mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-14 22:38:58 +01:00
4f447a4833
* llama : fix data units
ggml-ci
* Revert "llama : fix data units"
This reverts commit f5feac831f
.
* llama : disambiguate data units
ggml-ci
1754 lines
88 KiB
Objective-C
1754 lines
88 KiB
Objective-C
#import "ggml-metal.h"
|
|
|
|
#import "ggml-backend-impl.h"
|
|
#import "ggml.h"
|
|
|
|
#import <Foundation/Foundation.h>
|
|
|
|
#import <Metal/Metal.h>
|
|
|
|
#undef MIN
|
|
#undef MAX
|
|
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
|
|
|
#ifdef GGML_METAL_NDEBUG
|
|
#define GGML_METAL_LOG_INFO(...)
|
|
#define GGML_METAL_LOG_WARN(...)
|
|
#define GGML_METAL_LOG_ERROR(...)
|
|
#else
|
|
#define GGML_METAL_LOG_INFO(...) ggml_metal_log(GGML_LOG_LEVEL_INFO, __VA_ARGS__)
|
|
#define GGML_METAL_LOG_WARN(...) ggml_metal_log(GGML_LOG_LEVEL_WARN, __VA_ARGS__)
|
|
#define GGML_METAL_LOG_ERROR(...) ggml_metal_log(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
|
|
#endif
|
|
|
|
#define UNUSED(x) (void)(x)
|
|
|
|
#define GGML_MAX_CONCUR (2*GGML_DEFAULT_GRAPH_SIZE)
|
|
|
|
struct ggml_metal_buffer {
|
|
const char * name;
|
|
|
|
void * data;
|
|
size_t size;
|
|
|
|
id<MTLBuffer> metal;
|
|
};
|
|
|
|
struct ggml_metal_context {
|
|
int n_cb;
|
|
|
|
id<MTLDevice> device;
|
|
id<MTLCommandQueue> queue;
|
|
id<MTLLibrary> library;
|
|
|
|
id<MTLCommandBuffer> command_buffers [GGML_METAL_MAX_COMMAND_BUFFERS];
|
|
id<MTLComputeCommandEncoder> command_encoders[GGML_METAL_MAX_COMMAND_BUFFERS];
|
|
|
|
dispatch_queue_t d_queue;
|
|
|
|
int n_buffers;
|
|
struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
|
|
|
|
int concur_list[GGML_MAX_CONCUR];
|
|
int concur_list_len;
|
|
|
|
// custom kernels
|
|
#define GGML_METAL_DECL_KERNEL(name) \
|
|
id<MTLFunction> function_##name; \
|
|
id<MTLComputePipelineState> pipeline_##name
|
|
|
|
GGML_METAL_DECL_KERNEL(add);
|
|
GGML_METAL_DECL_KERNEL(add_row); // TODO: avoid this extra kernel, instead extend the "add" kernel to support broadcast
|
|
GGML_METAL_DECL_KERNEL(mul);
|
|
GGML_METAL_DECL_KERNEL(mul_row); // TODO: avoid this extra kernel, instead extend the "mul" kernel to support broadcast
|
|
GGML_METAL_DECL_KERNEL(scale);
|
|
GGML_METAL_DECL_KERNEL(scale_4);
|
|
GGML_METAL_DECL_KERNEL(silu);
|
|
GGML_METAL_DECL_KERNEL(relu);
|
|
GGML_METAL_DECL_KERNEL(gelu);
|
|
GGML_METAL_DECL_KERNEL(soft_max);
|
|
GGML_METAL_DECL_KERNEL(soft_max_4);
|
|
GGML_METAL_DECL_KERNEL(diag_mask_inf);
|
|
GGML_METAL_DECL_KERNEL(diag_mask_inf_8);
|
|
GGML_METAL_DECL_KERNEL(get_rows_f32);
|
|
GGML_METAL_DECL_KERNEL(get_rows_f16);
|
|
GGML_METAL_DECL_KERNEL(get_rows_q4_0);
|
|
GGML_METAL_DECL_KERNEL(get_rows_q4_1);
|
|
GGML_METAL_DECL_KERNEL(get_rows_q5_0);
|
|
GGML_METAL_DECL_KERNEL(get_rows_q5_1);
|
|
GGML_METAL_DECL_KERNEL(get_rows_q8_0);
|
|
GGML_METAL_DECL_KERNEL(get_rows_q2_K);
|
|
GGML_METAL_DECL_KERNEL(get_rows_q3_K);
|
|
GGML_METAL_DECL_KERNEL(get_rows_q4_K);
|
|
GGML_METAL_DECL_KERNEL(get_rows_q5_K);
|
|
GGML_METAL_DECL_KERNEL(get_rows_q6_K);
|
|
GGML_METAL_DECL_KERNEL(rms_norm);
|
|
GGML_METAL_DECL_KERNEL(norm);
|
|
GGML_METAL_DECL_KERNEL(mul_mv_f32_f32);
|
|
GGML_METAL_DECL_KERNEL(mul_mv_f16_f16);
|
|
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32);
|
|
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_1row);
|
|
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_l4);
|
|
GGML_METAL_DECL_KERNEL(mul_mv_q4_0_f32);
|
|
GGML_METAL_DECL_KERNEL(mul_mv_q4_1_f32);
|
|
GGML_METAL_DECL_KERNEL(mul_mv_q5_0_f32);
|
|
GGML_METAL_DECL_KERNEL(mul_mv_q5_1_f32);
|
|
GGML_METAL_DECL_KERNEL(mul_mv_q8_0_f32);
|
|
GGML_METAL_DECL_KERNEL(mul_mv_q2_K_f32);
|
|
GGML_METAL_DECL_KERNEL(mul_mv_q3_K_f32);
|
|
GGML_METAL_DECL_KERNEL(mul_mv_q4_K_f32);
|
|
GGML_METAL_DECL_KERNEL(mul_mv_q5_K_f32);
|
|
GGML_METAL_DECL_KERNEL(mul_mv_q6_K_f32);
|
|
GGML_METAL_DECL_KERNEL(mul_mm_f32_f32);
|
|
GGML_METAL_DECL_KERNEL(mul_mm_f16_f32);
|
|
GGML_METAL_DECL_KERNEL(mul_mm_q4_0_f32);
|
|
GGML_METAL_DECL_KERNEL(mul_mm_q4_1_f32);
|
|
GGML_METAL_DECL_KERNEL(mul_mm_q5_0_f32);
|
|
GGML_METAL_DECL_KERNEL(mul_mm_q5_1_f32);
|
|
GGML_METAL_DECL_KERNEL(mul_mm_q8_0_f32);
|
|
GGML_METAL_DECL_KERNEL(mul_mm_q2_K_f32);
|
|
GGML_METAL_DECL_KERNEL(mul_mm_q3_K_f32);
|
|
GGML_METAL_DECL_KERNEL(mul_mm_q4_K_f32);
|
|
GGML_METAL_DECL_KERNEL(mul_mm_q5_K_f32);
|
|
GGML_METAL_DECL_KERNEL(mul_mm_q6_K_f32);
|
|
GGML_METAL_DECL_KERNEL(rope_f32);
|
|
GGML_METAL_DECL_KERNEL(rope_f16);
|
|
GGML_METAL_DECL_KERNEL(alibi_f32);
|
|
GGML_METAL_DECL_KERNEL(im2col_f16);
|
|
GGML_METAL_DECL_KERNEL(cpy_f32_f16);
|
|
GGML_METAL_DECL_KERNEL(cpy_f32_f32);
|
|
GGML_METAL_DECL_KERNEL(cpy_f16_f16);
|
|
GGML_METAL_DECL_KERNEL(concat);
|
|
GGML_METAL_DECL_KERNEL(sqr);
|
|
|
|
#undef GGML_METAL_DECL_KERNEL
|
|
};
|
|
|
|
// MSL code
|
|
// TODO: move the contents here when ready
|
|
// for now it is easier to work in a separate file
|
|
//static NSString * const msl_library_source = @"see metal.metal";
|
|
|
|
// Here to assist with NSBundle Path Hack
|
|
@interface GGMLMetalClass : NSObject
|
|
@end
|
|
@implementation GGMLMetalClass
|
|
@end
|
|
|
|
ggml_log_callback ggml_metal_log_callback = NULL;
|
|
void * ggml_metal_log_user_data = NULL;
|
|
|
|
void ggml_metal_log_set_callback(ggml_log_callback log_callback, void * user_data) {
|
|
ggml_metal_log_callback = log_callback;
|
|
ggml_metal_log_user_data = user_data;
|
|
}
|
|
|
|
GGML_ATTRIBUTE_FORMAT(2, 3)
|
|
static void ggml_metal_log(enum ggml_log_level level, const char * format, ...){
|
|
if (ggml_metal_log_callback != NULL) {
|
|
va_list args;
|
|
va_start(args, format);
|
|
char buffer[128];
|
|
int len = vsnprintf(buffer, 128, format, args);
|
|
if (len < 128) {
|
|
ggml_metal_log_callback(level, buffer, ggml_metal_log_user_data);
|
|
} else {
|
|
char* buffer2 = malloc(len+1);
|
|
vsnprintf(buffer2, len+1, format, args);
|
|
buffer2[len] = 0;
|
|
ggml_metal_log_callback(level, buffer2, ggml_metal_log_user_data);
|
|
free(buffer2);
|
|
}
|
|
va_end(args);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|
