mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-23 18:09:18 +01:00
889bdd7686
* Add BPE pre-tokenization for Command-R/R+. * Bump transformers convert requirement. * command-r : add individual digits regex --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2979 lines
131 KiB
Python
Executable File
2979 lines
131 KiB
Python
Executable File
#!/usr/bin/env python3
|
||
|
||
from __future__ import annotations
|
||
|
||
import logging
|
||
import argparse
|
||
import contextlib
|
||
import json
|
||
import os
|
||
import re
|
||
import sys
|
||
from abc import ABC, abstractmethod
|
||
from enum import IntEnum
|
||
from pathlib import Path
|
||
from hashlib import sha256
|
||
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
|
||
|
||
import numpy as np
|
||
import torch
|
||
|
||
if TYPE_CHECKING:
|
||
from torch import Tensor
|
||
|
||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
||
import gguf
|
||
|
||
from convert import LlamaHfVocab, permute
|
||
|
||
logger = logging.getLogger("hf-to-gguf")
|
||
|
||
|
||
###### MODEL DEFINITIONS ######
|
||
|
||
class SentencePieceTokenTypes(IntEnum):
|
||
NORMAL = 1
|
||
UNKNOWN = 2
|
||
CONTROL = 3
|
||
USER_DEFINED = 4
|
||
UNUSED = 5
|
||
BYTE = 6
|
||
|
||
|
||
AnyModel = TypeVar("AnyModel", bound="type[Model]")
|
||
|
||
|
||
class Model(ABC):
|
||
_model_classes: dict[str, type[Model]] = {}
|
||
|
||
def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool, use_temp_file: bool):
|
||
self.dir_model = dir_model
|
||
self.ftype = ftype
|
||
self.fname_out = fname_out
|
||
self.is_big_endian = is_big_endian
|
||
self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
|
||
self.use_temp_file = use_temp_file
|
||
self.is_safetensors = self._is_model_safetensors()
|
||
self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
|
||
self.part_names = self._get_part_names()
|
||
self.hparams = Model.load_hparams(self.dir_model)
|
||
self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
|
||
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
|
||
|
||
@property
|
||
@abstractmethod
|
||
def model_arch(self) -> gguf.MODEL_ARCH:
|
||
pass
|
||
|
||
def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any:
|
||
key = next((k for k in keys if k in self.hparams), None)
|
||
if key is not None:
|
||
return self.hparams[key]
|
||
if optional:
|
||
return None
|
||
raise KeyError(f"could not find any of: {keys}")
|
||
|
||
def set_vocab(self):
|
||
self._set_vocab_gpt2()
|
||
|
||
def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
|
||
for part_name in self.part_names:
|
||
logger.info(f"gguf: loading model part '{part_name}'")
|
||
ctx: ContextManager[Any]
|
||
if self.is_safetensors:
|
||
from safetensors import safe_open
|
||
ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
|
||
else:
|
||
ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
|
||
|
||
with ctx as model_part:
|
||
for name in model_part.keys():
|
||
data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
|
||
yield name, data
|
||
|
||
def set_gguf_parameters(self):
|
||
self.gguf_writer.add_name(self.dir_model.name)
|
||
self.gguf_writer.add_block_count(self.block_count)
|
||
|
||
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
|
||
self.gguf_writer.add_context_length(n_ctx)
|
||
logger.info(f"gguf: context length = {n_ctx}")
|
||
|
||
n_embd = self.find_hparam(["hidden_size", "n_embd"])
|
||
self.gguf_writer.add_embedding_length(n_embd)
|
||
logger.info(f"gguf: embedding length = {n_embd}")
|
||
|
||
if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
|
||
self.gguf_writer.add_feed_forward_length(n_ff)
|
||
logger.info(f"gguf: feed forward length = {n_ff}")
|
||
|
||
n_head = self.find_hparam(["num_attention_heads", "n_head"])
|
||
self.gguf_writer.add_head_count(n_head)
|
||
logger.info(f"gguf: head count = {n_head}")
|
||
|
||
if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
|
||
self.gguf_writer.add_head_count_kv(n_head_kv)
|
||
logger.info(f"gguf: key-value head count = {n_head_kv}")
|
||
|
||
if (rope_theta := self.hparams.get("rope_theta")) is not None:
|
||
self.gguf_writer.add_rope_freq_base(rope_theta)
|
||
logger.info(f"gguf: rope theta = {rope_theta}")
|
||
if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
|
||
self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
|
||
logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
|
||
if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
|
||
self.gguf_writer.add_layer_norm_eps(f_norm_eps)
|
||
logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
|
||
if (n_experts := self.hparams.get("num_local_experts")) is not None:
|
||
self.gguf_writer.add_expert_count(n_experts)
|
||
logger.info(f"gguf: expert count = {n_experts}")
|
||
if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
|
||
self.gguf_writer.add_expert_used_count(n_experts_used)
|
||
logger.info(f"gguf: experts used count = {n_experts_used}")
|
||
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
logger.info(f"gguf: file type = {self.ftype}")
|
||
|
||
def write_tensors(self):
|
||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||
for name, data_torch in self.get_tensors():
|
||
# we don't need these
|
||
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
|
||
continue
|
||
|
||
old_dtype = data_torch.dtype
|
||
|
||
# convert any unsupported data types to float32
|
||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||
data_torch = data_torch.to(torch.float32)
|
||
|
||
data = data_torch.squeeze().numpy()
|
||
|
||
# map tensor names
|
||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
|
||
n_dims = len(data.shape)
|
||
data_dtype = data.dtype
|
||
|
||
# if f32 desired, convert any float16 to float32
|
||
if self.ftype == 0 and data_dtype == np.float16:
|
||
data = data.astype(np.float32)
|
||
|
||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||
if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
|
||
data = data.astype(np.float32)
|
||
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||
data = data.astype(np.float16)
|
||
|
||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
|
||
def write(self):
|
||
self.write_tensors()
|
||
self.gguf_writer.write_header_to_file()
|
||
self.gguf_writer.write_kv_data_to_file()
|
||
self.gguf_writer.write_tensors_to_file()
|
||
self.gguf_writer.close()
|
||
|
||
def write_vocab(self):
|
||
self.gguf_writer.write_header_to_file()
|
||
self.gguf_writer.write_kv_data_to_file()
|
||
self.gguf_writer.close()
|
||
|
||
@staticmethod
|
||
def count_model_parts(dir_model: Path, prefix: str) -> int:
|
||
num_parts = 0
|
||
for filename in os.listdir(dir_model):
|
||
if filename.endswith(prefix):
|
||
num_parts += 1
|
||
|
||
return num_parts
|
||
|
||
@staticmethod
|
||
def load_hparams(dir_model):
|
||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||
return json.load(f)
|
||
|
||
@classmethod
|
||
def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
|
||
assert names
|
||
|
||
def func(modelcls: type[Model]):
|
||
for name in names:
|
||
cls._model_classes[name] = modelcls
|
||
return modelcls
|
||
return func
|
||
|
||
@classmethod
|
||
def from_model_architecture(cls, arch):
|
||
try:
|
||
return cls._model_classes[arch]
|
||
except KeyError:
|
||
raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
|
||
|
||
def _is_model_safetensors(self) -> bool:
|
||
return Model.count_model_parts(self.dir_model, ".safetensors") > 0
|
||
|
||
def _get_part_names(self):
|
||
if self.is_safetensors:
|
||
if self.num_parts == 1: # there's only one .safetensors file
|
||
return ("model.safetensors",)
|
||
return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
|
||
|
||
if self.num_parts == 1: # there's only one .bin file
|
||
return ("pytorch_model.bin",)
|
||
return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
|
||
|
||
# used for GPT-2 BPE and WordPiece vocabs
|
||
def get_vocab_base(self) -> tuple[list[str], list[int], str]:
|
||
tokens: list[str] = []
|
||
toktypes: list[int] = []
|
||
|
||
from transformers import AutoTokenizer
|
||
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
|
||
vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
|
||
assert max(tokenizer.vocab.values()) < vocab_size
|
||
|
||
tokpre = self.get_vocab_base_pre(tokenizer)
|
||
|
||
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
|
||
added_vocab = tokenizer.get_added_vocab()
|
||
|
||
for i in range(vocab_size):
|
||
if i not in reverse_vocab:
|
||
tokens.append(f"[PAD{i}]")
|
||
toktypes.append(gguf.TokenType.USER_DEFINED)
|
||
elif reverse_vocab[i] in added_vocab:
|
||
tokens.append(reverse_vocab[i])
|
||
if tokenizer.added_tokens_decoder[i].special:
|
||
toktypes.append(gguf.TokenType.CONTROL)
|
||
else:
|
||
toktypes.append(gguf.TokenType.USER_DEFINED)
|
||
else:
|
||
tokens.append(reverse_vocab[i])
|
||
toktypes.append(gguf.TokenType.NORMAL)
