_all = 0; for (size_t i = 0; i < hist_all.size(); i++) { sum_all += hist_all[i]; } printf("%s: hist: ", __func__); for (size_t i = 0; i < hist_all.size(); i++) { printf("%5.3f ", hist_all[i] / float(sum_all)); } printf("\n"); } } // // interface implementation // struct llama_context * llama_init_from_file( const char * path_model, struct llama_context_params params) { ggml_time_init(); llama_context * ctx = new llama_context; if (params.seed <= 0) { params.seed = time(NULL); } unsigned cur_percentage = 0; if (params.progress_callback == NULL) { params.progress_callback_user_data = &cur_percentage; params.progress_callback = [](float progress, void * ctx) { unsigned * cur_percentage_p = (unsigned *) ctx; unsigned percentage = (unsigned) (100 * progress); while (percentage > *cur_percentage_p) { ++*cur_percentage_p; fprintf(stderr, "."); fflush(stderr); if (percentage >= 100) { fprintf(stderr, "\n"); } } }; } ctx->rng = std::mt19937(params.seed); ctx->logits_all = params.logits_all; ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32; if (!llama_model_load(path_model, *ctx, params.n_ctx, memory_type, params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback, params.progress_callback_user_data)) { fprintf(stderr, "%s: failed to load model\n", __func__); llama_free(ctx); return nullptr; } // reserve memory for context buffers if (!params.vocab_only) { if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx)) { fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__); llama_free(ctx); return nullptr; } { const size_t memory_size = ggml_nbytes(ctx->model.kv_self.k) + ggml_nbytes(ctx->model.kv_self.v); fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0); } const auto & hparams = ctx->model.hparams; // resized during inference if (params.logits_all) { ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab); } else { ctx->logits.reserve(hparams.n_vocab); } if (params.embedding){ ctx->embedding.resize(hparams.n_embd); } ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type)); ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0().at(ctx->model.type)); ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type)); } return ctx; } void llama_free(struct llama_context * ctx) { delete ctx; } int llama_model_quantize( const char * fname_inp, const char * fname_out, enum llama_ftype ftype, int nthread) { try { llama_model_quantize_internal(fname_inp, fname_out, ftype, nthread); return 0; } catch (const std::string & err) { fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.c_str()); return 1; } } int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) { fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora); auto & model = ctx->model; const int64_t t_start_lora_us = ggml_time_us(); auto fin = std::ifstream(path_lora, std::ios::binary); if (!fin) { fprintf(stderr, "%s: failed to open '%s'\n", __func__, path_lora); return 1; } // verify magic and version { uint32_t magic; fin.read((char *) &magic, sizeof(magic)); if (magic != 'ggla') { fprintf(stderr, "%s: bad file magic\n", __func__); return 1; } uint32_t format_version; fin.read((char *) &format_version, sizeof(format_version)); if (format_version != 1) { fprintf(stderr, "%s: unsupported file version\n", __func__ ); return 1; } } int32_t lora_r; int32_t lora_alpha; fin.read((char *) &lora_r, sizeof(lora_r)); fin.read((char *) &lora_alpha, sizeof(lora_alpha)); float scaling = (float)lora_alpha / (float)lora_r; fprintf(stderr, "%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling); // create a temporary ggml context to store the lora tensors // todo: calculate size from biggest possible tensor std::vector lora_buf(1024ull * 1024ull * 1024ull); struct ggml_init_params params; params.mem_size = lora_buf.size(); params.mem_buffer = lora_buf.data(); params.no_alloc = false; ggml_context * lora_ctx = ggml_init(params); std::unordered_map lora_tensors; // create a name -> tensor map of the model to accelerate lookups std::unordered_map model_tensors; for (auto & kv: model.tensors_by_name) { model_tensors.insert(kv); } // load base model std::unique_ptr model_loader; ggml_context * base_ctx = NULL; llama_buffer base_buf; if (path_base_model) { fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model); model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*vocab_only*/ false)); size_t ctx_size, mmapped_size; model_loader->calc_sizes(&ctx_size, &mmapped_size); base_buf.resize(ctx_size); ggml_init_params base_params; base_params.mem_size = base_buf.size; base_params.mem_buffer = base_buf.addr; base_params.no_alloc = model_loader->use_mmap; base_ctx = ggml_init(base_params); model_loader->ggml_ctx = base_ctx; // maybe this should in llama_model_loader if (model_loader->use_mmap) { model_loader->mapping.reset(new llama_mmap(&model_loader->file_loaders.at(0)->file, /* prefetch */ false)); } } // read tensors and apply bool warned = false; int n_tensors = 0; while (true) { int32_t n_dims; int32_t length; int32_t ftype; fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); fin.read(reinterpret_cast(&length), sizeof(length)); fin.read(reinterpret_cast(&ftype), sizeof(ftype)); if (fin.eof()) { break; } int32_t ne[2] = { 1, 1 }; for (int i = 0; i < n_dims; ++i) { fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); } std::string name(length, 0); fin.read(&name[0], length); // check for lora suffix and get the type of tensor const std::string lora_suffix = ".lora"; size_t pos = name.rfind(lora_suffix); if (pos == std::string::npos) { fprintf(stderr, "%s: error: '%s' is not a lora tensor\n", __func__, name.c_str()); return 1; } std::string lora_type = name.substr(pos + lora_suffix.length()); std::string base_name = name; base_name.erase(pos); // fprintf(stderr, "%s: %s => %s (lora type %s) ", __func__, name.c_str(),base_name.c_str(), lora_type.c_str()); if (model_tensors.find(base_name.data()) == model_tensors.end()) { fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__, name.data()); return 1; } // create ggml tensor ggml_type wtype; switch (ftype) { case 0: wtype = GGML_TYPE_F32; break; case 1: wtype = GGML_TYPE_F16; break; default: { fprintf(stderr, "%s: invalid tensor data type '%d'\n", __func__, ftype); return false; } } ggml_tensor* lora_tensor; if (n_dims == 2) { lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]); } else { fprintf(stderr, "%s: unsupported tensor dimension %d\n", __func__, n_dims); return 1; } // load tensor data size_t offset = fin.tellg(); size_t tensor_data_size = ggml_nbytes(lora_tensor); offset = (offset + 31) & -32; fin.seekg(offset); fin.read((char*)lora_tensor->data, tensor_data_size); lora_tensors[name] = lora_tensor; // check if we have both A and B tensors and apply if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() && lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) { ggml_tensor * dest_t = model_tensors[base_name]; ggml_tensor * base_t; if (model_loader) { // load from base model if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) { fprintf(stderr, "%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str()); return 1; } size_t idx = model_loader->tensors_map.name_to_idx[base_name]; llama_load_tensor & lt = model_loader->tensors_map.tensors[idx]; base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }); lt.data = (uint8_t *) lt.ggml_tensor->data; model_loader->load_data_for(lt); lt.ggml_tensor->data = lt.data; } else { base_t = dest_t; } if (ggml_is_quantized(base_t->type)) { if (!warned) { fprintf(stderr, "%s: warning: using a lora adapter with a quantized model may result in poor quality, " "use a f16 or f32 base model with --lora-base\n", __func__); warned = true; } } ggml_tensor * loraA = lora_tensors[base_name + ".loraA"]; ggml_tensor * loraB = lora_tensors[base_name + ".loraB"]; if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) { fprintf(stderr, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");" " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]); return 1; } // w = w + BA*s ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB); if (scaling != 1.0f) { ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling); BA = ggml_scale(lora_ctx, BA, scale_tensor); } ggml_tensor * r; if (base_t == dest_t) { r = ggml_add_inplace(lora_ctx, dest_t, BA); } else { r = ggml_add(lora_ctx, base_t, BA); r = ggml_cpy(lora_ctx, r, dest_t); } struct ggml_cgraph gf = ggml_build_forward(r); gf.n_threads = n_threads; ggml_graph_compute(lora_ctx, &gf); // we won't need these tensors again, reset the context to save memory ggml_free(lora_ctx); lora_ctx = ggml_init(params); lora_tensors.clear(); n_tensors++; if (n_tensors % 4 == 0) fprintf(stderr, "."); } } // TODO: this should be in a destructor, it will leak on failure ggml_free(lora_ctx); if (base_ctx) { ggml_free(base_ctx); } const int64_t t_lora_us = ggml_time_us() - t_start_lora_us; fprintf(stderr, " done (%.2f ms)\n", t_lora_us / 1000.0); return 0; } int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) { try { return llama_apply_lora_from_file_internal(ctx, path_lora, path_base_model, n_threads); } catch (const std::string & err) { fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.c_str()); return 1; } } int llama_get_kv_cache_token_count(struct llama_context * ctx) { return ctx->model.kv_self.n; } #define LLAMA_MAX_RNG_STATE 64*1024 // Returns the size of the state size_t llama_get_state_size(struct llama_context * ctx) { // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state. // for reference, std::mt19937(1337) serializes to 6701 bytes. const size_t s_rng_size = sizeof(size_t); const size_t s_rng = LLAMA_MAX_RNG_STATE; const size_t s_logits_capacity = sizeof(size_t); const size_t s_logits_size = sizeof(size_t); const size_t s_logits = ctx->logits.capacity() * sizeof(float); const size_t s_embedding_size = sizeof(size_t); const size_t s_embedding = ctx->embedding.size() * sizeof(float); const size_t s_kv_size = sizeof(size_t); const size_t s_kv_ntok = sizeof(int); const size_t s_kv = ctx->model.kv_self.buf.size; const size_t s_total = ( + s_rng_size + s_rng + s_logits_capacity + s_logits_size + s_logits + s_embedding_size + s_embedding + s_kv_size + s_kv_ntok + s_kv ); return s_total; } // Copies the state to the specified destination address size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dest) { uint8_t * out = dest; // copy rng { std::stringstream rng_ss; rng_ss << ctx->rng; const size_t rng_size = rng_ss.str().size(); char rng_buf[LLAMA_MAX_RNG_STATE]; memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE); memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size()); memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size); memcpy(out, &rng_buf[0], LLAMA_MAX_RNG_STATE); out += LLAMA_MAX_RNG_STATE; } // copy logits { const size_t logits_cap = ctx->logits.capacity(); const size_t logits_size = ctx->logits.size(); memcpy(out, &logits_cap, sizeof(logits_cap)); out += sizeof(logits_cap); memcpy(out, &logits_size, sizeof(logits_size)); out += sizeof(logits_size); if (logits_size) { memcpy(out, ctx->logits.data(), logits_size * sizeof(float)); } out += logits_cap * sizeof(float); } // copy embeddings { const size_t embedding_size = ctx->embedding.size(); memcpy(out, &embedding_size, sizeof(embedding_size)); out += sizeof(embedding_size); if (embedding_size) { memcpy(out, ctx->embedding.data(), embedding_size * sizeof(float)); out += embedding_size * sizeof(float); } } // copy kv cache { const size_t kv_size = ctx->model.kv_self.buf.size; const int kv_ntok = llama_get_kv_cache_token_count(ctx); memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size); memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok); if (kv_size) { memcpy(out, ctx->model.kv_self.buf.addr, kv_size); out += kv_size; } } const size_t written = out - dest; const size_t expected = llama_get_state_size(ctx); LLAMA_ASSERT(written == expected); return written; } // Sets the state reading from the specified source address size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) { const uint8_t * in = src; // set rng { size_t rng_size; char rng_buf[LLAMA_MAX_RNG_STATE]; memcpy(&rng_size, in, sizeof(rng_size)); in += sizeof(rng_size); memcpy(&rng_buf[0], in, LLAMA_MAX_RNG_STATE); in += LLAMA_MAX_RNG_STATE; std::stringstream rng_ss; rng_ss.str(std::string(&rng_buf[0], rng_size)); rng_ss >> ctx->rng; LLAMA_ASSERT(rng_ss.fail() == false); } // set logits { size_t logits_cap; size_t logits_size; memcpy(&logits_cap, in, sizeof(logits_cap)); in += sizeof(logits_cap); memcpy(&logits_size, in, sizeof(logits_size)); in += sizeof(logits_size); LLAMA_ASSERT(ctx->logits.capacity() == logits_cap); if (logits_size) { ctx->logits.resize(logits_size); memcpy(ctx->logits.data(), in, logits_size * sizeof(float)); } in += logits_cap * sizeof(float); } // set embeddings { size_t embedding_size; memcpy(&embedding_size, in, sizeof(embedding_size)); in += sizeof(embedding_size); LLAMA_ASSERT(ctx->embedding.capacity() == embedding_size); if (embedding_size) { memcpy(ctx->embedding.data(), in, embedding_size * sizeof(float)); in += embedding_size * sizeof(float); } } // set kv cache { size_t kv_size; int kv_ntok; memcpy(&kv_size, in, sizeof(kv_size)); in += sizeof(kv_size); memcpy(&kv_ntok, in, sizeof(kv_ntok)); in += sizeof(kv_ntok); if (kv_size) { LLAMA_ASSERT(ctx->model.kv_self.buf.size == kv_size); void * k_data = ctx->model.kv_self.k->data; // remember data pointers void * v_data = ctx->model.kv_self.v->data; // because