mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-14 22:38:58 +01:00
5ed26e1fc9
* imatrix: adding --combine and --continue-from * imatrix: be able to start from a specific chunk --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
622 lines
22 KiB
C++
622 lines
22 KiB
C++
#include "common.h"
|
|
#include "llama.h"
|
|
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <ctime>
|
|
#include <sstream>
|
|
#include <thread>
|
|
#include <mutex>
|
|
#include <vector>
|
|
#include <fstream>
|
|
#include <unordered_map>
|
|
#include <algorithm>
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
|
#endif
|
|
|
|
struct Stats {
|
|
std::vector<float> values;
|
|
int ncall = 0;
|
|
};
|
|
|
|
struct StatParams {
|
|
std::string ofile = "imatrix.dat";
|
|
int n_output_frequency = 10;
|
|
int verbosity = 1;
|
|
int keep_every = 0;
|
|
bool collect_output_weight = false;
|
|
};
|
|
|
|
class IMatrixCollector {
|
|
public:
|
|
IMatrixCollector() = default;
|
|
void set_parameters(StatParams&& params) { m_params = std::move(params); }
|
|
bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data);
|
|
void save_imatrix() const;
|
|
bool load_imatrix(const char * file_name, bool add);
|
|
static bool load_imatrix(const char * file_name, std::unordered_map<std::string, Stats>& imatrix);
|
|
private:
|
|
std::unordered_map<std::string, Stats> m_stats;
|
|
StatParams m_params;
|
|
std::mutex m_mutex;
|
|
int m_last_call = 0;
|
|
std::vector<float> m_src1_data;
|
|
std::vector<int> m_ids; // the expert ids from ggml_mul_mat_id
|
|
//
|
|
void save_imatrix(const char * file_name) const;
|
|
void keep_imatrix(int ncall) const;
|
|
};
|
|
|
|
bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
|
|
GGML_UNUSED(user_data);
|
|
|
|
const struct ggml_tensor * src0 = t->src[0];
|
|
const struct ggml_tensor * src1 = t->src[1];
|
|
|
|
// when ask is true, the scheduler wants to know if we are interested in data from this tensor
|
|
// if we return true, a follow-up call will be made with ask=false in which we can do the actual collection
|
|
if (ask) {
|
|
if (t->op == GGML_OP_MUL_MAT_ID) return true; // collect all indirect matrix multiplications
|
|
if (t->op != GGML_OP_MUL_MAT) return false;
|
|
if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false;
|
|
if (!(strncmp(src0->name, "blk.", 4) == 0 || (m_params.collect_output_weight && strcmp(src0->name, "output.weight") == 0))) return false;
|
|
return true;
|
|
}
|
|
|
|
std::lock_guard<std::mutex> lock(m_mutex);
|
|
|
|
// copy the data from the GPU memory if needed
|
|
const bool is_host = ggml_backend_buffer_is_host(src1->buffer);
|
|
|
|
if (!is_host) {
|
|
m_src1_data.resize(ggml_nelements(src1));
|
|
ggml_backend_tensor_get(src1, m_src1_data.data(), 0, ggml_nbytes(src1));
|
|
}
|
|
|
|
const float * data = is_host ? (const float *) src1->data : m_src1_data.data();
|
|
|
|
if (t->op == GGML_OP_MUL_MAT_ID) {
|
|
const int idx = ((int32_t *) t->op_params)[0];
|
|
const int n_as = ((int32_t *) t->op_params)[1];
|
|
|
|
// the top-k selected expert ids are stored in the src0 tensor
|
|
// for simplicity, always copy src0 to host, because it is small
|
|
// take into account that src0 is not contiguous!