|
||
|
||
return tokens, toktypes, tokpre
|
||
|
||
# NOTE: this function is generated by convert-hf-to-gguf-update.py
|
||
# do not modify it manually!
|
||
# ref: https://github.com/ggerganov/llama.cpp/pull/6920
|
||
def get_vocab_base_pre(self, tokenizer) -> str:
|
||
# encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
|
||
# is specific for the BPE pre-tokenizer used by the model
|
||
# we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
|
||
# use in llama.cpp to implement the same pre-tokenizer
|
||
|
||
chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
|
||
|
||
chktok = tokenizer.encode(chktxt)
|
||
chkhsh = sha256(str(chktok).encode()).hexdigest()
|
||
|
||
logger.debug(f"chktok: {chktok}")
|
||
logger.debug(f"chkhsh: {chkhsh}")
|
||
|
||
res = None
|
||
|
||
# NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
|
||
# or pull the latest version of the model from Huggingface
|
||
# don't edit the hashes manually!
|
||
if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
|
||
# ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
|
||
res = "llama-bpe"
|
||
if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
|
||
# ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
|
||
res = "deepseek-llm"
|
||
if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
|
||
# ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
|
||
res = "deepseek-coder"
|
||
if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
|
||
# ref: https://huggingface.co/tiiuae/falcon-7b
|
||
res = "falcon"
|
||
if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
|
||
# ref: https://huggingface.co/BAAI/bge-small-en-v1.5
|
||
res = "bert-bge"
|
||
if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
|
||
# ref: https://huggingface.co/mosaicml/mpt-7b
|
||
res = "mpt"
|
||
if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
|
||
# ref: https://huggingface.co/bigcode/starcoder2-3b
|
||
res = "starcoder"
|
||
if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
|
||
# ref: https://huggingface.co/openai-community/gpt2
|
||
res = "gpt-2"
|
||
if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
|
||
# ref: https://huggingface.co/smallcloudai/Refact-1_6-base
|
||
res = "refact"
|
||
if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
|
||
# ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
|
||
res = "command-r"
|
||
|
||
if res is None:
|
||
logger.warning("\n")
|
||
logger.warning("**************************************************************************************")
|
||
logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
|
||
logger.warning("** There are 2 possible reasons for this:")
|
||
logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet")
|
||
logger.warning("** - the pre-tokenization config has changed upstream")
|
||
logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
|
||
logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
|
||
logger.warning("**")
|
||
logger.warning(f"** chkhsh: {chkhsh}")
|
||
logger.warning("**************************************************************************************")
|
||
logger.warning("\n")
|
||
raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
|
||
|
||
logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
|
||
logger.debug(f"chkhsh: {chkhsh}")
|
||
|
||
return res
|
||
|
||
def _set_vocab_gpt2(self) -> None:
|
||
tokens, toktypes, tokpre = self.get_vocab_base()
|
||
self.gguf_writer.add_tokenizer_model("gpt2")
|
||
self.gguf_writer.add_tokenizer_pre(tokpre)
|
||
self.gguf_writer.add_token_list(tokens)
|
||
self.gguf_writer.add_token_types(toktypes)
|
||
|
||
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
def _set_vocab_qwen(self):
|
||
dir_model = self.dir_model
|
||
hparams = self.hparams
|
||
tokens: list[str] = []
|
||
toktypes: list[int] = []
|
||
|
||
from transformers import AutoTokenizer
|
||
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
|
||
vocab_size = hparams["vocab_size"]
|
||
assert max(tokenizer.get_vocab().values()) < vocab_size
|
||
|
||
tokpre = self.get_vocab_base_pre(tokenizer)
|
||
|
||
merges = []
|
||
vocab = {}
|
||
mergeable_ranks = tokenizer.mergeable_ranks
|
||
for token, rank in mergeable_ranks.items():
|
||
vocab[QwenModel.token_bytes_to_string(token)] = rank
|
||
if len(token) == 1:
|
||
continue
|
||
merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
|
||
assert len(merged) == 2
|
||
merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
|
||
|
||
# for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
|
||
added_vocab = tokenizer.special_tokens
|
||
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
|
||
|
||
for i in range(vocab_size):
|
||
if i not in reverse_vocab:
|
||
tokens.append(f"[PAD{i}]")
|
||
toktypes.append(gguf.TokenType.USER_DEFINED)
|
||
elif reverse_vocab[i] in added_vocab:
|
||
tokens.append(reverse_vocab[i])
|
||
toktypes.append(gguf.TokenType.CONTROL)
|
||
else:
|
||
tokens.append(reverse_vocab[i])
|
||
toktypes.append(gguf.TokenType.NORMAL)
|
||
|
||
self.gguf_writer.add_tokenizer_model("gpt2")
|
||
self.gguf_writer.add_tokenizer_pre(tokpre)
|
||
self.gguf_writer.add_token_list(tokens)
|
||
self.gguf_writer.add_token_types(toktypes)
|
||
|
||
special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
|
||
special_vocab.merges = merges
|
||
# only add special tokens when they were not already loaded from config.json
|
||
if len(special_vocab.special_token_ids) == 0:
|
||
special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
|
||
special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
|
||
# this one is usually not in config.json anyway
|
||
special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
def _set_vocab_sentencepiece(self):
|
||
from sentencepiece import SentencePieceProcessor
|
||
|
||
tokenizer_path = self.dir_model / 'tokenizer.model'
|
||
|
||
tokens: list[bytes] = []
|
||
scores: list[float] = []
|
||
toktypes: list[int] = []
|
||
|
||
if not tokenizer_path.is_file():
|
||
raise FileNotFoundError(f"File not found: {tokenizer_path}")
|
||
|
||
tokenizer = SentencePieceProcessor(str(tokenizer_path))
|
||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||
|
||
for token_id in range(tokenizer.vocab_size()):
|
||
piece = tokenizer.id_to_piece(token_id)
|
||
text = piece.encode("utf-8")
|
||
score = tokenizer.get_score(token_id)
|
||
|
||
toktype = SentencePieceTokenTypes.NORMAL
|
||
if tokenizer.is_unknown(token_id):
|
||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||
elif tokenizer.is_control(token_id):
|
||
toktype = SentencePieceTokenTypes.CONTROL
|
||
elif tokenizer.is_unused(token_id):
|
||
toktype = SentencePieceTokenTypes.UNUSED
|
||
elif tokenizer.is_byte(token_id):
|
||
toktype = SentencePieceTokenTypes.BYTE
|
||
|
||
tokens.append(text)
|
||
scores.append(score)
|
||
toktypes.append(toktype)
|
||
|
||
added_tokens_file = self.dir_model / 'added_tokens.json'
|
||
if added_tokens_file.is_file():
|
||
with open(added_tokens_file, "r", encoding="utf-8") as f:
|
||
added_tokens_json = json.load(f)
|
||
|
||
for key in added_tokens_json:
|
||
key = key.encode("utf-8")
|
||
if key not in tokens:
|
||
tokens.append(key)
|
||
scores.append(-1000.0)
|
||
toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
|
||
|
||
if vocab_size > len(tokens):
|
||
pad_count = vocab_size - len(tokens)
|
||
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
|
||
for i in range(1, pad_count + 1):
|
||
tokens.append(f"[PAD{i}]")
|
||
scores.append(-1000.0)
|
||
toktypes.append(SentencePieceTokenTypes.UNUSED)
|
||
|
||
assert len(tokens) == vocab_size
|
||
|
||
self.gguf_writer.add_tokenizer_model("llama")
|
||
self.gguf_writer.add_tokenizer_pre("default")
|
||
self.gguf_writer.add_token_list(tokens)
|
||
self.gguf_writer.add_token_scores(scores)
|
||
self.gguf_writer.add_token_types(toktypes)
|
||
|
||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
def _set_vocab_llama_hf(self):
|
||
vocab = LlamaHfVocab(self.dir_model)
|
||
tokens = []
|
||
scores = []
|
||
toktypes = []
|
||
|
||
for text, score, toktype in vocab.all_tokens():
|
||
tokens.append(text)
|
||
scores.append(score)
|
||
toktypes.append(toktype)
|
||
|
||
assert len(tokens) == vocab.vocab_size
|
||
|
||
self.gguf_writer.add_tokenizer_model("llama")
|
||
self.gguf_writer.add_tokenizer_pre("default")
|
||
self.gguf_writer.add_token_list(tokens)
|
||
self.gguf_writer.add_token_scores(scores)
|
||
self.gguf_writer.add_token_types(toktypes)
|
||
|
||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
|
||
@Model.register("GPTNeoXForCausalLM")
|
||
class GPTNeoXModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.GPTNEOX
|
||
|
||
def set_gguf_parameters(self):
|
||
block_count = self.hparams["num_hidden_layers"]
|
||
|
||
self.gguf_writer.add_name(self.dir_model.name)
|
||
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||
self.gguf_writer.add_rope_dimension_count(
|
||
int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
|
||
)
|
||
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
|
||
self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
|
||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
|
||
|
||
|
||
@Model.register("BloomForCausalLM")
|
||
class BloomModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.BLOOM
|
||
|
||
def set_gguf_parameters(self):
|
||
self.gguf_writer.add_name("Bloom")
|
||
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
|
||
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
|
||
self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
|
||
self.gguf_writer.add_embedding_length(n_embed)
|
||
self.gguf_writer.add_feed_forward_length(4 * n_embed)
|
||
self.gguf_writer.add_block_count(self.hparams["n_layer"])
|
||
self.gguf_writer.add_head_count(n_head)
|
||
self.gguf_writer.add_head_count_kv(n_head)
|
||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
def write_tensors(self):
|
||
block_count = self.hparams["n_layer"]
|
||
tensors = dict(self.get_tensors())
|
||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||
has_lm_head = True
|
||
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
|
||
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
|
||
|
||
for name, data_torch in tensors.items():
|
||
if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
|
||
has_lm_head = False
|
||
|
||
name = re.sub(r'transformer\.', '', name)
|
||
|
||
old_dtype = data_torch.dtype
|
||
|
||
# convert any unsupported data types to float32
|
||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||
data_torch = data_torch.to(torch.float32)
|
||
|
||
data = data_torch.squeeze().numpy()
|
||
|
||
if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
|
||
# Map bloom-style qkv_linear to gpt-style qkv_linear
|
||
# bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
|
||
# gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
|
||
qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
|
||
data = np.concatenate(
|
||
(
|
||
qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
|
||
qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
|
||
qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
|
||
),
|
||
axis=0,
|
||
)
|
||
logger.info("re-format attention.linear_qkv.weight")
|
||
elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
|
||
qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
|
||
data = np.concatenate(
|
||
(
|
||
qkv_bias[:, 0, :].reshape((n_embed,)),
|
||
qkv_bias[:, 1, :].reshape((n_embed,)),
|
||
qkv_bias[:, 2, :].reshape((n_embed,)),
|
||
),
|
||
axis=0,
|
||
)
|
||
logger.info("re-format attention.linear_qkv.bias")
|
||
|
||
# map tensor names
|
||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
|
||
n_dims = len(data.shape)
|
||
data_dtype = data.dtype
|
||
|
||
# if f32 desired, convert any float16 to float32
|
||
if self.ftype == 0 and data_dtype == np.float16:
|
||
data = data.astype(np.float32)
|
||
|
||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||
data = data.astype(np.float32)
|
||
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||
data = data.astype(np.float16)
|
||
|
||
logger.info(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
|
||
if not has_lm_head and name == "word_embeddings.weight":
|
||
self.gguf_writer.add_tensor("output.weight", data)
|
||
logger.info(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||
|
||
|
||
@Model.register("MPTForCausalLM")
|
||
class MPTModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.MPT
|
||
|
||
def set_vocab(self):
|
||
try:
|
||
self._set_vocab_gpt2()
|
||
except Exception:
|
||
# Fallback for SEA-LION model
|
||
self._set_vocab_sentencepiece()
|
||
self.gguf_writer.add_add_bos_token(False)
|
||
self.gguf_writer.add_pad_token_id(3)
|
||
self.gguf_writer.add_eos_token_id(1)
|
||
self.gguf_writer.add_unk_token_id(0)
|
||
|
||
def set_gguf_parameters(self):
|
||
block_count = self.hparams["n_layers"]
|
||
self.gguf_writer.add_name(self.dir_model.name)
|
||
self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
|
||
self.gguf_writer.add_embedding_length(self.hparams["d_model"])
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
|
||
self.gguf_writer.add_head_count(self.hparams["n_heads"])
|
||
if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
|
||
self.gguf_writer.add_head_count_kv(kv_n_heads)
|
||
self.gguf_writer.add_layer_norm_eps(1e-5)
|
||
if self.hparams["attn_config"]["clip_qkv"] is not None:
|
||
self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
|
||
if self.hparams["attn_config"]["alibi"]:
|
||
self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
|
||
else:
|
||
self.gguf_writer.add_max_alibi_bias(0.0)
|
||
|
||
def write_tensors(self):
|
||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
|
||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||
for name, data_torch in self.get_tensors():
|
||
# we don't need these
|
||
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
|
||
continue
|
||
|
||
old_dtype = data_torch.dtype
|
||
|
||
# convert any unsupported data types to float32
|
||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||
data_torch = data_torch.to(torch.float32)
|
||
|
||
data = data_torch.squeeze().numpy()
|
||
|
||
# map tensor names
|
||
if "scales" in name:
|
||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales"))
|
||
if new_name is not None:
|
||
new_name = new_name.replace("scales", "act.scales")
|
||
else:
|
||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
|
||
n_dims = len(data.shape)
|
||
data_dtype = data.dtype
|
||
|
||
# if f32 desired, convert any float16 to float32
|
||
if self.ftype == 0 and data_dtype == np.float16:
|
||
data = data.astype(np.float32)
|
||
|
||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||
data = data.astype(np.float32)
|
||
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||
data = data.astype(np.float16)
|
||
|
||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
|
||
|
||
@Model.register("OrionForCausalLM")
|
||
class OrionModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.ORION
|
||
|
||
def set_vocab(self):
|
||
self._set_vocab_sentencepiece()
|
||
|
||
def set_gguf_parameters(self):
|
||
block_count = self.hparams["num_hidden_layers"]
|
||
head_count = self.hparams["num_attention_heads"]
|
||
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
|
||
hf_repo = self.hparams.get("_name_or_path", "")
|
||
|
||
ctx_length = 0
|
||
if "max_sequence_length" in self.hparams:
|
||
ctx_length = self.hparams["max_sequence_length"]
|
||
elif "max_position_embeddings" in self.hparams:
|
||
ctx_length = self.hparams["max_position_embeddings"]
|
||
elif "model_max_length" in self.hparams:
|
||
ctx_length = self.hparams["model_max_length"]
|
||
else:
|
||
raise ValueError("gguf: can not find ctx length parameter.")
|
||
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
self.gguf_writer.add_name(self.dir_model.name)
|
||
self.gguf_writer.add_source_hf_repo(hf_repo)
|
||
self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
||
self.gguf_writer.add_context_length(ctx_length)
|
||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||
self.gguf_writer.add_head_count(head_count)
|
||
self.gguf_writer.add_head_count_kv(head_count_kv)
|
||
# note: config provides rms norm but it is actually layer norm
|
||
# ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
|
||
self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
|
||
|
||
def write_tensors(self):
|
||
# Collect tensors from generator object
|
||
model_kv = dict(self.get_tensors())
|
||
block_count = self.hparams["num_hidden_layers"]
|
||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||
|
||
for name, data_torch in model_kv.items():
|
||
# we don't need these
|
||
if name.endswith(".rotary_emb.inv_freq"):
|
||
continue
|
||
|
||
old_dtype = data_torch.dtype
|
||
|
||
# convert any unsupported data types to float32
|
||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||
data_torch = data_torch.to(torch.float32)
|
||
|
||
data = data_torch.squeeze().numpy()
|
||
|
||
# map tensor names
|
||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
|
||
n_dims = len(data.shape)
|
||
data_dtype = data.dtype
|
||
|
||
# if f32 desired, convert any float16 to float32
|
||
if self.ftype == 0 and data_dtype == np.float16:
|
||
data = data.astype(np.float32)
|
||
|
||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||
data = data.astype(np.float32)
|
||
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||
data = data.astype(np.float16)
|
||
|
||
logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
|
||
|
||
@Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
|
||
class BaichuanModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.BAICHUAN
|
||
|
||
def set_vocab(self):
|
||
self._set_vocab_sentencepiece()
|
||
|
||
def set_gguf_parameters(self):
|
||
block_count = self.hparams["num_hidden_layers"]
|
||
head_count = self.hparams["num_attention_heads"]
|
||
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
|
||
hf_repo = self.hparams.get("_name_or_path", "")
|
||
|
||
ctx_length = 0
|
||
if "max_sequence_length" in self.hparams:
|
||
ctx_length = self.hparams["max_sequence_length"]
|
||
elif "max_position_embeddings" in self.hparams:
|
||
ctx_length = self.hparams["max_position_embeddings"]
|
||
elif "model_max_length" in self.hparams:
|
||
ctx_length = self.hparams["model_max_length"]
|
||
else:
|
||
raise ValueError("gguf: can not find ctx length parameter.")