GGML_METAL_LOG_INFO("%s: allocating\n", __func__);
|
|
|
|
id <MTLDevice> device;
|
|
NSString * s;
|
|
|
|
#if TARGET_OS_OSX
|
|
// Show all the Metal device instances in the system
|
|
NSArray * devices = MTLCopyAllDevices();
|
|
for (device in devices) {
|
|
s = [device name];
|
|
GGML_METAL_LOG_INFO("%s: found device: %s\n", __func__, [s UTF8String]);
|
|
}
|
|
#endif
|
|
|
|
// Pick and show default Metal device
|
|
device = MTLCreateSystemDefaultDevice();
|
|
s = [device name];
|
|
GGML_METAL_LOG_INFO("%s: picking default device: %s\n", __func__, [s UTF8String]);
|
|
|
|
// Configure context
|
|
struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
|
|
ctx->device = device;
|
|
ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS);
|
|
ctx->queue = [ctx->device newCommandQueue];
|
|
ctx->n_buffers = 0;
|
|
ctx->concur_list_len = 0;
|
|
|
|
ctx->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT);
|
|
|
|
// load library
|
|
{
|
|
NSBundle * bundle = nil;
|
|
#ifdef SWIFT_PACKAGE
|
|
bundle = SWIFTPM_MODULE_BUNDLE;
|
|
#else
|
|
bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
|
|
#endif
|
|
NSError * error = nil;
|
|
NSString * libPath = [bundle pathForResource:@"default" ofType:@"metallib"];
|
|
if (libPath != nil) {
|
|
NSURL * libURL = [NSURL fileURLWithPath:libPath];
|
|
GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [libPath UTF8String]);
|
|
ctx->library = [ctx->device newLibraryWithURL:libURL error:&error];
|
|
} else {
|
|
GGML_METAL_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__);
|
|
|
|
NSString * sourcePath;
|
|
NSString * ggmlMetalPathResources = [[NSProcessInfo processInfo].environment objectForKey:@"GGML_METAL_PATH_RESOURCES"];
|
|
if (ggmlMetalPathResources) {
|
|
sourcePath = [ggmlMetalPathResources stringByAppendingPathComponent:@"ggml-metal.metal"];
|
|
} else {
|
|
sourcePath = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
|
|
}
|
|
if (sourcePath == nil) {
|
|
GGML_METAL_LOG_WARN("%s: error: could not use bundle path to find ggml-metal.metal, falling back to trying cwd\n", __func__);
|
|
sourcePath = @"ggml-metal.metal";
|
|
}
|
|
GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [sourcePath UTF8String]);
|
|
NSString * src = [NSString stringWithContentsOfFile:sourcePath encoding:NSUTF8StringEncoding error:&error];
|
|
if (error) {
|
|
GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
|
|
return NULL;
|
|
}
|
|
|
|
MTLCompileOptions* options = nil;
|
|
#ifdef GGML_QKK_64
|
|
options = [MTLCompileOptions new];
|
|
options.preprocessorMacros = @{ @"QK_K" : @(64) };
|
|
#endif
|
|
ctx->library = [ctx->device newLibraryWithSource:src options:options error:&error];
|
|
}
|
|
|
|
if (error) {
|
|
GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
// load kernels
|
|
{
|
|
NSError * error = nil;
|
|
|
|
/*
|
|
GGML_METAL_LOG_INFO("%s: loaded %-32s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name, \
|
|
(int) ctx->pipeline_##name.maxTotalThreadsPerThreadgroup, \
|
|
(int) ctx->pipeline_##name.threadExecutionWidth); \
|
|
*/
|
|
#define GGML_METAL_ADD_KERNEL(name) \
|
|
ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \
|
|
ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:&error]; \
|
|
if (error) { \
|
|
GGML_METAL_LOG_ERROR("%s: error: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \
|
|
return NULL; \
|
|
}
|
|
|
|
GGML_METAL_ADD_KERNEL(add);
|
|
GGML_METAL_ADD_KERNEL(add_row);
|
|
GGML_METAL_ADD_KERNEL(mul);
|
|
GGML_METAL_ADD_KERNEL(mul_row);
|
|
GGML_METAL_ADD_KERNEL(scale);
|
|
GGML_METAL_ADD_KERNEL(scale_4);
|
|
GGML_METAL_ADD_KERNEL(silu);
|
|
GGML_METAL_ADD_KERNEL(relu);
|
|
GGML_METAL_ADD_KERNEL(gelu);
|
|
GGML_METAL_ADD_KERNEL(soft_max);
|
|
GGML_METAL_ADD_KERNEL(soft_max_4);
|
|
GGML_METAL_ADD_KERNEL(diag_mask_inf);
|
|
GGML_METAL_ADD_KERNEL(diag_mask_inf_8);
|
|
GGML_METAL_ADD_KERNEL(get_rows_f32);
|
|
GGML_METAL_ADD_KERNEL(get_rows_f16);
|
|
GGML_METAL_ADD_KERNEL(get_rows_q4_0);
|
|
GGML_METAL_ADD_KERNEL(get_rows_q4_1);
|
|
GGML_METAL_ADD_KERNEL(get_rows_q5_0);
|
|
GGML_METAL_ADD_KERNEL(get_rows_q5_1);
|
|
GGML_METAL_ADD_KERNEL(get_rows_q8_0);
|
|
GGML_METAL_ADD_KERNEL(get_rows_q2_K);
|
|
GGML_METAL_ADD_KERNEL(get_rows_q3_K);
|
|
GGML_METAL_ADD_KERNEL(get_rows_q4_K);
|
|
GGML_METAL_ADD_KERNEL(get_rows_q5_K);
|
|
GGML_METAL_ADD_KERNEL(get_rows_q6_K);
|
|
GGML_METAL_ADD_KERNEL(rms_norm);
|
|
GGML_METAL_ADD_KERNEL(norm);
|
|
GGML_METAL_ADD_KERNEL(mul_mv_f32_f32);
|
|
GGML_METAL_ADD_KERNEL(mul_mv_f16_f16);
|
|
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32);
|
|
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_1row);
|
|
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_l4);
|
|
GGML_METAL_ADD_KERNEL(mul_mv_q4_0_f32);
|
|
GGML_METAL_ADD_KERNEL(mul_mv_q4_1_f32);
|
|
GGML_METAL_ADD_KERNEL(mul_mv_q5_0_f32);
|
|
GGML_METAL_ADD_KERNEL(mul_mv_q5_1_f32);
|
|
GGML_METAL_ADD_KERNEL(mul_mv_q8_0_f32);
|
|
GGML_METAL_ADD_KERNEL(mul_mv_q2_K_f32);
|
|
GGML_METAL_ADD_KERNEL(mul_mv_q3_K_f32);
|
|
GGML_METAL_ADD_KERNEL(mul_mv_q4_K_f32);
|
|
GGML_METAL_ADD_KERNEL(mul_mv_q5_K_f32);
|
|
GGML_METAL_ADD_KERNEL(mul_mv_q6_K_f32);
|
|
if ([ctx->device supportsFamily:MTLGPUFamilyApple7]) {
|
|
GGML_METAL_ADD_KERNEL(mul_mm_f32_f32);
|
|
GGML_METAL_ADD_KERNEL(mul_mm_f16_f32);
|
|
GGML_METAL_ADD_KERNEL(mul_mm_q4_0_f32);
|
|
GGML_METAL_ADD_KERNEL(mul_mm_q4_1_f32);
|
|
GGML_METAL_ADD_KERNEL(mul_mm_q5_0_f32);
|
|
GGML_METAL_ADD_KERNEL(mul_mm_q5_1_f32);
|
|
GGML_METAL_ADD_KERNEL(mul_mm_q8_0_f32);
|
|
GGML_METAL_ADD_KERNEL(mul_mm_q2_K_f32);
|
|
GGML_METAL_ADD_KERNEL(mul_mm_q3_K_f32);
|
|
GGML_METAL_ADD_KERNEL(mul_mm_q4_K_f32);
|
|
GGML_METAL_ADD_KERNEL(mul_mm_q5_K_f32);
|
|
GGML_METAL_ADD_KERNEL(mul_mm_q6_K_f32);
|
|
}
|
|
GGML_METAL_ADD_KERNEL(rope_f32);
|
|
GGML_METAL_ADD_KERNEL(rope_f16);
|
|
GGML_METAL_ADD_KERNEL(alibi_f32);
|
|
GGML_METAL_ADD_KERNEL(im2col_f16);
|
|
GGML_METAL_ADD_KERNEL(cpy_f32_f16);
|
|
GGML_METAL_ADD_KERNEL(cpy_f32_f32);
|
|
GGML_METAL_ADD_KERNEL(cpy_f16_f16);
|
|
GGML_METAL_ADD_KERNEL(concat);
|
|
GGML_METAL_ADD_KERNEL(sqr);
|
|
|
|