|
|
GGML_ASSERT(src0->ne[1] == src1->ne[1]);
|
|
GGML_ASSERT(n_as*ggml_nrows(src0)*sizeof(int) == GGML_PAD(ggml_nbytes(src0), n_as*sizeof(int)));
|
|
m_ids.resize(ggml_nbytes(src0)/sizeof(int));
|
|
ggml_backend_tensor_get(src0, m_ids.data(), 0, ggml_nbytes(src0));
|
|
|
|
// loop over all possible experts, regardless if they are used or not in the batch
|
|
// this is necessary to guarantee equal number of "ncall" for each tensor
|
|
for (int ex = 0; ex < n_as; ++ex) {
|
|
src0 = t->src[2 + ex];
|
|
auto& e = m_stats[src0->name];
|
|
if (e.values.empty()) {
|
|
e.values.resize(src1->ne[0], 0);
|
|
}
|
|
else if (e.values.size() != (size_t)src1->ne[0]) {
|
|
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", src0->name, (int)e.values.size(), (int)src1->ne[0]);
|
|
exit(1); //GGML_ASSERT(false);
|
|
}
|
|
// NOTE: since we select top-k experts, the number of calls for the expert tensors will be k times larger
|
|
// using the following line, we can correct for that if needed
|
|
//if (idx == t->src[0]->ne[0] - 1) ++e.ncall;
|
|
++e.ncall;
|
|
if (m_params.verbosity > 1) {
|
|
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, src0->name, ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
|
|
}
|
|
for (int row = 0; row < (int)src1->ne[1]; ++row) {
|
|
const int excur = m_ids[row*n_as + idx];
|
|
GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check
|
|
if (excur != ex) continue;
|
|
const float * x = data + row * src1->ne[0];
|
|
for (int j = 0; j < (int)src1->ne[0]; ++j) {
|
|
e.values[j] += x[j]*x[j];
|
|
}
|
|
}
|
|
if (e.ncall > m_last_call) {
|
|
m_last_call = e.ncall;
|
|
if (m_last_call % m_params.n_output_frequency == 0) {
|
|
save_imatrix();
|
|
}
|
|
if (m_params.keep_every > 0 && m_last_call%m_params.keep_every == 0) {
|
|
keep_imatrix(m_last_call);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
auto& e = m_stats[src0->name];
|
|
if (e.values.empty()) {
|
|
e.values.resize(src1->ne[0], 0);
|
|
}
|
|
else if (e.values.size() != (size_t)src1->ne[0]) {
|
|
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", src0->name, (int)e.values.size(), (int)src1->ne[0]);
|
|
exit(1); //GGML_ASSERT(false);
|
|
}
|
|
++e.ncall;
|
|
if (m_params.verbosity > 1) {
|
|
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, src0->name, ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
|
|
}
|
|
for (int row = 0; row < (int)src1->ne[1]; ++row) {
|
|
const float * x = data + row * src1->ne[0];
|
|
for (int j = 0; j < (int)src1->ne[0]; ++j) {
|
|
e.values[j] += x[j]*x[j];
|
|
}
|
|
}
|
|
if (e.ncall > m_last_call) {
|
|
m_last_call = e.ncall;
|
|
if (m_last_call % m_params.n_output_frequency == 0) {
|
|
save_imatrix();
|
|
}
|
|
if (m_params.keep_every > 0 && m_last_call%m_params.keep_every == 0) {
|
|
keep_imatrix(m_last_call);
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void IMatrixCollector::save_imatrix() const {
|
|
save_imatrix(m_params.ofile.empty() ? "imatrix.dat" : m_params.ofile.c_str());
|
|
}
|
|
|
|
void IMatrixCollector::keep_imatrix(int ncall) const {
|
|
auto file_name = m_params.ofile;
|
|
if (file_name.empty()) file_name = "imatrix.dat";
|
|
file_name += ".at_";
|
|
file_name += std::to_string(ncall);
|
|
save_imatrix(file_name.c_str());
|
|
}
|
|
|
|
void IMatrixCollector::save_imatrix(const char * fname) const {