|
||
|
||
self.gguf_writer.add_name(self.dir_model.name)
|
||
self.gguf_writer.add_source_hf_repo(hf_repo)
|
||
self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
||
self.gguf_writer.add_context_length(ctx_length)
|
||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||
self.gguf_writer.add_head_count(head_count)
|
||
self.gguf_writer.add_head_count_kv(head_count_kv)
|
||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||
|
||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||
if self.hparams["rope_scaling"].get("type") == "linear":
|
||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||
|
||
def write_tensors(self):
|
||
# Collect tensors from generator object
|
||
model_kv = dict(self.get_tensors())
|
||
block_count = self.hparams["num_hidden_layers"]
|
||
head_count = self.hparams["num_attention_heads"]
|
||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
|
||
|
||
for i in range(block_count):
|
||
if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
|
||
logger.info(f"Unpacking and permuting layer {i}")
|
||
model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
|
||
self._reverse_hf_permute_part(w, 0, head_count, head_count)
|
||
model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
|
||
self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
|
||
model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
|
||
self._reverse_hf_part(w, 2)
|
||
del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
|
||
|
||
for name, data_torch in model_kv.items():
|
||
# we don't need these
|
||
if name.endswith(".rotary_emb.inv_freq"):
|
||
continue
|
||
|
||
old_dtype = data_torch.dtype
|
||
|
||
# convert any unsupported data types to float32
|
||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||
data_torch = data_torch.to(torch.float32)
|
||
|
||
data = data_torch.squeeze().numpy()
|
||
|
||
# map tensor names
|
||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
|
||
n_dims = len(data.shape)
|
||
data_dtype = data.dtype
|
||
|
||
# if f32 desired, convert any float16 to float32
|
||
if self.ftype == 0 and data_dtype == np.float16:
|
||
data = data.astype(np.float32)
|
||
|
||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||
data = data.astype(np.float32)
|
||
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||
data = data.astype(np.float16)
|
||
|
||
logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
|
||
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
|
||
if n_kv_head is not None and n_head != n_kv_head:
|
||
n_head //= n_kv_head
|
||
|
||
return (
|
||
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||
.swapaxes(1, 2)
|
||
.reshape(weights.shape)
|
||
)
|
||
|
||
def _reverse_hf_permute_part(
|
||
self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
|
||
) -> Tensor:
|
||
r = weights.shape[0] // 3
|
||
return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
|
||
|
||
def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
|
||
r = weights.shape[0] // 3
|
||
return weights[r * n_part:r * n_part + r, ...]
|
||
|
||
|
||
@Model.register("XverseForCausalLM")
|
||
class XverseModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.XVERSE
|
||
|
||
def set_vocab(self):
|
||
assert (self.dir_model / "tokenizer.json").is_file()
|
||
dir_model = self.dir_model
|
||
hparams = self.hparams
|
||
|
||
tokens: list[bytearray] = []
|
||
toktypes: list[int] = []
|
||
|
||
from transformers import AutoTokenizer
|
||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
|
||
assert max(tokenizer.vocab.values()) < vocab_size
|
||
|
||
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
|
||
added_vocab = tokenizer.get_added_vocab()
|
||
|
||
for token_id in range(vocab_size):
|
||
token_text = reverse_vocab[token_id].encode('utf-8')
|
||
# replace "\x00" to string with length > 0
|
||
if token_text == b"\x00":
|
||
toktype = gguf.TokenType.BYTE # special
|
||
token_text = f"<{token_text}>".encode('utf-8')
|
||
elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
|
||
toktype = gguf.TokenType.BYTE # special
|
||
elif reverse_vocab[token_id] in added_vocab:
|
||
if tokenizer.added_tokens_decoder[token_id].special:
|
||
toktype = gguf.TokenType.CONTROL
|
||
else:
|
||
toktype = gguf.TokenType.USER_DEFINED
|
||
else:
|
||
toktype = gguf.TokenType.NORMAL
|
||
|
||
tokens.append(token_text)
|
||
toktypes.append(toktype)
|
||
|
||
self.gguf_writer.add_tokenizer_model("llama")
|
||
self.gguf_writer.add_tokenizer_pre("default")
|
||
self.gguf_writer.add_token_list(tokens)
|
||
self.gguf_writer.add_token_types(toktypes)
|
||
|
||
special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
def set_gguf_parameters(self):
|
||
block_count = self.hparams["num_hidden_layers"]
|
||
head_count = self.hparams["num_attention_heads"]
|
||
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
|
||
hf_repo = self.hparams.get("_name_or_path", "")
|
||
|
||
ctx_length = 0
|
||
if "max_sequence_length" in self.hparams:
|
||
ctx_length = self.hparams["max_sequence_length"]
|
||
elif "max_position_embeddings" in self.hparams:
|
||
ctx_length = self.hparams["max_position_embeddings"]
|
||
elif "model_max_length" in self.hparams:
|
||
ctx_length = self.hparams["model_max_length"]
|
||
else:
|
||
raise ValueError("gguf: can not find ctx length parameter.")
|
||
|
||
self.gguf_writer.add_name(self.dir_model.name)
|
||
self.gguf_writer.add_source_hf_repo(hf_repo)
|
||
self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
||
self.gguf_writer.add_context_length(ctx_length)
|
||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||
self.gguf_writer.add_head_count(head_count)
|
||
self.gguf_writer.add_head_count_kv(head_count_kv)
|
||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||
|
||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||
if self.hparams["rope_scaling"].get("type") == "linear":
|
||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||
|
||
def write_tensors(self):
|
||
# Collect tensors from generator object
|
||
model_kv = dict(self.get_tensors())
|
||
block_count = self.hparams["num_hidden_layers"]
|
||
head_count = self.hparams["num_attention_heads"]
|
||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
|
||
|
||
for name, data_torch in model_kv.items():
|
||
# we don't need these
|
||
if name.endswith(".rotary_emb.inv_freq"):
|
||
continue
|
||
|
||
old_dtype = data_torch.dtype
|
||
|
||
# convert any unsupported data types to float32
|
||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||
data_torch = data_torch.to(torch.float32)
|
||
|
||
# HF models permute some of the tensors, so we need to undo that
|
||
if name.endswith(("q_proj.weight")):
|
||
data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
|
||
if name.endswith(("k_proj.weight")):
|
||
data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
|
||
|
||
data = data_torch.squeeze().numpy()
|
||
|
||
# map tensor names
|
||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
|
||
n_dims = len(data.shape)
|
||
data_dtype = data.dtype
|
||
|
||
# if f32 desired, convert any float16 to float32
|
||
if self.ftype == 0 and data_dtype == np.float16:
|
||
data = data.astype(np.float32)
|
||
|
||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||
data = data.astype(np.float32)
|
||
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||
data = data.astype(np.float16)
|
||
|
||
logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
|
||
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
|
||
if n_kv_head is not None and n_head != n_kv_head:
|
||
n_head //= n_kv_head
|
||
|
||
return (
|
||
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||
.swapaxes(1, 2)
|
||
.reshape(weights.shape)
|
||
)
|
||
|
||
|
||
@Model.register("FalconForCausalLM", "RWForCausalLM")
|
||
class FalconModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.FALCON
|
||
|
||
def set_gguf_parameters(self):
|
||
block_count = self.hparams.get("num_hidden_layers")
|
||
if block_count is None:
|
||
block_count = self.hparams["n_layer"] # old name
|
||
|
||
n_head = self.hparams.get("num_attention_heads")
|
||
if n_head is None:
|
||
n_head = self.hparams["n_head"] # old name
|
||
|
||
n_head_kv = self.hparams.get("num_kv_heads")
|
||
if n_head_kv is None:
|
||
n_head_kv = self.hparams.get("n_head_kv", 1) # old name
|
||
|
||
self.gguf_writer.add_name("Falcon")
|
||
self.gguf_writer.add_context_length(2048) # not in config.json
|
||
self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
|
||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||
self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_head_count(n_head)
|
||
self.gguf_writer.add_head_count_kv(n_head_kv)
|
||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
def write_tensors(self):
|
||
block_count = self.hparams.get("num_hidden_layers")
|
||
if block_count is None:
|
||
block_count = self.hparams["n_layer"] # old name
|
||
|
||
n_head = self.hparams.get("num_attention_heads")
|
||
if n_head is None:
|
||
n_head = self.hparams["n_head"] # old name
|
||
|
||
n_head_kv = self.hparams.get("num_kv_heads")
|
||
if n_head_kv is None:
|
||
n_head_kv = self.hparams.get("n_head_kv", 1) # old name
|
||
|
||
head_dim = self.hparams["hidden_size"] // n_head
|
||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||
|
||
for name, data_torch in self.get_tensors():
|
||
old_dtype = data_torch.dtype
|
||
|
||
# convert any unsupported data types to float32
|
||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||
data_torch = data_torch.to(torch.float32)