#undef GGML_METAL_ADD_KERNEL
|
|
}
|
|
|
|
#if TARGET_OS_OSX
|
|
// print MTL GPU family:
|
|
GGML_METAL_LOG_INFO("%s: GPU name: %s\n", __func__, [[ctx->device name] UTF8String]);
|
|
|
|
// determine max supported GPU family
|
|
// https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
|
|
// https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
|
|
for (int i = MTLGPUFamilyApple1 + 20; i >= MTLGPUFamilyApple1; --i) {
|
|
if ([ctx->device supportsFamily:i]) {
|
|
GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d (%d)\n", __func__, i - (int) MTLGPUFamilyApple1 + 1, i);
|
|
break;
|
|
}
|
|
}
|
|
|
|
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
|
|
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MiB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
|
if (ctx->device.maxTransferRate != 0) {
|
|
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MiB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
|
|
} else {
|
|
GGML_METAL_LOG_INFO("%s: maxTransferRate = built-in GPU\n", __func__);
|
|
}
|
|
#endif
|
|
|
|
return ctx;
|
|
}
|
|
|
|
void ggml_metal_free(struct ggml_metal_context * ctx) {
|
|
GGML_METAL_LOG_INFO("%s: deallocating\n", __func__);
|
|
#define GGML_METAL_DEL_KERNEL(name) \
|
|
[ctx->function_##name release]; \
|
|
[ctx->pipeline_##name release];
|
|
|
|
GGML_METAL_DEL_KERNEL(add);
|
|
GGML_METAL_DEL_KERNEL(add_row);
|
|
GGML_METAL_DEL_KERNEL(mul);
|
|
GGML_METAL_DEL_KERNEL(mul_row);
|
|
GGML_METAL_DEL_KERNEL(scale);
|
|
GGML_METAL_DEL_KERNEL(scale_4);
|
|
GGML_METAL_DEL_KERNEL(silu);
|
|
GGML_METAL_DEL_KERNEL(relu);
|
|
GGML_METAL_DEL_KERNEL(gelu);
|
|
GGML_METAL_DEL_KERNEL(soft_max);
|
|
GGML_METAL_DEL_KERNEL(soft_max_4);
|
|
GGML_METAL_DEL_KERNEL(diag_mask_inf);
|
|
GGML_METAL_DEL_KERNEL(diag_mask_inf_8);
|
|
GGML_METAL_DEL_KERNEL(get_rows_f32);
|
|
GGML_METAL_DEL_KERNEL(get_rows_f16);
|
|
GGML_METAL_DEL_KERNEL(get_rows_q4_0);
|
|
GGML_METAL_DEL_KERNEL(get_rows_q4_1);
|
|
GGML_METAL_DEL_KERNEL(get_rows_q5_0);
|
|
GGML_METAL_DEL_KERNEL(get_rows_q5_1);
|
|
GGML_METAL_DEL_KERNEL(get_rows_q8_0);
|
|
GGML_METAL_DEL_KERNEL(get_rows_q2_K);
|
|
GGML_METAL_DEL_KERNEL(get_rows_q3_K);
|
|
GGML_METAL_DEL_KERNEL(get_rows_q4_K);
|
|
GGML_METAL_DEL_KERNEL(get_rows_q5_K);
|
|
GGML_METAL_DEL_KERNEL(get_rows_q6_K);
|
|
GGML_METAL_DEL_KERNEL(rms_norm);
|
|
GGML_METAL_DEL_KERNEL(norm);
|
|
GGML_METAL_DEL_KERNEL(mul_mv_f32_f32);
|
|
GGML_METAL_DEL_KERNEL(mul_mv_f16_f16);
|
|
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32);
|
|
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_1row);
|
|
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_l4);
|
|
GGML_METAL_DEL_KERNEL(mul_mv_q4_0_f32);
|
|
GGML_METAL_DEL_KERNEL(mul_mv_q4_1_f32);
|
|
GGML_METAL_DEL_KERNEL(mul_mv_q5_0_f32);
|
|
GGML_METAL_DEL_KERNEL(mul_mv_q5_1_f32);
|
|
GGML_METAL_DEL_KERNEL(mul_mv_q8_0_f32);
|
|
GGML_METAL_DEL_KERNEL(mul_mv_q2_K_f32);
|
|
GGML_METAL_DEL_KERNEL(mul_mv_q3_K_f32);
|
|
GGML_METAL_DEL_KERNEL(mul_mv_q4_K_f32);
|
|
GGML_METAL_DEL_KERNEL(mul_mv_q5_K_f32);
|
|
GGML_METAL_DEL_KERNEL(mul_mv_q6_K_f32);
|
|
if ([ctx->device supportsFamily:MTLGPUFamilyApple7]) {
|
|
GGML_METAL_DEL_KERNEL(mul_mm_f32_f32);
|
|
GGML_METAL_DEL_KERNEL(mul_mm_f16_f32);
|
|
GGML_METAL_DEL_KERNEL(mul_mm_q4_0_f32);
|
|
GGML_METAL_DEL_KERNEL(mul_mm_q4_1_f32);
|
|
GGML_METAL_DEL_KERNEL(mul_mm_q5_0_f32);
|
|
GGML_METAL_DEL_KERNEL(mul_mm_q5_1_f32);
|
|
GGML_METAL_DEL_KERNEL(mul_mm_q8_0_f32);
|
|
GGML_METAL_DEL_KERNEL(mul_mm_q2_K_f32);
|
|
GGML_METAL_DEL_KERNEL(mul_mm_q3_K_f32);
|
|
GGML_METAL_DEL_KERNEL(mul_mm_q4_K_f32);
|
|
GGML_METAL_DEL_KERNEL(mul_mm_q5_K_f32);
|
|
GGML_METAL_DEL_KERNEL(mul_mm_q6_K_f32);
|
|
}
|
|
GGML_METAL_DEL_KERNEL(rope_f32);
|
|
GGML_METAL_DEL_KERNEL(rope_f16);
|
|
GGML_METAL_DEL_KERNEL(alibi_f32);
|
|
GGML_METAL_DEL_KERNEL(im2col_f16);
|
|
GGML_METAL_DEL_KERNEL(cpy_f32_f16);
|
|
GGML_METAL_DEL_KERNEL(cpy_f32_f32);
|
|
GGML_METAL_DEL_KERNEL(cpy_f16_f16);
|
|
GGML_METAL_DEL_KERNEL(concat);
|
|
GGML_METAL_DEL_KERNEL(sqr);
|
|
|
|
#undef GGML_METAL_DEL_KERNEL
|
|
|
|
for (int i = 0; i < ctx->n_buffers; ++i) {
|
|
[ctx->buffers[i].metal release];
|
|
}
|
|
|
|
[ctx->library release];
|
|
[ctx->queue release];
|
|
[ctx->device release];
|
|
|
|
dispatch_release(ctx->d_queue);
|
|
|
|
free(ctx);
|
|
}
|
|
|
|
void * ggml_metal_host_malloc(size_t n) {
|
|
void * data = NULL;
|
|
const int result = posix_memalign((void **) &data, sysconf(_SC_PAGESIZE), n);
|
|
if (result != 0) {
|
|
GGML_METAL_LOG_ERROR("%s: error: posix_memalign failed\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
void ggml_metal_host_free(void * data) {
|
|
free(data);
|
|
}
|
|
|
|
void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb) {
|
|
ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS);
|
|
}
|
|
|
|
int ggml_metal_if_optimized(struct ggml_metal_context * ctx) {
|
|
return ctx->concur_list_len;
|
|
}
|
|
|
|
int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx) {
|
|
return ctx->concur_list;
|
|
}
|
|
|
|
// finds the Metal buffer that contains the tensor data on the GPU device
|
|
// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
|
|
// Metal buffer based on the host memory pointer
|
|
//
|
|
static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) {
|
|
//GGML_METAL_LOG_INFO("%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach);
|
|
|
|
const int64_t tsize = ggml_nbytes(t);
|
|
|
|
if (t->buffer && t->buffer->backend && t->buffer->backend->context) {
|
|
ctx = t->buffer->backend->context;
|
|
}
|
|
|
|
// find the view that contains the tensor fully
|
|
for (int i = 0; i < ctx->n_buffers; ++i) {
|
|
const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;
|
|
|
|
//GGML_METAL_LOG_INFO("ioffs = %10ld, tsize = %10ld, sum = %10ld, ctx->buffers[%d].size = %10ld, name = %s\n", ioffs, tsize, ioffs + tsize, i, ctx->buffers[i].size, ctx->buffers[i].name);
|
|
if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) {
|
|
*offs = (size_t) ioffs;
|
|
|
|
//GGML_METAL_LOG_INFO("%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs);