|
|
std::ofstream out(fname, std::ios::binary);
|
|
int n_entries = m_stats.size();
|
|
out.write((const char*)&n_entries, sizeof(n_entries));
|
|
for (auto& p : m_stats) {
|
|
int len = p.first.size();
|
|
out.write((const char*)&len, sizeof(len));
|
|
out.write(p.first.c_str(), len);
|
|
out.write((const char*)&p.second.ncall, sizeof(p.second.ncall));
|
|
int nval = p.second.values.size();
|
|
out.write((const char*)&nval, sizeof(nval));
|
|
if (nval > 0) out.write((const char*)p.second.values.data(), nval*sizeof(float));
|
|
}
|
|
if (m_params.verbosity > 0) {
|
|
fprintf(stderr, "\n%s: stored collected data after %d chunks in %s\n",__func__,m_last_call,fname);
|
|
}
|
|
}
|
|
|
|
bool IMatrixCollector::load_imatrix(const char * imatrix_file, std::unordered_map<std::string, Stats>& imatrix_data) {
|
|
std::ifstream in(imatrix_file, std::ios::binary);
|
|
if (!in) {
|
|
printf("%s: failed to open %s\n",__func__,imatrix_file);
|
|
return false;
|
|
}
|
|
int n_entries;
|
|
in.read((char*)&n_entries, sizeof(n_entries));
|
|
if (in.fail() || n_entries < 1) {
|
|
printf("%s: no data in file %s\n", __func__, imatrix_file);
|
|
return false;
|
|
}
|
|
for (int i = 0; i < n_entries; ++i) {
|
|
int len; in.read((char *)&len, sizeof(len));
|
|
std::vector<char> name_as_vec(len+1);
|
|
in.read((char *)name_as_vec.data(), len);
|
|
if (in.fail()) {
|
|
printf("%s: failed reading name for entry %d from %s\n",__func__,i+1,imatrix_file);
|
|
return false;
|
|
}
|
|
name_as_vec[len] = 0;
|
|
std::string name{name_as_vec.data()};
|
|
auto& e = imatrix_data[std::move(name)];
|
|
int ncall;
|
|
in.read((char*)&ncall, sizeof(ncall));
|
|
int nval;
|
|
in.read((char *)&nval, sizeof(nval));
|
|
if (in.fail() || nval < 1) {
|
|
printf("%s: failed reading number of values for entry %d\n",__func__,i);
|
|
imatrix_data = {};
|
|
return false;
|
|
}
|
|
e.values.resize(nval);
|
|
in.read((char*)e.values.data(), nval*sizeof(float));
|
|
if (in.fail()) {
|
|
printf("%s: failed reading data for entry %d\n",__func__,i);
|
|
imatrix_data = {};
|
|
return false;
|
|
}
|
|
e.ncall = ncall;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool IMatrixCollector::load_imatrix(const char * file_name, bool add) {
|
|
if (!add) {
|
|
m_stats.clear();
|
|
}
|
|
return load_imatrix(file_name, m_stats);
|
|
}
|
|
|
|
static IMatrixCollector g_collector;
|
|
|
|
static bool ik_collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
|
|
return g_collector.collect_imatrix(t, ask, user_data);
|
|
}
|
|
|
|
|
|
struct results_log_softmax {
|
|
double log_softmax;
|
|
float logit;
|
|
float prob;
|
|
};
|
|
|
|
static std::vector<float> softmax(const std::vector<float>& logits) {
|
|
std::vector<float> probs(logits.size());
|
|
float max_logit = logits[0];
|
|
for (float v : logits) {
|
|
max_logit = std::max(max_logit, v);
|
|
}
|
|
double sum_exp = 0.0;
|
|
for (size_t i = 0; i < logits.size(); i++) {
|
|
// Subtract the maximum logit value from the current logit value for numerical stability
|
|
const float logit = logits[i] - max_logit;
|
|
const float exp_logit = expf(logit);
|
|
sum_exp += exp_logit;
|
|
probs[i] = exp_logit;
|
|
}
|
|
for (size_t i = 0; i < probs.size(); i++) {
|
|
probs[i] /= sum_exp;
|
|
}
|
|
return probs;
|
|
}
|
|
|
|
static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