|
||
|
||
# QKV tensor transform
|
||
# The original query_key_value tensor contains n_head_kv "kv groups",
|
||
# each consisting of n_head/n_head_kv query weights followed by one key
|
||
# and one value weight (shared by all query heads in the kv group).
|
||
# This layout makes it a big pain to work with in GGML.
|
||
# So we rearrange them here,, so that we have n_head query weights
|
||
# followed by n_head_kv key weights followed by n_head_kv value weights,
|
||
# in contiguous fashion.
|
||
# ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
|
||
|
||
if "query_key_value" in name:
|
||
qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
|
||
q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
|
||
k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
|
||
v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
|
||
data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
|
||
|
||
data = data_torch.squeeze().numpy()
|
||
|
||
# map tensor names
|
||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
|
||
n_dims = len(data.shape)
|
||
data_dtype = data.dtype
|
||
|
||
# if f32 desired, convert any float16 to float32
|
||
if self.ftype == 0 and data_dtype == np.float16:
|
||
data = data.astype(np.float32)
|
||
|
||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||
data = data.astype(np.float32)
|
||
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||
data = data.astype(np.float16)
|
||
|
||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
|
||
|
||
@Model.register("GPTBigCodeForCausalLM")
|
||
class StarCoderModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.STARCODER
|
||
|
||
def set_gguf_parameters(self):
|
||
block_count = self.hparams["n_layer"]
|
||
|
||
self.gguf_writer.add_name("StarCoder")
|
||
self.gguf_writer.add_context_length(self.hparams["n_positions"])
|
||
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
||
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_head_count(self.hparams["n_head"])
|
||
self.gguf_writer.add_head_count_kv(1)
|
||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
|
||
@Model.register("GPTRefactForCausalLM")
|
||
class RefactModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.REFACT
|
||
|
||
def set_gguf_parameters(self):
|
||
hidden_dim = self.hparams["n_embd"]
|
||
inner_dim = 4 * hidden_dim
|
||
hidden_dim = int(2 * inner_dim / 3)
|
||
multiple_of = 256
|
||
ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
||
|
||
block_count = self.hparams["n_layer"]
|
||
|
||
self.gguf_writer.add_name("Refact")
|
||
# refact uses Alibi. So this is from config.json which might be used by training.
|
||
self.gguf_writer.add_context_length(self.hparams["n_positions"])
|
||
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
||
|
||
self.gguf_writer.add_feed_forward_length(ff_dim)
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_head_count(self.hparams["n_head"])
|
||
self.gguf_writer.add_head_count_kv(1)
|
||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
def write_tensors(self):
|
||
hidden_dim = self.hparams["n_embd"]
|
||
inner_dim = 4 * hidden_dim
|
||
hidden_dim = int(2 * inner_dim / 3)
|
||
multiple_of = 256
|
||
ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
||
n_head = self.hparams["n_head"]
|
||
n_head_kv = 1
|
||
head_dim = self.hparams["n_embd"] // n_head
|
||
block_count = self.hparams["n_layer"]
|
||
|
||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||
|
||
tensors = dict(self.get_tensors())
|
||
for i in range(block_count):
|
||
if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
|
||
tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
|
||
tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
|
||
del tensors[f"transformer.h.{i}.attn.kv.weight"]
|
||
if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
|
||
tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
|
||
del tensors[f"transformer.h.{i}.attn.q.weight"]
|
||
if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
|
||
tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
|
||
tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
|
||
del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
|
||
|
||
for name, data_torch in tensors.items():
|
||
old_dtype = data_torch.dtype
|
||
|
||
# convert any unsupported data types to float32
|
||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||
data_torch = data_torch.to(torch.float32)
|
||
|
||
data = data_torch.squeeze().numpy()
|
||
|
||
# map tensor names
|
||
new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
|
||
n_dims = len(data.shape)
|
||
data_dtype = data.dtype
|
||
|
||
# if f32 desired, convert any float16 to float32
|
||
if self.ftype == 0 and data_dtype == np.float16:
|
||
data = data.astype(np.float32)
|
||
|
||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||
data = data.astype(np.float32)
|
||
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||
data = data.astype(np.float16)
|
||
|
||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
|
||
|
||
@Model.register("PersimmonForCausalLM")
|
||
class PersimmonModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.PERSIMMON
|
||
|
||
def set_gguf_parameters(self):
|
||
block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
|
||
head_count = self.hparams["num_attention_heads"]
|
||
head_count_kv = head_count
|
||
hidden_size = self.hparams["hidden_size"]
|
||
|
||
self.gguf_writer.add_name('persimmon-8b-chat')
|
||
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
||
self.gguf_writer.add_embedding_length(hidden_size)
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||
|
||
# NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
|
||
# than the head size?
|
||
# ref: https://github.com/ggerganov/llama.cpp/pull/4889
|
||
# self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
|
||
self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
|
||
|
||
self.gguf_writer.add_head_count(head_count)
|
||
self.gguf_writer.add_head_count_kv(head_count_kv)
|
||
self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
|
||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
|
||
|
||
def set_vocab(self):
|
||
self._set_vocab_sentencepiece()
|
||
# self.gguf_writer.add_bos_token_id(71013)
|
||
# self.gguf_writer.add_eos_token_id(71013)
|
||
|
||
def write_tensors(self):
|
||
block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
|
||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||
|
||
for name, data_torch in self.get_tensors():
|
||
if name.endswith(".self_attention.rotary_emb.inv_freq"):
|
||
continue
|
||
old_dtype = data_torch.dtype
|
||
# TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
|
||
data = data_torch.to(torch.float32).squeeze().numpy()
|
||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
n_dims = len(data.shape)
|
||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
|
||
|
||
@Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
|
||
class StableLMModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.STABLELM
|
||
|
||
def set_vocab(self):
|
||
if (self.dir_model / "tokenizer.json").is_file():
|
||
self._set_vocab_gpt2()
|
||
else:
|
||
# StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
|
||
self._set_vocab_qwen()
|
||
|
||
def set_gguf_parameters(self):
|
||
hparams = self.hparams
|
||
block_count = hparams["num_hidden_layers"]
|
||
|
||
self.gguf_writer.add_name(self.dir_model.name)
|
||
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||
rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
|
||
self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
|
||
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||
self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
|
||
self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
|
||
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
|
||
|
||
def write_tensors(self):
|
||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||
n_head = self.hparams.get("num_attention_heads")
|
||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||
q_norms = dict()
|
||
k_norms = dict()
|
||
for name, data_torch in self.get_tensors():
|
||
# we don't need these
|
||
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
|
||
continue
|
||
|
||
old_dtype = data_torch.dtype
|
||
|
||
# convert any unsupported data types to float32
|
||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||
data_torch = data_torch.to(torch.float32)
|
||
|
||
data = data_torch.squeeze().numpy()
|
||
n_dims = len(data.shape)
|
||
if name.find("q_layernorm.norms") != -1:
|
||
q_norms[name] = data
|
||
if len(q_norms) >= (block_count * n_head):
|
||
self._stack_qk_norm(block_count, name, tensor_map, n_head, q_norms, n_dims, layer_name="q_layernorm")
|
||
continue
|
||
if name.find("k_layernorm.norms") != -1:
|
||
k_norms[name] = data
|
||
if len(k_norms) >= (block_count * n_kv_head):
|
||
self._stack_qk_norm(block_count, name, tensor_map, n_kv_head, k_norms, n_dims, layer_name="k_layernorm")
|
||
continue
|
||
|
||
# map tensor names
|
||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
|
||
n_dims = len(data.shape)
|
||
data_dtype = data.dtype
|
||
|
||
# if f32 desired, convert any float16 to float32
|
||
if self.ftype == 0 and data_dtype == np.float16:
|
||
data = data.astype(np.float32)
|
||
|
||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||
if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
|
||
data = data.astype(np.float32)
|
||
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
|
||
data = data.astype(np.float16)
|
||
|
||
logger.debug(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
|
||
def _stack_qk_norm(self, block_count, name, tensor_map, n_head, norms, n_dims, layer_name="q_layernorm"):
|
||
for bid in range(block_count):
|
||
datas = []
|
||
for xid in range(n_head):
|
||
ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
|
||
datas.append(norms[ename])
|
||
del norms[ename]
|
||
data = np.stack(datas, axis=0)
|
||
data_dtype = data.dtype
|
||
merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
|
||
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