|
|
|
|
return ctx->buffers[i].metal;
|
|
}
|
|
}
|
|
|
|
GGML_METAL_LOG_ERROR("%s: error: buffer is nil\n", __func__);
|
|
|
|
return nil;
|
|
}
|
|
|
|
bool ggml_metal_add_buffer(
|
|
struct ggml_metal_context * ctx,
|
|
const char * name,
|
|
void * data,
|
|
size_t size,
|
|
size_t max_size) {
|
|
if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) {
|
|
GGML_METAL_LOG_ERROR("%s: error: too many buffers\n", __func__);
|
|
return false;
|
|
}
|
|
|
|
if (data) {
|
|
// verify that the buffer does not overlap with any of the existing buffers
|
|
for (int i = 0; i < ctx->n_buffers; ++i) {
|
|
const int64_t ioffs = (int64_t) data - (int64_t) ctx->buffers[i].data;
|
|
|
|
if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) {
|
|
GGML_METAL_LOG_ERROR("%s: error: buffer '%s' overlaps with '%s'\n", __func__, name, ctx->buffers[i].name);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
const size_t size_page = sysconf(_SC_PAGESIZE);
|
|
|
|
size_t size_aligned = size;
|
|
if ((size_aligned % size_page) != 0) {
|
|
size_aligned += (size_page - (size_aligned % size_page));
|
|
}
|
|
|
|
// the buffer fits into the max buffer size allowed by the device
|
|
if (size_aligned <= ctx->device.maxBufferLength) {
|
|
ctx->buffers[ctx->n_buffers].name = name;
|
|
ctx->buffers[ctx->n_buffers].data = data;
|
|
ctx->buffers[ctx->n_buffers].size = size;
|
|
|
|
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
|
|
|
|
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
|
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MiB\n", __func__, name, size_aligned / 1024.0 / 1024.0);
|
|
return false;
|
|
}
|
|
|
|
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MiB", __func__, name, size_aligned / 1024.0 / 1024.0);
|
|
|
|
++ctx->n_buffers;
|
|
} else {
|
|
// this overlap between the views will guarantee that the tensor with the maximum size will fully fit into
|
|
// one of the views
|
|
const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case
|
|
const size_t size_step = ctx->device.maxBufferLength - size_ovlp;
|
|
const size_t size_view = ctx->device.maxBufferLength;
|
|
|
|
for (size_t i = 0; i < size; i += size_step) {
|
|
const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i);
|
|
|
|
ctx->buffers[ctx->n_buffers].name = name;
|
|
ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i);
|
|
ctx->buffers[ctx->n_buffers].size = size_step_aligned;
|
|
|
|
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
|
|
|
|
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
|
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MiB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0);
|
|
return false;
|
|
}
|
|
|
|
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MiB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i);
|
|
if (i + size_step < size) {
|
|
GGML_METAL_LOG_INFO("\n");
|
|
}
|
|
|
|
++ctx->n_buffers;
|
|
}
|
|
}
|
|
|
|
#if TARGET_OS_OSX
|
|
GGML_METAL_LOG_INFO(", (%8.2f / %8.2f)",
|
|
ctx->device.currentAllocatedSize / 1024.0 / 1024.0,
|
|
ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
|
|
|
if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) {
|
|
GGML_METAL_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__);
|
|
} else {
|
|
GGML_METAL_LOG_INFO("\n");
|
|
}
|
|
#else
|
|
GGML_METAL_LOG_INFO(", (%8.2f)\n", ctx->device.currentAllocatedSize / 1024.0 / 1024.0);
|
|
#endif
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void ggml_metal_set_tensor(
|
|
struct ggml_metal_context * ctx,
|
|
struct ggml_tensor * t) {
|
|
size_t offs;
|
|
id<MTLBuffer> id_dst = ggml_metal_get_buffer(ctx, t, &offs);
|
|
|
|
memcpy((void *) ((uint8_t *) id_dst.contents + offs), t->data, ggml_nbytes(t));
|
|
}
|
|
|
|
void ggml_metal_get_tensor(
|
|
struct ggml_metal_context * ctx,
|
|
struct ggml_tensor * t) {
|
|
size_t offs;
|
|
id<MTLBuffer> id_src = ggml_metal_get_buffer(ctx, t, &offs);
|
|
|
|
memcpy(t->data, (void *) ((uint8_t *) id_src.contents + offs), ggml_nbytes(t));
|
|
}
|
|
|
|
void ggml_metal_graph_find_concurrency(
|
|
struct ggml_metal_context * ctx,
|
|
struct ggml_cgraph * gf, bool check_mem) {
|
|
int search_depth = gf->n_nodes; //we only find concurrency in this range to avoid wasting too much time
|
|
int nodes_unused[GGML_MAX_CONCUR];
|
|
|
|
for (int i = 0; i < GGML_MAX_CONCUR; i++) { ctx->concur_list[i] = 0; }
|
|
for (int i = 0; i < gf->n_nodes; i++) { nodes_unused[i] = 1; }
|
|
ctx->concur_list_len = 0;
|
|
|
|
int n_left = gf->n_nodes;
|
|
int n_start = 0; // all nodes before n_start at nodes_unused array have been sorted and store back to ctx->concur_list
|
|
int level_pos = 0; // at ctx->concur_list, the last layer (level) ends at level_pos
|
|
|
|
while (n_left > 0) {
|
|
// number of nodes at a layer (that can be issued concurrently)
|
|
int concurrency = 0;
|
|
for (int i = n_start; i < ((n_start + search_depth > gf->n_nodes) ? gf->n_nodes : n_start + search_depth); i++) {
|
|
if (nodes_unused[i]) {
|
|
// if the requirements for gf->nodes[i] are satisfied
|
|
int exe_flag = 1;
|
|
|
|
// scan all srcs
|
|
for (int src_ind = 0; src_ind < GGML_MAX_SRC; src_ind++) {
|
|
struct ggml_tensor * src_cur = gf->nodes[i]->src[src_ind];
|
|
if (src_cur) {
|
|
// if is leaf nodes it's satisfied.
|
|
// TODO: ggml_is_leaf()
|
|
if (src_cur->op == GGML_OP_NONE && src_cur->grad == NULL) {
|
|
continue;
|
|
}
|
|
|
|
// otherwise this src should be the output from previous nodes.
|
|
int is_found = 0;
|
|
|
|
// scan 2*search_depth back because we inserted barrier.
|
|
//for (int j = ((level_pos - 2*search_depth) < 0 ? 0 : (level_pos - 2*search_depth)); j < level_pos; j++) {
|
|
for (int j = MAX(0, level_pos - 2*search_depth); j < level_pos; j++) {
|
|
if (ctx->concur_list[j] >= 0 && gf->nodes[ctx->concur_list[j]] == src_cur) {
|
|
is_found = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (is_found == 0) {
|
|
exe_flag = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (exe_flag && check_mem) {
|
|
// check if nodes[i]'s data will be overwritten by a node before nodes[i].