their value is stored in buf and overwritten by memcpy memcpy(ctx->model.kv_self.buf.addr, in, kv_size); in += kv_size; ctx->model.kv_self.k->data = k_data; // restore correct data pointers ctx->model.kv_self.v->data = v_data; } ctx->model.kv_self.n = kv_ntok; } const size_t nread = in - src; const size_t expected = llama_get_state_size(ctx); LLAMA_ASSERT(nread == expected); return nread; } int llama_eval( struct llama_context * ctx, const llama_token * tokens, int n_tokens, int n_past, int n_threads) { if (!llama_eval_internal(*ctx, tokens, n_tokens, n_past, n_threads)) { fprintf(stderr, "%s: failed to eval\n", __func__); return 1; } // get a more accurate load time, upon first eval if (!ctx->has_evaluated_once) { ctx->t_load_us = ggml_time_us() - ctx->t_start_us; ctx->has_evaluated_once = true; } return 0; } int llama_tokenize( struct llama_context * ctx, const char * text, llama_token * tokens, int n_max_tokens, bool add_bos) { auto res = llama_tokenize(ctx->vocab, text, add_bos); if (n_max_tokens < (int) res.size()) { fprintf(stderr, "%s: too many tokens\n", __func__); return -((int) res.size()); } for (size_t i = 0; i < res.size(); i++) { tokens[i] = res[i]; } return res.size(); } int llama_n_vocab(struct llama_context * ctx) { return ctx->vocab.id_to_token.size(); } int llama_n_ctx(struct llama_context * ctx) { return ctx->model.hparams.n_ctx; } int llama_n_embd(struct llama_context * ctx) { return ctx->model.hparams.n_embd; } float * llama_get_logits(struct llama_context * ctx) { return ctx->logits.data(); } float * llama_get_embeddings(struct llama_context * ctx) { return ctx->embedding.data(); } const char * llama_token_to_str(struct llama_context * ctx, llama_token token) { if (token >= llama_n_vocab(ctx)) { return nullptr; } return ctx->vocab.id_to_token[token].tok.c_str(); } llama_token llama_token_bos() { return 1; } llama_token llama_token_eos() { return 2; } llama_token llama_sample_top_p_top_k( llama_context * ctx, const llama_token * last_n_tokens_data, int last_n_tokens_size, int top_k, float top_p, float temp, float repeat_penalty) { const int64_t t_start_sample_us = ggml_time_us(); llama_token result = 0; // TODO: avoid this ... const auto last_n_tokens = std::vector(last_n_tokens_data, last_n_tokens_data + last_n_tokens_size); result = llama_sample_top_p_top_k( *ctx, last_n_tokens, top_k, top_p, temp, repeat_penalty); ctx->t_sample_us += ggml_time_us() - t_start_sample_us; ctx->n_sample++; return result; } void llama_print_timings(struct llama_context * ctx) { const int64_t t_end_us = ggml_time_us(); const int32_t n_sample = std::max(1, ctx->n_sample); const int32_t n_eval = std::max(1, ctx->n_eval); const int32_t n_p_eval = std::max(1, ctx->n_p_eval); fprintf(stderr, "\n"); fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0); fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3 * ctx->t_sample_us, n_sample, 1e-3 * ctx->t_sample_us / n_sample); fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_p_eval_us, n_p_eval, 1e-3 * ctx->t_p_eval_us / n_p_eval); fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3 * ctx->t_eval_us, n_eval, 1e-3 * ctx->t_eval_us / n_eval); fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0); } void llama_reset_timings(struct llama_context * ctx) { ctx->t_start_us = ggml_time_us(); ctx->t_sample_us = ctx->n_sample = 0; ctx->t_eval_us = ctx->n_eval = 0; ctx->t_p_eval_us = ctx->n_p_eval = 0; } const char * llama_print_system_info(void) { static std::string s; s = ""; s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | "; s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | "; s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | "; s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | "; s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | "; s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | "; s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | "; s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | "; s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | "; s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | "; s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | "; s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | "; s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | "; s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | "; return s.c_str(); } // For internal test use std::vector>& llama_internal_get_tensor_map(struct llama_context * ctx) { return ctx->model.tensors_by_name; }