|
||
data = data.astype(np.float32)
|
||
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
|
||
data = data.astype(np.float16)
|
||
|
||
logger.debug(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
|
||
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
|
||
|
||
@Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
|
||
class LlamaModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||
|
||
def set_vocab(self):
|
||
try:
|
||
self. _set_vocab_sentencepiece()
|
||
except FileNotFoundError:
|
||
try:
|
||
self._set_vocab_llama_hf()
|
||
except (FileNotFoundError, TypeError):
|
||
# Llama 3
|
||
self._set_vocab_gpt2()
|
||
|
||
# Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
|
||
if self.hparams.get("vocab_size", 32000) == 32016:
|
||
special_vocab = gguf.SpecialVocab(
|
||
self.dir_model, load_merges=False,
|
||
special_token_types = ['prefix', 'suffix', 'middle', 'eot']
|
||
)
|
||
special_vocab._set_special_token("prefix", 32007)
|
||
special_vocab._set_special_token("suffix", 32008)
|
||
special_vocab._set_special_token("middle", 32009)
|
||
special_vocab._set_special_token("eot", 32010)
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
def set_gguf_parameters(self):
|
||
super().set_gguf_parameters()
|
||
hparams = self.hparams
|
||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||
self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
|
||
|
||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||
if self.hparams["rope_scaling"].get("type") == "linear":
|
||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||
|
||
# Same as super class, but permuting q_proj, k_proj
|
||
def write_tensors(self):
|
||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||
n_head = self.hparams.get("num_attention_heads")
|
||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||
n_experts = self.hparams.get("num_local_experts")
|
||
experts = dict()
|
||
for name, data_torch in self.get_tensors():
|
||
# we don't need these
|
||
if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
|
||
continue
|
||
|
||
old_dtype = data_torch.dtype
|
||
|
||
# convert any unsupported data types to float32
|
||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||
data_torch = data_torch.to(torch.float32)
|
||
|
||
data = data_torch.numpy()
|
||
|
||
if name.endswith("q_proj.weight"):
|
||
data = permute(data, n_head, n_head)
|
||
if name.endswith("k_proj.weight"):
|
||
data = permute(data, n_head, n_kv_head)
|
||
|
||
data = data.squeeze()
|
||
|
||
# process the experts separately
|
||
if name.find("block_sparse_moe.experts") != -1:
|
||
experts[name] = data
|
||
if len(experts) >= n_experts:
|
||
# merge the experts into a single 3d tensor
|
||
for bid in range(block_count):
|
||
for wid in range(1, 4):
|
||
full = True
|
||
for xid in range(n_experts):
|
||
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
|
||
if ename not in experts:
|
||
full = False
|
||
break
|
||
if not full:
|
||
continue
|
||
|
||
datas = []
|
||
for xid in range(n_experts):
|
||
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
|
||
datas.append(experts[ename])
|
||
del experts[ename]
|
||
|
||
data = np.stack(datas, axis=0)
|
||
data_dtype = data.dtype
|
||
|
||
if self.ftype == 0 and data_dtype == np.float16:
|
||
data = data.astype(np.float32)
|
||
|
||
if self.ftype == 1 and data_dtype == np.float32:
|
||
data = data.astype(np.float16)
|
||
|
||
merged_name = f"layers.{bid}.feed_forward.experts.w{wid}.weight"
|
||
|
||
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
|
||
logger.info(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
|
||
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
continue
|
||
|
||
# map tensor names
|
||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
|
||
n_dims = len(data.shape)
|
||
data_dtype = data.dtype
|
||
|
||
# if f32 desired, convert any float16 to float32
|
||
if self.ftype == 0 and data_dtype == np.float16:
|
||
data = data.astype(np.float32)
|
||
|
||
# 1d tensors need to be converted to float32
|
||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||
data = data.astype(np.float32)
|
||
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||
data = data.astype(np.float16)
|
||
|
||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
|
||
if len(experts) > 0:
|
||
raise ValueError(f"Unprocessed experts: {experts.keys()}")
|
||
|
||
|
||
@Model.register("GrokForCausalLM")
|
||
class GrokModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.GROK
|
||
|
||
def set_vocab(self):
|
||
self._set_vocab_sentencepiece()
|
||
|
||
def __init__(self, *args, **kwargs):
|
||
super().__init__(*args, **kwargs)
|
||
|
||
def set_gguf_parameters(self):
|
||
super().set_gguf_parameters()
|
||
self.gguf_writer.add_name("Grok")
|
||
|
||
def write_tensors(self):
|
||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||
n_experts = self.hparams.get("num_local_experts")
|
||
experts = dict()
|
||
for name, data_torch in self.get_tensors():
|
||
# we don't need these
|
||
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
|
||
continue
|
||
|
||
old_dtype = data_torch.dtype
|
||
|
||
# convert any unsupported data types to float32
|
||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||
data_torch = data_torch.to(torch.float32)
|
||
|
||
data = data_torch.squeeze().numpy()
|
||
|
||
# process the experts separately
|
||
if name.find(".moe.") != -1:
|
||
experts[name] = data
|
||
if len(experts) >= n_experts:
|
||
# merge the experts into a single 3d tensor
|
||
for bid in range(block_count):
|
||
for wid in ["linear", "linear_1", "linear_v"]:
|
||
full = True
|
||
for xid in range(n_experts):
|
||
ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
|
||
if ename not in experts:
|
||
full = False
|
||
break
|
||
if not full:
|
||
continue
|
||
|
||
datas = []
|
||
for xid in range(n_experts):
|
||
ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
|
||
datas.append(experts[ename])
|
||
del experts[ename]
|
||
|
||
data = np.stack(datas, axis=0)
|
||
data_dtype = data.dtype
|
||
|
||
if self.ftype == 0 and data_dtype == np.float16:
|
||
data = data.astype(np.float32)
|
||
|
||
if self.ftype == 1 and data_dtype == np.float32:
|
||
data = data.astype(np.float16)
|
||
|
||
merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
|
||
|
||
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
|
||
logger.info(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
|
||
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
continue
|
||
|
||
# map tensor names
|
||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
|
||
n_dims = len(data.shape)
|
||
data_dtype = data.dtype
|
||
|
||
# if f32 desired, convert any float16 to float32
|
||
if self.ftype == 0 and data_dtype == np.float16:
|
||
data = data.astype(np.float32)
|
||
|
||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||
data = data.astype(np.float32)
|
||
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||
data = data.astype(np.float16)
|
||
|
||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
|
||
|
||
@Model.register("DbrxForCausalLM")
|
||
class DbrxModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.DBRX
|
||
|
||
def set_gguf_parameters(self):
|
||
ffn_config = self.hparams["ffn_config"]
|
||
attn_config = self.hparams["attn_config"]
|
||
self.gguf_writer.add_name(self.hparams["model_type"])
|
||
self.gguf_writer.add_block_count(self.hparams["n_layers"])
|
||
|
||
self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
|
||
self.gguf_writer.add_embedding_length(self.hparams["d_model"])
|
||
self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
|
||
|
||
self.gguf_writer.add_head_count(self.hparams["n_heads"])
|
||
self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
|
||
|
||
self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
|
||
|
||
self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
|
||
self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
|
||
|
||
self.gguf_writer.add_layer_norm_eps(1e-5)
|
||
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
logger.info(f"gguf: file type = {self.ftype}")
|
||
|
||
def write_tensors(self):
|
||
block_count = self.hparams.get("n_layers")
|
||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||
for name, data_torch in self.get_tensors():
|
||
n_expert = self.hparams["ffn_config"]["moe_num_experts"]
|
||
n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
|
||
n_embd = self.hparams["d_model"]
|
||
|
||
# Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
|
||
# original implementation expects (n_expert, n_ff, n_embd) for all experts weights
|
||
# But llama.cpp moe graph works differently
|
||
# AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
|
||
# so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
|
||
exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
|
||
"ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
|
||
"ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
|
||
experts = False
|
||
for exp_tensor_name in exp_tensor_names.keys():
|
||
if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
|
||
experts = True
|
||
data_torch = data_torch.view(n_expert, n_ff, n_embd)
|
||
if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
|
||
data_torch = data_torch.permute(*permute_tensor)
|
||
break
|
||
|
||
old_dtype = data_torch.dtype
|
||
|
||
# convert any unsupported data types to float32
|
||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||
data_torch = data_torch.to(torch.float32)
|
||
|
||
data = data_torch.squeeze().numpy()
|
||
|
||
# map tensor names
|
||
# In MoE models the ffn tensors are typically most of the model weights,
|
||
# and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
|
||
# Every other model has the weight names ending in .weight,
|
||
# let's assume that is the convention which is not the case for dbrx:
|
||
# https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
|
||
new_name = tensor_map.get_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
|
||
n_dims = len(data.shape)