|
|
// if node[5] and node[3] write to the same memory region, then we can't issue node[5] before node[3]
|
|
int64_t data_start = (int64_t) gf->nodes[i]->data;
|
|
int64_t length = (int64_t) ggml_nbytes(gf->nodes[i]);
|
|
for (int j = n_start; j < i; j++) {
|
|
if (nodes_unused[j] && gf->nodes[j]->op != GGML_OP_RESHAPE \
|
|
&& gf->nodes[j]->op != GGML_OP_VIEW \
|
|
&& gf->nodes[j]->op != GGML_OP_TRANSPOSE \
|
|
&& gf->nodes[j]->op != GGML_OP_PERMUTE) {
|
|
if (((int64_t)gf->nodes[j]->data) >= data_start + length || \
|
|
((int64_t)gf->nodes[j]->data) + (int64_t) ggml_nbytes(gf->nodes[j]) <= data_start) {
|
|
continue;
|
|
}
|
|
|
|
exe_flag = 0;
|
|
}
|
|
}
|
|
}
|
|
if (exe_flag) {
|
|
ctx->concur_list[level_pos + concurrency] = i;
|
|
nodes_unused[i] = 0;
|
|
concurrency++;
|
|
ctx->concur_list_len++;
|
|
}
|
|
}
|
|
}
|
|
n_left -= concurrency;
|
|
// adding a barrier different layer
|
|
ctx->concur_list[level_pos + concurrency] = -1;
|
|
ctx->concur_list_len++;
|
|
// jump all sorted nodes at nodes_bak
|
|
while (!nodes_unused[n_start]) {
|
|
n_start++;
|
|
}
|
|
level_pos += concurrency + 1;
|
|
}
|
|
|
|
if (ctx->concur_list_len > GGML_MAX_CONCUR) {
|
|
GGML_METAL_LOG_WARN("%s: too many elements for metal ctx->concur_list!\n", __func__);
|
|
}
|
|
}
|
|
|
|
void ggml_metal_graph_compute(
|
|
struct ggml_metal_context * ctx,
|
|
struct ggml_cgraph * gf) {
|
|
@autoreleasepool {
|
|
|
|
// if there is ctx->concur_list, dispatch concurrently
|
|
// else fallback to serial dispatch
|
|
MTLComputePassDescriptor * edesc = MTLComputePassDescriptor.computePassDescriptor;
|
|
|
|
const bool has_concur = ctx->concur_list_len && ctx->concur_list_len <= GGML_MAX_CONCUR;
|
|
|
|
const int n_nodes = has_concur ? ctx->concur_list_len : gf->n_nodes;
|
|
edesc.dispatchType = has_concur ? MTLDispatchTypeConcurrent : MTLDispatchTypeSerial;
|
|
|
|
// create multiple command buffers and enqueue them
|
|
// then, we encode the graph into the command buffers in parallel
|
|
|
|
const int n_cb = ctx->n_cb;
|
|
|
|
for (int i = 0; i < n_cb; ++i) {
|
|
ctx->command_buffers[i] = [ctx->queue commandBuffer];
|
|
|
|
// enqueue the command buffers in order to specify their execution order
|
|
[ctx->command_buffers[i] enqueue];
|
|
|
|
ctx->command_encoders[i] = [ctx->command_buffers[i] computeCommandEncoderWithDescriptor: edesc];
|
|
}
|
|
|
|
for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
|
|
const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb;
|
|
|
|
dispatch_async(ctx->d_queue, ^{
|
|
size_t offs_src0 = 0;
|
|
size_t offs_src1 = 0;
|
|
size_t offs_dst = 0;
|
|
|
|
id<MTLCommandBuffer> command_buffer = ctx->command_buffers[cb_idx];
|
|
id<MTLComputeCommandEncoder> encoder = ctx->command_encoders[cb_idx];
|
|
|
|
const int node_start = (cb_idx + 0) * n_nodes_per_cb;
|
|
const int node_end = MIN((cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb, n_nodes);
|
|
|
|
for (int ind = node_start; ind < node_end; ++ind) {
|
|
const int i = has_concur ? ctx->concur_list[ind] : ind;
|
|
|
|
if (i == -1) {
|
|
[encoder memoryBarrierWithScope:MTLBarrierScopeBuffers];
|
|
continue;
|
|
}
|
|
|
|
//GGML_METAL_LOG_INFO("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
|
|
|
|
struct ggml_tensor * src0 = gf->nodes[i]->src[0];
|
|
struct ggml_tensor * src1 = gf->nodes[i]->src[1];
|
|
struct ggml_tensor * dst = gf->nodes[i];
|
|
|
|
switch (dst->op) {
|
|
case GGML_OP_NONE:
|
|
case GGML_OP_RESHAPE:
|
|
case GGML_OP_VIEW:
|
|
case GGML_OP_TRANSPOSE:
|
|
case GGML_OP_PERMUTE:
|
|
{
|
|
// noop -> next node
|
|
} continue;
|
|
default:
|
|
{
|
|
} break;
|
|
}
|
|
|
|
const int64_t ne00 = src0 ? src0->ne[0] : 0;
|
|
const int64_t ne01 = src0 ? src0->ne[1] : 0;
|
|
const int64_t ne02 = src0 ? src0->ne[2] : 0;
|
|
const int64_t ne03 = src0 ? src0->ne[3] : 0;
|
|
|
|
const uint64_t nb00 = src0 ? src0->nb[0] : 0;
|
|
const uint64_t nb01 = src0 ? src0->nb[1] : 0;
|
|
const uint64_t nb02 = src0 ? src0->nb[2] : 0;
|
|
const uint64_t nb03 = src0 ? src0->nb[3] : 0;
|
|
|
|
const int64_t ne10 = src1 ? src1->ne[0] : 0;
|
|
const int64_t ne11 = src1 ? src1->ne[1] : 0;
|
|
const int64_t ne12 = src1 ? src1->ne[2] : 0;
|
|
const int64_t ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
|
|
|
|
const uint64_t nb10 = src1 ? src1->nb[0] : 0;
|
|
const uint64_t nb11 = src1 ? src1->nb[1] : 0;
|
|
const uint64_t nb12 = src1 ? src1->nb[2] : 0;
|
|
const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
|
|
|
|
const int64_t ne0 = dst ? dst->ne[0] : 0;
|
|
const int64_t ne1 = dst ? dst->ne[1] : 0;
|
|
const int64_t ne2 = dst ? dst->ne[2] : 0;
|
|
const int64_t ne3 = dst ? dst->ne[3] : 0;
|
|
|
|
const uint64_t nb0 = dst ? dst->nb[0] : 0;
|
|
const uint64_t nb1 = dst ? dst->nb[1] : 0;
|
|
const uint64_t nb2 = dst ? dst->nb[2] : 0;
|
|
const uint64_t nb3 = dst ? dst->nb[3] : 0;
|
|
|
|
const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
|
|
const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
|
|
const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
|
|
|
|
id<MTLBuffer> id_src0 = src0 ? ggml_metal_get_buffer(ctx, src0, &offs_src0) : nil;
|
|
id<MTLBuffer> id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil;
|
|
id<MTLBuffer> id_dst = dst ? ggml_metal_get_buffer(ctx, dst, &offs_dst) : nil;
|
|
|
|
//GGML_METAL_LOG_INFO("%s: op - %s\n", __func__, ggml_op_name(dst->op));
|
|
//if (src0) {
|
|
// GGML_METAL_LOG_INFO("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02,
|
|
// ggml_is_contiguous(src0), src0->name);
|
|
//}
|
|
//if (src1) {
|
|
// GGML_METAL_LOG_INFO("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12,
|
|
// ggml_is_contiguous(src1), src1->name);
|
|
//}
|
|
//if (dst) {
|
|
// GGML_METAL_LOG_INFO("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2,
|
|
// dst->name);
|
|
//}
|
|
|
|
switch (dst->op) {
|
|
case GGML_OP_CONCAT:
|
|
{
|
|
const int64_t nb = ne00;
|
|
|
|
[encoder setComputePipelineState:ctx->pipeline_concat];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
|
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
|
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
|
|
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
|
|
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6];
|
|
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7];
|
|
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8];
|
|
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9];
|
|
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10];
|
|
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11];
|
|
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12];
|
|
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13];
|
|
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14];
|
|
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15];
|
|
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16];
|
|
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17];
|
|
[encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18];
|
|
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19];
|
|
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20];
|
|
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21];
|
|
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22];
|
|
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23];
|
|
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24];
|
|
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25];
|
|
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26];
|
|
[encoder setBytes:&nb length:sizeof(nb) atIndex:27];
|
|
|
|
const int nth = MIN(1024, ne0);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
} break;
|
|
case GGML_OP_ADD:
|
|
{
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
GGML_ASSERT(ggml_is_contiguous(src1));
|
|
|
|
bool bcast_row = false;
|
|
|
|
int64_t nb = ne00;
|
|
|
|
if (ggml_nelements(src1) == ne10 && ne00 % 4 == 0) {
|
|
// src1 is a row
|
|
GGML_ASSERT(ne11 == 1);
|
|
|
|
nb = ne00 / 4;
|
|
[encoder setComputePipelineState:ctx->pipeline_add_row];
|
|
|
|
bcast_row = true;
|
|
} else {
|
|
[encoder setComputePipelineState:ctx->pipeline_add];
|
|
}
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
|
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
|
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
|
|
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
|
|
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6];
|
|
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7];
|
|
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8];
|
|
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9];
|
|
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10];
|
|
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11];
|
|
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12];
|
|
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13];
|
|
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14];
|
|
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15];
|
|
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16];
|
|
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17];
|
|
[encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18];
|
|
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19];
|
|
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20];
|
|
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21];
|
|
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22];
|
|
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23];
|
|