|
|
float max_logit = logits[0];
|
|
for (int i = 1; i < n_vocab; ++i) {
|
|
max_logit = std::max(max_logit, logits[i]);
|
|
}
|
|
double sum_exp = 0.0;
|
|
for (int i = 0; i < n_vocab; ++i) {
|
|
sum_exp += expf(logits[i] - max_logit);
|
|
}
|
|
return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
|
|
}
|
|
|
|
static void process_logits(
|
|
int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
|
|
double & nll, double & nll2, float * logit_history, float * prob_history
|
|
) {
|
|
std::mutex mutex;
|
|
int counter = 0;
|
|
auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
|
|
double local_nll = 0;
|
|
double local_nll2 = 0;
|
|
while (true) {
|
|
std::unique_lock<std::mutex> lock(mutex);
|
|
int i = counter++;
|
|
if (i >= n_token) {
|
|
nll += local_nll; nll2 += local_nll2;
|
|
break;
|
|
}
|
|
lock.unlock();
|
|
const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
|
|
const double v = -results.log_softmax;
|
|
local_nll += v;
|
|
local_nll2 += v*v;
|
|
|
|
logit_history[i] = results.logit;
|
|
prob_history[i] = results.prob;
|
|
}
|
|
};
|
|
for (auto & w : workers) {
|
|
w = std::thread(compute);
|
|
}
|
|
compute();
|
|
for (auto & w : workers) {
|
|
w.join();
|
|
}
|
|
}
|
|
|
|
static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool compute_ppl, int from_chunk) {
|
|
|
|
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
|
const int n_ctx = llama_n_ctx(ctx);
|
|
|
|
auto tim1 = std::chrono::high_resolution_clock::now();
|
|
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
|
|
|
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
|
|
|
auto tim2 = std::chrono::high_resolution_clock::now();
|
|
fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
|
|
|
|
if (from_chunk > 0) {
|
|
if (size_t((from_chunk + 2)*n_ctx) >= tokens.size()) {
|
|
fprintf(stderr, "%s: there will be not enough tokens left after removing %d chunks\n", __func__, from_chunk);
|
|
return false;
|
|
}
|
|
fprintf(stderr, "%s: removing initial %d chunks (%d tokens)\n", __func__, from_chunk, from_chunk*n_ctx);
|
|
tokens.erase(tokens.begin(), tokens.begin() + from_chunk*n_ctx);
|
|
}
|
|
|
|
if (int(tokens.size()) < 2*n_ctx) {
|
|
fprintf(stderr, "%s: you need at least %d tokens for a context of %d tokens\n",__func__,2*n_ctx,
|
|
n_ctx);
|
|
fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
|
|
return false;
|
|
}
|
|
|
|
std::vector<float> logit_history;
|
|
std::vector<float> prob_history;
|
|
|
|
if (compute_ppl) {
|
|
logit_history.resize(tokens.size());
|
|
prob_history.resize(tokens.size());
|
|
}
|
|
|
|
const int n_chunk_max = tokens.size() / n_ctx;
|
|
|
|
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
|
|
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
|
const int n_batch = params.n_batch;
|
|
|
|
int count = 0;
|
|
double nll = 0.0;
|
|
double nll2 = 0.0;
|
|
|
|
fprintf(stderr, "%s: computing over %d chunks with batch_size %d\n", __func__, n_chunk, n_batch);
|
|
|
|
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
|
|
|
|
const int num_batches = (n_ctx + n_batch - 1) / n_batch;
|
|
|
|
std::vector<float> logits;
|
|
if (compute_ppl && num_batches > 1) {
|
|
logits.reserve((size_t)n_ctx * n_vocab);
|
|
}
|
|
|
|
for (int i = 0; i < n_chunk; ++i) {
|
|
const int start = i * n_ctx;
|
|
const int end = start + n_ctx;