|
||
data_dtype = data.dtype
|
||
|
||
# Most of the codebase that takes in 1D tensors only handles F32 tensors
|
||
# and most of the outputs tensors are F32.
|
||
if data_dtype != np.float32 and n_dims == 1:
|
||
raise ValueError(f"Can not map tensor {name!r}: all 1D tensors must be F32")
|
||
|
||
# if f32 desired, convert any float16 to float32
|
||
if self.ftype == 0 and data_dtype == np.float16:
|
||
data = data.astype(np.float32)
|
||
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||
if self.ftype == 1 and data_dtype == np.float32 and n_dims > 1:
|
||
data = data.astype(np.float16)
|
||
|
||
logger.debug(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
|
||
|
||
@Model.register("MiniCPMForCausalLM")
|
||
class MiniCPMModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.MINICPM
|
||
|
||
def set_gguf_parameters(self):
|
||
block_count = self.hparams["num_hidden_layers"]
|
||
self.gguf_writer.add_name("MiniCPM")
|
||
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
|
||
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
|
||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
def set_vocab(self):
|
||
self._set_vocab_llama_hf()
|
||
|
||
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
|
||
if n_kv_head is not None and n_head != n_kv_head:
|
||
n_head //= n_kv_head
|
||
|
||
return (
|
||
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||
.swapaxes(1, 2)
|
||
.reshape(weights.shape)
|
||
)
|
||
|
||
def write_tensors(self):
|
||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||
n_head = self.hparams.get("num_attention_heads")
|
||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||
for name, data_torch in self.get_tensors():
|
||
# we don't need these
|
||
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
|
||
continue
|
||
|
||
old_dtype = data_torch.dtype
|
||
|
||
# convert any unsupported data types to float32
|
||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||
data_torch = data_torch.to(torch.float32)
|
||
|
||
# HF models permute some of the tensors, so we need to undo that
|
||
if name.endswith(("q_proj.weight")):
|
||
data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
|
||
if name.endswith(("k_proj.weight")):
|
||
data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
|
||
|
||
data = data_torch.squeeze().numpy()
|
||
|
||
# map tensor names
|
||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
|
||
n_dims = len(data.shape)
|
||
data_dtype = data.dtype
|
||
|
||
# if f32 desired, convert any float16 to float32
|
||
if self.ftype == 0 and data_dtype == np.float16:
|
||
data = data.astype(np.float32)
|
||
|
||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||
data = data.astype(np.float32)
|
||
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||
data = data.astype(np.float16)
|
||
|
||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
|
||
|
||
@Model.register("QWenLMHeadModel")
|
||
class QwenModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.QWEN
|
||
|
||
@staticmethod
|
||
def token_bytes_to_string(b):
|
||
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
|
||
byte_encoder = bytes_to_unicode()
|
||
return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
|
||
|
||
@staticmethod
|
||
def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
|
||
parts = [bytes([b]) for b in token]
|
||
while True:
|
||
min_idx = None
|
||
min_rank = None
|
||
for i, pair in enumerate(zip(parts[:-1], parts[1:])):
|
||
rank = mergeable_ranks.get(pair[0] + pair[1])
|
||
if rank is not None and (min_rank is None or rank < min_rank):
|
||
min_idx = i
|
||
min_rank = rank
|
||
if min_rank is None or (max_rank is not None and min_rank >= max_rank):
|
||
break
|
||
assert min_idx is not None
|
||
parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
|
||
return parts
|
||
|
||
def set_vocab(self):
|
||
self._set_vocab_qwen()
|
||
|
||
def set_gguf_parameters(self):
|
||
self.gguf_writer.add_name("Qwen")
|
||
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
||
self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
|
||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
|
||
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
|
||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
|
||
|
||
def write_tensors(self):
|
||
block_count = self.hparams["num_hidden_layers"]
|
||
model_kv = dict(self.get_tensors())
|
||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||
for name, data_torch in model_kv.items():
|
||
# we don't need these
|
||
if name.endswith(".rotary_emb.inv_freq"):
|
||
continue
|
||
|
||
old_dtype = data_torch.dtype
|
||
|
||
# convert any unsupported data types to float32
|
||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||
data_torch = data_torch.to(torch.float32)
|
||
|
||
data = data_torch.squeeze().numpy()
|
||
|
||
# map tensor names
|
||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
|
||
n_dims = len(data.shape)
|
||
data_dtype = data.dtype
|
||
|
||
# if f32 desired, convert any float16 to float32
|
||
if self.ftype == 0 and data_dtype == np.float16:
|
||
data = data.astype(np.float32)
|
||
|
||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||
data = data.astype(np.float32)
|
||
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||
data = data.astype(np.float16)
|
||
|
||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
|
||
|
||
@Model.register("Qwen2ForCausalLM")
|
||
class Qwen2Model(Model):
|
||
model_arch = gguf.MODEL_ARCH.QWEN2
|
||
|
||
def set_vocab(self):
|
||
try:
|
||
self._set_vocab_sentencepiece()
|
||
except FileNotFoundError:
|
||
self._set_vocab_gpt2()
|
||
|
||
|
||
@Model.register("Qwen2MoeForCausalLM")
|
||
class Qwen2MoeModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.QWEN2MOE
|
||
|
||
def set_gguf_parameters(self):
|
||
super().set_gguf_parameters()
|
||
if (n_experts := self.hparams.get("num_experts")) is not None:
|
||
self.gguf_writer.add_expert_count(n_experts)
|
||
|
||
def write_tensors(self):
|
||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||
n_experts = self.hparams.get("num_experts")
|
||
experts = dict()
|
||
for name, data_torch in self.get_tensors():
|
||
# we don't need these
|
||
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
|
||
continue
|
||
|
||
old_dtype = data_torch.dtype
|
||
|
||
# convert any unsupported data types to float32
|
||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||
data_torch = data_torch.to(torch.float32)
|
||
|
||
data = data_torch.squeeze().numpy()
|
||
|
||
# process the experts separately
|
||
if name.find("experts") != -1:
|
||
experts[name] = data
|
||
if len(experts) >= n_experts * 3:
|
||
# merge the experts into a single 3d tensor
|
||
for bid in range(block_count):
|
||
for w_name in ["down_proj", "gate_proj", "up_proj"]:
|
||
full = True
|
||
for xid in range(n_experts):
|
||
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
|
||
if ename not in experts:
|
||
full = False
|
||
break
|
||
if not full:
|
||
continue
|
||
|
||
datas = []
|
||
for xid in range(n_experts):
|
||
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
|
||
datas.append(experts[ename])
|
||
del experts[ename]
|
||
|
||
data = np.stack(datas, axis=0)
|
||
data_dtype = data.dtype
|
||
|
||
if self.ftype == 0 and data_dtype == np.float16:
|
||
data = data.astype(np.float32)
|
||
|
||
if self.ftype == 1 and data_dtype == np.float32:
|
||
data = data.astype(np.float16)
|
||
|
||
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
|
||
|
||
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
|
||
logger.debug(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
|
||
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
continue
|
||
|
||
# map tensor names
|
||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
|
||
n_dims = len(data.shape)
|
||
data_dtype = data.dtype
|
||
|
||
# if f32 desired, convert any float16 to float32
|
||
if self.ftype == 0 and data_dtype == np.float16:
|
||
data = data.astype(np.float32)
|
||
|
||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||
if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
|
||
data = data.astype(np.float32)
|
||
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||
data = data.astype(np.float16)
|
||
|
||
logger.debug(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
|
||
if len(experts) > 0:
|
||
raise ValueError(f"Unprocessed experts: {experts.keys()}")
|
||
|
||
|
||
@Model.register("GPT2LMHeadModel")
|
||
class GPT2Model(Model):
|
||
model_arch = gguf.MODEL_ARCH.GPT2
|
||
|
||
def set_gguf_parameters(self):
|
||
self.gguf_writer.add_name(self.dir_model.name)
|
||
self.gguf_writer.add_block_count(self.hparams["n_layer"])
|
||
self.gguf_writer.add_context_length(self.hparams["n_ctx"])
|
||
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
||
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
|
||
self.gguf_writer.add_head_count(self.hparams["n_head"])
|
||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
def write_tensors(self):
|
||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||
|
||
for name, data_torch in self.get_tensors():
|
||
# we don't need these
|
||
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias", ".attn.masked_bias")):
|
||
continue
|
||
|
||
if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
|
||
data_torch = data_torch.transpose(1, 0)
|
||
|
||
old_dtype = data_torch.dtype
|
||
|
||
# convert any unsupported data types to float32
|
||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||
data_torch = data_torch.to(torch.float32)
|
||
|
||
data = data_torch.squeeze().numpy()
|
||
|
||
# map tensor names
|
||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
|
||
n_dims = len(data.shape)
|
||
data_dtype = data.dtype
|
||
|
||
# if f32 desired, convert any float16 to float32
|
||
if self.ftype == 0 and data_dtype == np.float16:
|
||
data = data.astype(np.float32)
|
||
|
||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||
data = data.astype(np.float32)
|
||
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||
data = data.astype(np.float16)
|