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24];
|
|
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25];
|
|
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26];
|
|
[encoder setBytes:&nb length:sizeof(nb) atIndex:27];
|
|
|
|
if (bcast_row) {
|
|
const int64_t n = ggml_nelements(dst)/4;
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} else {
|
|
const int nth = MIN(1024, ne0);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
}
|
|
} break;
|
|
case GGML_OP_MUL:
|
|
{
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
GGML_ASSERT(ggml_is_contiguous(src1));
|
|
|
|
// utilize float4
|
|
GGML_ASSERT(ne00 % 4 == 0);
|
|
const int64_t nb = ne00/4;
|
|
|
|
if (ggml_nelements(src1) == ne10) {
|
|
// src1 is a row
|
|
GGML_ASSERT(ne11 == 1);
|
|
[encoder setComputePipelineState:ctx->pipeline_mul_row];
|
|
} else {
|
|
[encoder setComputePipelineState:ctx->pipeline_mul];
|
|
}
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
|
[encoder setBytes:&nb length:sizeof(nb) atIndex:3];
|
|
|
|
const int64_t n = ggml_nelements(dst)/4;
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_OP_SCALE:
|
|
{
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
|
|
const float scale = *(const float *) src1->data;
|
|
|
|
int64_t n = ggml_nelements(dst);
|
|
|
|
if (n % 4 == 0) {
|
|
n /= 4;
|
|
[encoder setComputePipelineState:ctx->pipeline_scale_4];
|
|
} else {
|
|
[encoder setComputePipelineState:ctx->pipeline_scale];
|
|
}
|
|
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
[encoder setBytes:&scale length:sizeof(scale) atIndex:2];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_OP_UNARY:
|
|
switch (ggml_get_unary_op(gf->nodes[i])) {
|
|
case GGML_UNARY_OP_SILU:
|
|
{
|
|
[encoder setComputePipelineState:ctx->pipeline_silu];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
|
|
const int64_t n = ggml_nelements(dst);
|
|
GGML_ASSERT(n % 4 == 0);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_UNARY_OP_RELU:
|
|
{
|
|
[encoder setComputePipelineState:ctx->pipeline_relu];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
|
|
const int64_t n = ggml_nelements(dst);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_UNARY_OP_GELU:
|
|
{
|
|
[encoder setComputePipelineState:ctx->pipeline_gelu];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
|
|
const int64_t n = ggml_nelements(dst);
|
|
GGML_ASSERT(n % 4 == 0);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_METAL_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
|
|
GGML_ASSERT(false);
|
|
}
|
|
} break;
|
|
case GGML_OP_SQR:
|
|
{
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
|
|
[encoder setComputePipelineState:ctx->pipeline_sqr];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
|
|
const int64_t n = ggml_nelements(dst);
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_OP_SOFT_MAX:
|
|
{
|
|
int nth = 32; // SIMD width
|
|
|
|
if (ne00%4 == 0) {
|
|
[encoder setComputePipelineState:ctx->pipeline_soft_max_4];
|
|
} else {
|
|
do {
|
|
nth *= 2;
|
|
} while (nth <= ne00 && nth <= 1024);
|
|
nth /= 2;
|
|
[encoder setComputePipelineState:ctx->pipeline_soft_max];
|
|
}
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
|
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
|
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
|
|
[encoder setThreadgroupMemoryLength:GGML_PAD(nth/32*sizeof(float), 16) atIndex:0];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
} break;
|
|
case GGML_OP_DIAG_MASK_INF:
|
|
{
|
|
const int n_past = ((int32_t *)(dst->op_params))[0];
|
|
|
|
if (ne00%8 == 0) {
|
|
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf_8];
|
|
} else {
|
|
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
|
|
}
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
|
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
|
[encoder setBytes:&n_past length:sizeof(int) atIndex:4];
|
|
|
|
if (ne00%8 == 0) {
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne00*ne01*ne02/8, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
}
|
|
else {
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
}
|
|
} break;
|
|
case GGML_OP_MUL_MAT:
|
|
{
|
|
GGML_ASSERT(ne00 == ne10);
|
|
GGML_ASSERT(ne03 == ne13);
|
|
|
|
const uint gqa = ne12/ne02;
|
|
|
|
// find the break-even point where the matrix-matrix kernel becomes more efficient compared
|
|
// to the matrix-vector kernel
|
|
int ne11_mm_min = 1;
|
|
|
|
#if 0
|
|
// the numbers below are measured on M2 Ultra for 7B and 13B models
|
|
// these numbers do not translate to other devices or model sizes
|
|
// TODO: need to find a better approach
|
|
if ([ctx->device.name isEqualToString:@"Apple M2 Ultra"]) {
|
|
switch (src0t) {
|
|
case GGML_TYPE_F16: ne11_mm_min = 2; break;
|
|
case GGML_TYPE_Q8_0: ne11_mm_min = 7; break;
|
|
case GGML_TYPE_Q2_K: ne11_mm_min = 15; break;
|
|
case GGML_TYPE_Q3_K: ne11_mm_min = 7; break;
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1: ne11_mm_min = 15; break;
|
|
case GGML_TYPE_Q4_K: ne11_mm_min = 11; break;
|
|
case GGML_TYPE_Q5_0: // not tested yet
|
|
case GGML_TYPE_Q5_1: ne11_mm_min = 13; break; // not tested yet
|
|
case GGML_TYPE_Q5_K: ne11_mm_min = 7; break;
|
|
case GGML_TYPE_Q6_K: ne11_mm_min = 7; break;
|
|
default: ne11_mm_min = 1; break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
|
|
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
|
|
if ([ctx->device supportsFamily:MTLGPUFamilyApple7] &&
|
|
!ggml_is_transposed(src0) &&
|
|
!ggml_is_transposed(src1) &&
|
|
src1t == GGML_TYPE_F32 &&
|
|
ne00 % 32 == 0 && ne00 >= 64 &&
|
|
ne11 > ne11_mm_min) {
|
|
//printf("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f32_f32]; break;
|
|
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f16_f32]; break;
|
|
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_0_f32]; break;
|
|
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_1_f32]; break;
|
|
case GGML_TYPE_Q5_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q5_0_f32]; break;
|
|
case GGML_TYPE_Q5_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q5_1_f32]; break;
|
|
case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q8_0_f32]; break;
|
|
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q2_K_f32]; break;
|
|
case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q3_K_f32]; break;
|
|
case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_K_f32]; break;
|
|
case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q5_K_f32]; break;
|
|
case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q6_K_f32]; break;
|
|
default: GGML_ASSERT(false && "MUL MAT-MAT not implemented");
|
|
}
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
|
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
|
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
|
|
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:5];
|
|
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:6];
|
|
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:7];
|
|
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:8];
|
|
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:9];
|
|
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:10];
|
|
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:11];
|
|
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:12];
|
|
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:13];
|
|
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
|
|
[encoder dispatchThreadgroups:MTLSizeMake( (ne11 + 31)/32, (ne01 + 63)/64, ne12) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
|
} else {
|
|
int nth0 = 32;
|
|
int nth1 = 1;
|
|
int nrows = 1;
|
|
//printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
|
|
|
|
// use custom matrix x vector kernel
|
|
switch (src0t) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f32_f32];
|
|
nrows = 4;
|
|
} break;
|
|
case GGML_TYPE_F16:
|
|
{
|
|
nth0 = 32;
|
|
nth1 = 1;
|
|
if (src1t == GGML_TYPE_F32) {
|
|
if (ne11 * ne12 < 4) {
|
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_1row];
|
|
} else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
|
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_l4];
|
|
nrows = ne11;
|
|
} else {
|
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32];
|
|
nrows = 4;
|
|
}
|
|
} else {
|
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f16];
|
|
nrows = 4;
|
|
}
|
|
} break;
|
|
case GGML_TYPE_Q4_0:
|
|
{
|
|
GGML_ASSERT(ne02 == 1);
|
|
GGML_ASSERT(ne12 == 1);
|
|
|
|
nth0 = 8;
|
|
nth1 = 8;
|
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_0_f32];
|
|
} break;
|
|
case GGML_TYPE_Q4_1:
|
|
{
|
|
GGML_ASSERT(ne02 == 1);
|
|
GGML_ASSERT(ne12 == 1);
|
|
|
|
nth0 = 8;
|
|
nth1 = 8;
|
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_1_f32];
|
|
} break;
|
|
case GGML_TYPE_Q5_0:
|
|
{
|
|
GGML_ASSERT(ne02 == 1);
|
|
GGML_ASSERT(ne12 == 1);
|
|
|
|
nth0 = 8;
|
|
nth1 = 8;
|
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q5_0_f32];
|
|
} break;
|
|
case GGML_TYPE_Q5_1:
|
|
{
|
|
GGML_ASSERT(ne02 == 1);
|
|
GGML_ASSERT(ne12 == 1);
|
|
|
|
nth0 = 8;
|
|
nth1 = 8;
|
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q5_1_f32];
|
|
} break;
|
|
case GGML_TYPE_Q8_0:
|
|
{
|
|
GGML_ASSERT(ne02 == 1);
|
|
GGML_ASSERT(ne12 == 1);
|
|
|
|
nth0 = 8;
|
|
nth1 = 8;
|
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q8_0_f32];
|
|
} break;
|
|
case GGML_TYPE_Q2_K:
|
|
{
|
|
GGML_ASSERT(ne02 == 1);
|
|
GGML_ASSERT(ne12 == 1);
|
|
|
|
nth0 = 2;
|
|