|
|
|
|
std::vector<float> logits;
|
|
|
|
const auto t_start = std::chrono::high_resolution_clock::now();
|
|
|
|
// clear the KV cache
|
|
llama_kv_cache_clear(ctx);
|
|
|
|
for (int j = 0; j < num_batches; ++j) {
|
|
const int batch_start = start + j * n_batch;
|
|
const int batch_size = std::min(end - batch_start, n_batch);
|
|
|
|
// save original token and restore it after eval
|
|
const auto token_org = tokens[batch_start];
|
|
|
|
// add BOS token for the first batch of each chunk
|
|
if (add_bos && j == 0) {
|
|
tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
|
|
}
|
|
|
|
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
|
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
return false;
|
|
}
|
|
|
|
// restore the original token in case it was set to BOS
|
|
tokens[batch_start] = token_org;
|
|
|
|
if (compute_ppl && num_batches > 1) {
|
|
const auto * batch_logits = llama_get_logits(ctx);
|
|
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
|
|
}
|
|
}
|
|
|
|
const auto t_end = std::chrono::high_resolution_clock::now();
|
|
|
|
if (i == 0) {
|
|
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
|
|
fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
|
|
int total_seconds = (int)(t_total * n_chunk);
|
|
if (total_seconds >= 60*60) {
|
|
fprintf(stderr, "%d hours ", total_seconds / (60*60));
|
|
total_seconds = total_seconds % (60*60);
|
|
}
|
|
fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
|
|
}
|
|
|
|
if (compute_ppl) {
|
|
const int first = n_ctx/2;
|
|
const auto all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
|
|
process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
|
|
workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
|
|
count += n_ctx - first - 1;
|
|
|
|
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
|
|
fflush(stdout);
|
|
|
|
logits.clear();
|
|
}
|
|
}
|
|
printf("\n");
|
|
|
|
if (compute_ppl) {
|
|
nll2 /= count;
|
|
nll /= count;
|
|
const double ppl = exp(nll);
|
|
nll2 -= nll * nll;
|
|
if (nll2 > 0) {
|
|
nll2 = sqrt(nll2/(count-1));
|
|
printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
|
|
} else {
|
|
printf("Unexpected negative standard deviation of log(prob)\n");
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
|
|
StatParams sparams;
|
|
std::string prev_result_file;
|
|
std::string combine_files;
|
|
bool compute_ppl = true;
|
|
int from_chunk = 0;
|
|
std::vector<char*> args;
|
|
args.push_back(argv[0]);
|
|
int iarg = 1;
|
|
for (; iarg < argc-1; ++iarg) {
|
|
std::string arg{argv[iarg]};
|
|
if (arg == "-o" || arg == "--output-file") {
|
|
sparams.ofile = argv[++iarg];
|
|
}
|
|
else if (arg == "-ofreq" || arg == "--output-frequency") {
|
|
sparams.n_output_frequency = std::stoi(argv[++iarg]);
|
|
}
|
|
else if (arg == "-ow" || arg == "--output-weight") {
|
|
sparams.collect_output_weight = std::stoi(argv[++iarg]);
|
|
}
|
|
else if (arg == "--verbosity") {
|
|
sparams.verbosity = std::stoi(argv[++iarg]);
|
|
} else if (arg == "--no-ppl") {
|
|
compute_ppl = false;
|
|
} else if (arg == "--keep-imatrix") {
|
|
sparams.keep_every = std::stoi(argv[++iarg]);
|
|
} else if (arg == "--continue-from") {
|
|
prev_result_file = argv[++iarg];
|
|
} else if (arg == "--combine") {
|
|
combine_files = argv[++iarg];
|
|
}
|
|
else if (arg == "--from-chunk") {