nth1 = 32;
|
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q2_K_f32];
|
|
} break;
|
|
case GGML_TYPE_Q3_K:
|
|
{
|
|
GGML_ASSERT(ne02 == 1);
|
|
GGML_ASSERT(ne12 == 1);
|
|
|
|
nth0 = 2;
|
|
nth1 = 32;
|
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q3_K_f32];
|
|
} break;
|
|
case GGML_TYPE_Q4_K:
|
|
{
|
|
GGML_ASSERT(ne02 == 1);
|
|
GGML_ASSERT(ne12 == 1);
|
|
|
|
nth0 = 4; //1;
|
|
nth1 = 8; //32;
|
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_K_f32];
|
|
} break;
|
|
case GGML_TYPE_Q5_K:
|
|
{
|
|
GGML_ASSERT(ne02 == 1);
|
|
GGML_ASSERT(ne12 == 1);
|
|
|
|
nth0 = 2;
|
|
nth1 = 32;
|
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q5_K_f32];
|
|
} break;
|
|
case GGML_TYPE_Q6_K:
|
|
{
|
|
GGML_ASSERT(ne02 == 1);
|
|
GGML_ASSERT(ne12 == 1);
|
|
|
|
nth0 = 2;
|
|
nth1 = 32;
|
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q6_K_f32];
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t);
|
|
GGML_ASSERT(false && "not implemented");
|
|
}
|
|
};
|
|
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
|
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
|
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
|
|
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
|
|
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
|
|
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
|
|
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
|
|
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:9];
|
|
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:10];
|
|
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:11];
|
|
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:12];
|
|
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:13];
|
|
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:14];
|
|
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:15];
|
|
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16];
|
|
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:17];
|
|
|
|
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 ||
|
|
src0t == GGML_TYPE_Q5_0 || src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 ||
|
|
src0t == GGML_TYPE_Q2_K) { // || src0t == GGML_TYPE_Q4_K) {
|
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
|
}
|
|
else if (src0t == GGML_TYPE_Q4_K) {
|
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
|
}
|
|
else if (src0t == GGML_TYPE_Q3_K) {
|
|
#ifdef GGML_QKK_64
|
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
|
#else
|
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
|
#endif
|
|
}
|
|
else if (src0t == GGML_TYPE_Q5_K) {
|
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
|
}
|
|
else if (src0t == GGML_TYPE_Q6_K) {
|
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
|
} else {
|
|
int64_t ny = (ne11 + nrows - 1)/nrows;
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
|
}
|
|
}
|
|
} break;
|
|
case GGML_OP_GET_ROWS:
|
|
{
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_get_rows_f32]; break;
|
|
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
|
|
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
|
|
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break;
|
|
case GGML_TYPE_Q5_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_0]; break;
|
|
case GGML_TYPE_Q5_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_1]; break;
|
|
case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q8_0]; break;
|
|
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_K]; break;
|
|
case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_K]; break;
|
|
case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_K]; break;
|
|
case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_K]; break;
|
|
case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_K]; break;
|
|
default: GGML_ASSERT(false && "not implemented");
|
|
}
|
|
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
|
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3];
|
|
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:4];
|
|
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:5];
|
|
|
|
const int64_t n = ggml_nelements(src1);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_OP_RMS_NORM:
|
|
{
|
|
GGML_ASSERT(ne00 % 4 == 0);
|
|
|
|
float eps;
|
|
memcpy(&eps, dst->op_params, sizeof(float));
|
|
|
|
const int nth = MIN(512, ne00);
|
|
|
|
[encoder setComputePipelineState:ctx->pipeline_rms_norm];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
|
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
|
|
[encoder setBytes:&eps length:sizeof( float) atIndex:4];
|
|
[encoder setThreadgroupMemoryLength:GGML_PAD(nth/32*sizeof(float), 16) atIndex:0];
|
|
|
|
const int64_t nrows = ggml_nrows(src0);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
} break;
|
|
case GGML_OP_NORM:
|
|
{
|
|
float eps;
|
|
memcpy(&eps, dst->op_params, sizeof(float));
|
|
|
|
const int nth = MIN(256, ne00);
|
|
|
|
[encoder setComputePipelineState:ctx->pipeline_norm];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
|
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
|
|
[encoder setBytes:&eps length:sizeof( float) atIndex:4];
|
|
[encoder setThreadgroupMemoryLength:GGML_PAD(nth*sizeof(float), 16) atIndex:0];
|
|
|
|
const int64_t nrows = ggml_nrows(src0);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
} break;
|
|
case GGML_OP_ALIBI:
|
|
{
|
|
GGML_ASSERT((src0t == GGML_TYPE_F32));
|
|
|
|
const int nth = MIN(1024, ne00);
|
|
|
|
//const int n_past = ((int32_t *) dst->op_params)[0];
|
|
const int n_head = ((int32_t *) dst->op_params)[1];
|
|
float max_bias;
|
|
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
|
|
|
|
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
|
|
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
|
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
|
|
|
|
[encoder setComputePipelineState:ctx->pipeline_alibi_f32];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
|
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
|
|
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
|
|
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
|
|
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
|
|
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
|
|
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
|
|
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
|
|
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
|
|
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
|
|
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
|
|
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
|
|
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
|
|
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
|
|
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
|
|
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
|
|
[encoder setBytes:&m0 length:sizeof( float) atIndex:18];
|
|
[encoder setBytes:&m1 length:sizeof( float) atIndex:19];
|
|
[encoder setBytes:&n_heads_log2_floor length:sizeof(int) atIndex:20];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
} break;
|
|
case GGML_OP_ROPE:
|
|
{
|
|
GGML_ASSERT(ne10 == ne02);
|
|
|
|
const int nth = MIN(1024, ne00);
|
|
|
|
const int n_past = ((int32_t *) dst->op_params)[0];
|
|
const int n_dims = ((int32_t *) dst->op_params)[1];
|
|
const int mode = ((int32_t *) dst->op_params)[2];
|
|
const int n_orig_ctx = ((int32_t *) dst->op_params)[3];
|
|
|
|
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
|
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
|
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
|
|
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
|
|
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
|
|
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
|
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_rope_f32]; break;
|
|
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_rope_f16]; break;
|
|
default: GGML_ASSERT(false);
|
|
};
|
|
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
|
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3];
|
|
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:4];
|
|
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:5];
|
|
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:6];
|
|
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:7];
|
|
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8];
|
|
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9];
|
|
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10];
|
|
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:11];
|
|
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:12];
|
|
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:13];
|
|
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:14];
|
|
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:15];
|
|
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:16];
|
|
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:17];
|
|
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:18];
|
|
[encoder setBytes:&n_past length:sizeof( int) atIndex:19];
|
|
[encoder setBytes:&n_dims length:sizeof( int) atIndex:20];
|
|
[encoder setBytes:&mode length:sizeof( int) atIndex:21];
|
|
[encoder setBytes:&n_orig_ctx length:sizeof( int) atIndex:22];
|
|
[encoder setBytes:&freq_base length:sizeof( float) atIndex:23];
|
|
[encoder setBytes:&freq_scale length:sizeof( float) atIndex:24];
|
|
[encoder setBytes:&ext_factor length:sizeof( float) atIndex:25];
|
|
[encoder setBytes:&attn_factor length:sizeof( float) atIndex:26];
|
|
[encoder setBytes:&beta_fast length:sizeof( float) atIndex:27];
|
|
[encoder setBytes:&beta_slow length:sizeof( float) atIndex:28];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
} break;
|
|
case GGML_OP_IM2COL:
|
|
{
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F16);
|
|
|
|
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
|
|
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
|
|
const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
|
|
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
|
|
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
|
|
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
|
|
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
|
|
|
|
const int32_t N = src1->ne[is_2D ? 3 : 2];
|
|
const int32_t IC = src1->ne[is_2D ? 2 : 1];
|
|
const int32_t IH = is_2D ? src1->ne[1] : 1;
|
|
const int32_t IW = src1->ne[0];
|
|
|
|
const int32_t KH = is_2D ? src0->ne[1] : 1;
|
|
const int32_t KW = src0->ne[0];
|
|
|
|
const int32_t OH = is_2D ? dst->ne[2] : 1;
|
|
const int32_t OW = dst->ne[1];
|
|
|
|
const int32_t CHW = IC * KH * KW;
|
|
|
|
const int32_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4;
|
|
const int32_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4;
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32: GGML_ASSERT(false && "not implemented"); break;
|
|
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_im2col_f16]; break;
|
|
default: GGML_ASSERT(false);
|
|
};
|
|
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
[encoder setBytes:&ofs0 length:sizeof( int32_t) atIndex:2];
|
|
[encoder setBytes:&ofs1 length:sizeof( int32_t) atIndex:3];
|
|
[encoder setBytes:&IW length:sizeof( int32_t) atIndex:4];
|
|
[encoder setBytes:&IH length:sizeof( int32_t) atIndex:5];
|
|
[encoder setBytes:&CHW length:sizeof( int32_t) atIndex:6];
|
|
[encoder setBytes:&s0 length:sizeof( int32_t) atIndex:7];
|
|
[encoder setBytes:&s1 length:sizeof( int32_t) atIndex:8];
|
|
[encoder setBytes:&p0 length:sizeof( int32_t) atIndex:9];
|
|
[encoder setBytes:&p1 length:sizeof( int32_t) atIndex:10];
|
|
[encoder setBytes:&d0 length:sizeof( int32_t) atIndex:11];
|
|
[encoder setBytes:&d1 length:sizeof( int32_t) atIndex:12];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(IC, OH, OW) threadsPerThreadgroup:MTLSizeMake(N, KH, KW)];
|
|
} break;
|
|
case GGML_OP_DUP:
|
|
case GGML_OP_CPY:
|
|
case GGML_OP_CONT:
|
|
{
|
|
const int nth = MIN(1024, ne00);
|
|
|
|
switch (src0t) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
switch (dstt) {
|
|
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f16]; break;
|
|
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f32]; break;
|
|
default: GGML_ASSERT(false && "not implemented");
|
|
};
|
|
} break;
|
|
case GGML_TYPE_F16:
|
|
{
|
|
switch (dstt) {
|
|
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f16_f16]; break;
|
|
case GGML_TYPE_F32: GGML_ASSERT(false && "cpy_f16_f32 not implemented"); break;
|
|
default: GGML_ASSERT(false && "not implemented");
|
|
};
|
|
} break;
|
|
default: GGML_ASSERT(false && "not implemented");
|
|
}
|
|
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
|
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
|
|
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
|
|
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
|
|
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
|
|
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
|
|
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
|
|
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
|
|
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
|
|
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
|
|
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
|
|
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
|
|
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
|
|
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
|
|
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
|
|
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_METAL_LOG_ERROR("%s: error: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
|
|
GGML_ASSERT(false);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (encoder != nil) {
|
|
[encoder endEncoding];
|
|
encoder = nil;
|
|
}
|
|
|
|
[command_buffer commit];
|
|
});
|
|
}
|
|
|
|
// wait for all threads to finish
|
|
dispatch_barrier_sync(ctx->d_queue, ^{});
|
|
|
|
// check status of command buffers
|
|
// needed to detect if the device ran out-of-memory for example (#1881)
|
|
for (int i = 0; i < n_cb; i++) {
|
|
[ctx->command_buffers[i] waitUntilCompleted];
|
|
|
|
MTLCommandBufferStatus status = (MTLCommandBufferStatus) [ctx->command_buffers[i] status];
|
|
if (status != MTLCommandBufferStatusCompleted) {
|
|
GGML_METAL_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, i, status);
|
|
GGML_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// backend interface
|
|
|
|
static const char * ggml_backend_metal_name(ggml_backend_t backend) {
|
|
return "Metal";
|
|
|
|
UNUSED(backend);
|
|
}
|
|
|
|
static void ggml_backend_metal_free(ggml_backend_t backend) {
|
|
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
|
|
ggml_metal_free(ctx);
|
|
free(backend);
|
|
}
|
|
|
|
static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
|
|
return (void *)buffer->context;
|
|
}
|
|
|
|
static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
|
free(buffer->context);
|
|
UNUSED(buffer);
|
|
}
|
|
|
|
static struct ggml_backend_buffer_i metal_backend_buffer_i = {
|
|
/* .free_buffer = */ ggml_backend_metal_buffer_free_buffer,
|
|
/* .get_base = */ ggml_backend_metal_buffer_get_base,
|
|
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
|
/* .init_tensor = */ NULL, // no initialization required
|
|
/* .free_tensor = */ NULL, // no cleanup required
|
|
};
|
|
|
|
static ggml_backend_buffer_t ggml_backend_metal_alloc_buffer(ggml_backend_t backend, size_t size) {
|
|
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
|
|
|
|
void * data = ggml_metal_host_malloc(size);
|
|
|
|
// TODO: set proper name of the buffers
|
|
ggml_metal_add_buffer(ctx, "backend", data, size, 0);
|
|
|
|
return ggml_backend_buffer_init(backend, metal_backend_buffer_i, data, size);
|
|
}
|
|
|
|
static size_t ggml_backend_metal_get_alignment(ggml_backend_t backend) {
|
|
return 32;
|
|
UNUSED(backend);
|
|
}
|
|
|
|
static void ggml_backend_metal_set_tensor_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
|
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
|
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
|
|
|
memcpy((char *)tensor->data + offset, data, size);
|
|
|
|
UNUSED(backend);
|
|
}
|
|
|
|
static void ggml_backend_metal_get_tensor_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
|
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
|
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
|
|
|
memcpy(data, (const char *)tensor->data + offset, size);
|
|
|
|
UNUSED(backend);
|
|
}
|
|
|
|
static void ggml_backend_metal_synchronize(ggml_backend_t backend) {
|
|
UNUSED(backend);
|
|
}
|
|
|
|
static void ggml_backend_metal_cpy_tensor_from(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
|
ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
|
|
|
|
UNUSED(backend);
|
|
}
|
|
|
|
static void ggml_backend_metal_cpy_tensor_to(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
|
ggml_backend_tensor_set_async(dst, src->data, 0, ggml_nbytes(src));
|
|
|
|
UNUSED(backend);
|
|
}
|
|
|
|
static void ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
|
struct ggml_metal_context * metal_ctx = (struct ggml_metal_context *)backend->context;
|
|
|
|
ggml_metal_graph_compute(metal_ctx, cgraph);
|
|
}
|
|
|
|
static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
|
return true;
|
|
UNUSED(backend);
|
|
UNUSED(op);
|
|
}
|
|
|
|
static struct ggml_backend_i metal_backend_i = {
|
|
/* .get_name = */ ggml_backend_metal_name,
|
|
/* .free = */ ggml_backend_metal_free,
|
|
/* .alloc_buffer = */ ggml_backend_metal_alloc_buffer,
|
|
/* .get_alignment = */ ggml_backend_metal_get_alignment,
|
|
/* .set_tensor_async = */ ggml_backend_metal_set_tensor_async,
|
|
/* .get_tensor_async = */ ggml_backend_metal_get_tensor_async,
|
|
/* .synchronize = */ ggml_backend_metal_synchronize,
|
|
/* .cpy_tensor_from = */ ggml_backend_metal_cpy_tensor_from,
|
|
/* .cpy_tensor_to = */ ggml_backend_metal_cpy_tensor_to,
|
|
/* .graph_plan_create = */ NULL, // the metal implementation does not require creating graph plans atm
|
|
/* .graph_plan_free = */ NULL,
|
|
/* .graph_plan_compute = */ NULL,
|
|
/* .graph_compute = */ ggml_backend_metal_graph_compute,
|
|
/* .supports_op = */ ggml_backend_metal_supports_op,
|
|
};
|
|
|
|
ggml_backend_t ggml_backend_metal_init(void) {
|
|
struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
|
|
|
|
ctx = ggml_metal_init(GGML_DEFAULT_N_THREADS);
|
|
|
|
ggml_backend_t metal_backend = malloc(sizeof(struct ggml_backend));
|
|
|
|
*metal_backend = (struct ggml_backend) {
|
|
/* .interface = */ metal_backend_i,
|
|
/* .context = */ ctx,
|
|
};
|
|
|
|
return metal_backend;
|
|
}
|
|
|
|
bool ggml_backend_is_metal(ggml_backend_t backend) {
|
|
return backend->iface.get_name == ggml_backend_metal_name;
|
|
}
|
|
|
|
void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) {
|
|
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
|
|
|
|
ggml_metal_set_n_cb(ctx, n_cb);
|
|
}
|