|
|
from_chunk = std::stoi(argv[++iarg]);
|
|
} else {
|
|
args.push_back(argv[iarg]);
|
|
}
|
|
}
|
|
if (iarg < argc) {
|
|
std::string arg{argv[iarg]};
|
|
if (arg == "--no-ppl") {
|
|
compute_ppl = false;
|
|
} else {
|
|
args.push_back(argv[iarg]);
|
|
}
|
|
}
|
|
|
|
g_collector.set_parameters(std::move(sparams));
|
|
|
|
if (!combine_files.empty()) {
|
|
std::vector<std::string> files;
|
|
size_t pos = 0;
|
|
while (true) {
|
|
auto new_pos = combine_files.find(',', pos);
|
|
if (new_pos != std::string::npos) {
|
|
files.emplace_back(combine_files.substr(pos, new_pos - pos));
|
|
pos = new_pos + 1;
|
|
} else {
|
|
files.emplace_back(combine_files.substr(pos));
|
|
break;
|
|
}
|
|
}
|
|
if (files.size() < 2) {
|
|
fprintf(stderr, "You must provide at least two comma separated files to use --combine\n");
|
|
return 1;
|
|
}
|
|
printf("Combining the following %d files\n", int(files.size()));
|
|
for (auto& file : files) {
|
|
printf(" %s\n", file.c_str());
|
|
if (!g_collector.load_imatrix(file.c_str(), true)) {
|
|
fprintf(stderr, "Failed to load %s\n", file.c_str());
|
|
return 1;
|
|
}
|
|
}
|
|
g_collector.save_imatrix();
|
|
return 0;
|
|
}
|
|
|
|
if (!prev_result_file.empty()) {
|
|
if (!g_collector.load_imatrix(prev_result_file.c_str(), false)) {
|
|
fprintf(stderr, "=============== Failed to load %s\n", prev_result_file.c_str());
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
gpt_params params;
|
|
params.n_batch = 512;
|
|
if (!gpt_params_parse(args.size(), args.data(), params)) {
|
|
return 1;
|
|
}
|
|
|
|
params.logits_all = true;
|
|
params.n_batch = std::min(params.n_batch, params.n_ctx);
|
|
|
|
print_build_info();
|
|
|
|
if (params.seed == LLAMA_DEFAULT_SEED) {
|
|
params.seed = time(NULL);
|
|
}
|
|
|
|
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
|
|
|
|
std::mt19937 rng(params.seed);
|
|
if (params.random_prompt) {
|
|
params.prompt = gpt_random_prompt(rng);
|
|
}
|
|
|
|
llama_backend_init(params.numa);
|
|
|
|
llama_model_params mparams = llama_model_params_from_gpt_params(params);
|
|
|
|
llama_model * model = llama_load_model_from_file(params.model.c_str(), mparams);
|
|
if (model == NULL) {
|
|
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
llama_context_params cparams = llama_context_params_from_gpt_params(params);
|
|
|
|
// pass the callback to the backend scheduler
|
|
// it will be executed for each node during the graph computation
|
|
cparams.cb_eval = ik_collect_imatrix;
|
|
cparams.cb_eval_user_data = NULL;
|
|
|
|
llama_context * ctx = llama_new_context_with_model(model, cparams);
|
|
if (ctx == NULL) {
|
|
fprintf(stderr, "%s: error: unable to create context\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
const int n_ctx_train = llama_n_ctx_train(model);
|
|
if (params.n_ctx > n_ctx_train) {
|
|
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
|
__func__, n_ctx_train, params.n_ctx);
|
|
}
|
|
|
|
// print system information
|
|
{
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
|
}
|
|
|
|
bool OK = compute_imatrix(ctx, params, compute_ppl, from_chunk);
|
|
if (!OK) {
|
|
return 1;
|
|
}
|
|
|
|
g_collector.save_imatrix();
|
|
|
|
llama_print_timings(ctx);
|
|
|
|
llama_free(ctx);
|
|
llama_free_model(model);
|
|
|
|
llama_backend_free();
|
|
|
|
return 0;
|
|
}
|