||
|
||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
|
||
# note: GPT2 output is tied to (same as) wte in original model
|
||
if new_name == "token_embd.weight":
|
||
logger.info(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||
self.gguf_writer.add_tensor("output.weight", data)
|
||
|
||
|
||
@Model.register("PhiForCausalLM")
|
||
class Phi2Model(Model):
|
||
model_arch = gguf.MODEL_ARCH.PHI2
|
||
|
||
def set_gguf_parameters(self):
|
||
block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
|
||
|
||
rot_pct = self.find_hparam(["partial_rotary_factor"])
|
||
n_embd = self.find_hparam(["hidden_size", "n_embd"])
|
||
n_head = self.find_hparam(["num_attention_heads", "n_head"])
|
||
|
||
self.gguf_writer.add_name("Phi2")
|
||
self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
|
||
|
||
self.gguf_writer.add_embedding_length(n_embd)
|
||
self.gguf_writer.add_feed_forward_length(4 * n_embd)
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_head_count(n_head)
|
||
self.gguf_writer.add_head_count_kv(n_head)
|
||
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
|
||
self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
self.gguf_writer.add_add_bos_token(False)
|
||
|
||
|
||
@Model.register("Phi3ForCausalLM")
|
||
class Phi3MiniModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.PHI3
|
||
|
||
def set_vocab(self):
|
||
from sentencepiece import SentencePieceProcessor
|
||
|
||
tokenizer_path = self.dir_model / 'tokenizer.model'
|
||
|
||
if not tokenizer_path.is_file():
|
||
raise ValueError(f'Error: Missing {tokenizer_path}')
|
||
|
||
tokenizer = SentencePieceProcessor(str(tokenizer_path))
|
||
|
||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||
|
||
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
||
scores: list[float] = [-10000.0] * vocab_size
|
||
toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
|
||
|
||
for token_id in range(tokenizer.vocab_size()):
|
||
|
||
piece = tokenizer.id_to_piece(token_id)
|
||
text = piece.encode("utf-8")
|
||
score = tokenizer.get_score(token_id)
|
||
|
||
toktype = SentencePieceTokenTypes.NORMAL
|
||
if tokenizer.is_unknown(token_id):
|
||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||
elif tokenizer.is_control(token_id):
|
||
toktype = SentencePieceTokenTypes.CONTROL
|
||
elif tokenizer.is_unused(token_id):
|
||
toktype = SentencePieceTokenTypes.UNUSED
|
||
elif tokenizer.is_byte(token_id):
|
||
toktype = SentencePieceTokenTypes.BYTE
|
||
|
||
tokens[token_id] = text
|
||
scores[token_id] = score
|
||
toktypes[token_id] = toktype
|
||
|
||
added_tokens_file = self.dir_model / 'added_tokens.json'
|
||
if added_tokens_file.is_file():
|
||
with open(added_tokens_file, "r", encoding="utf-8") as f:
|
||
added_tokens_json = json.load(f)
|
||
|
||
for key in added_tokens_json:
|
||
token_id = added_tokens_json[key]
|
||
if (token_id >= vocab_size):
|
||
logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
|
||
continue
|
||
|
||
tokens[token_id] = key.encode("utf-8")
|
||
scores[token_id] = -1000.0
|
||
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
||
|
||
self.gguf_writer.add_tokenizer_model("llama")
|
||
self.gguf_writer.add_tokenizer_pre("default")
|
||
self.gguf_writer.add_token_list(tokens)
|
||
self.gguf_writer.add_token_scores(scores)
|
||
self.gguf_writer.add_token_types(toktypes)
|
||
|
||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
def set_gguf_parameters(self):
|
||
block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
|
||
|
||
rot_pct = 1.0
|
||
n_embd = self.find_hparam(["hidden_size", "n_embd"])
|
||
n_head = self.find_hparam(["num_attention_heads", "n_head"])
|
||
rms_eps = self.find_hparam(["rms_norm_eps"])
|
||
|
||
self.gguf_writer.add_name("Phi3")
|
||
self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
|
||
|
||
self.gguf_writer.add_embedding_length(n_embd)
|
||
self.gguf_writer.add_feed_forward_length(8192)
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_head_count(n_head)
|
||
self.gguf_writer.add_head_count_kv(n_head)
|
||
self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
|
||
self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
|
||
@Model.register("PlamoForCausalLM")
|
||
class PlamoModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.PLAMO
|
||
|
||
def set_vocab(self):
|
||
self._set_vocab_sentencepiece()
|
||
|
||
def set_gguf_parameters(self):
|
||
hparams = self.hparams
|
||
block_count = hparams["num_hidden_layers"]
|
||
|
||
self.gguf_writer.add_name("PLaMo")
|
||
self.gguf_writer.add_context_length(4096) # not in config.json
|
||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||
self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
|
||
self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
|
||
|
||
def shuffle_attn_q_weight(self, data_torch):
|
||
assert data_torch.size() == (5120, 5120)
|
||
data_torch = data_torch.reshape(8, 5, 128, 5120)
|
||
data_torch = torch.permute(data_torch, (1, 0, 2, 3))
|
||
data_torch = torch.reshape(data_torch, (5120, 5120))
|
||
return data_torch
|
||
|
||
def shuffle_attn_output_weight(self, data_torch):
|
||
assert data_torch.size() == (5120, 5120)
|
||
data_torch = data_torch.reshape(5120, 8, 5, 128)
|
||
data_torch = torch.permute(data_torch, (0, 2, 1, 3))
|
||
data_torch = torch.reshape(data_torch, (5120, 5120))
|
||
return data_torch
|
||
|
||
def write_tensors(self):
|
||
block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
|
||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||
|
||
for name, data_torch in self.get_tensors():
|
||
if "self_attn.rotary_emb.inv_freq" in name:
|
||
continue
|
||
|
||
# map tensor names
|
||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
|
||
# shuffle for broadcasting of gqa in ggml_mul_mat
|
||
if new_name.endswith("attn_q.weight"):
|
||
data_torch = self.shuffle_attn_q_weight(data_torch)
|
||
elif new_name.endswith("attn_output.weight"):
|
||
data_torch = self.shuffle_attn_output_weight(data_torch)
|
||
|
||
old_dtype = data_torch.dtype
|
||
|
||
# convert any unsupported data types to float32
|
||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||
data_torch = data_torch.to(torch.float32)
|
||
|
||
data = data_torch.squeeze().numpy()
|
||
|
||
n_dims = len(data.shape)
|
||
data_dtype = data.dtype
|
||
|
||
# if f32 desired, convert any float16 to float32
|
||
if self.ftype == 0 and data_dtype == np.float16:
|
||
data = data.astype(np.float32)
|
||
|
||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||
data = data.astype(np.float32)
|
||
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||
data = data.astype(np.float16)
|
||
|
||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
|
||
|
||
@Model.register("CodeShellForCausalLM")
|
||
class CodeShellModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.CODESHELL
|
||
|
||
def set_gguf_parameters(self):
|
||
block_count = self.hparams["n_layer"]
|
||
|
||
self.gguf_writer.add_name("CodeShell")
|
||
self.gguf_writer.add_context_length(self.hparams["n_positions"])
|
||
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
||
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_head_count(self.hparams["n_head"])
|
||
self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
|
||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
self.gguf_writer.add_rope_freq_base(10000.0)
|
||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||
self.gguf_writer.add_rope_scaling_factor(1.0)
|
||
|
||
def write_tensors(self):
|
||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||
tensors = dict(self.get_tensors())
|
||
has_lm_head = "lm_head.weight" in tensors.keys() or "output.weight" in tensors.keys()
|
||
for name, data_torch in tensors.items():
|
||
# we don't need these
|
||
if name.endswith((".attn.rotary_emb.inv_freq")):
|
||
continue
|
||
|
||
old_dtype = data_torch.dtype
|
||
|
||
# convert any unsupported data types to float32
|
||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||
data_torch = data_torch.to(torch.float32)
|
||
|
||
data = data_torch.squeeze().numpy()
|
||
|
||
# map tensor names
|
||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
|
||
n_dims = len(data.shape)
|
||
data_dtype = data.dtype
|
||
|
||
# if f32 desired, convert any float16 to float32
|
||
if self.ftype == 0 and data_dtype == np.float16:
|
||
data = data.astype(np.float32)
|
||
|
||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||
data = data.astype(np.float32)
|
||
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||
data = data.astype(np.float16)
|
||
|
||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
|
||
if not has_lm_head and name == "transformer.wte.weight":
|
||
self.gguf_writer.add_tensor("output.weight", data)
|
||
logger.info(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||
|
||
|
||
@Model.register("InternLM2ForCausalLM")
|
||
class InternLM2Model(Model):
|
||
model_arch = gguf.MODEL_ARCH.INTERNLM2
|
||
|
||
def set_vocab(self):
|
||
# (TODO): Is there a better way?
|
||
# Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
|
||
# \x00 specially and convert it into an emoji character to prevent it from being mistakenly
|
||
# recognized as an empty string in C++.
|
||
from sentencepiece import SentencePieceProcessor
|
||
from sentencepiece import sentencepiece_model_pb2 as model
|
||
|
||
tokenizer_path = self.dir_model / 'tokenizer.model'
|
||
|
||
tokens: list[bytes] = []
|
||
scores: list[float] = []
|
||
toktypes: list[int] = []
|
||
|
||
if not tokenizer_path.is_file():
|
||
logger.error(f'Error: Missing {tokenizer_path}')
|
||
sys.exit(1)
|
||
|
||
sentencepiece_model = model.ModelProto()
|
||
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
|
||
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
|
||
|
||
tokenizer = SentencePieceProcessor(str(tokenizer_path))
|
||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||
|
||
for token_id in range(vocab_size):
|
||
piece = tokenizer.id_to_piece(token_id)
|
||
text = piece.encode("utf-8")
|
||
score = tokenizer.get_score(token_id)
|
||
if text == b"\x00":
|
||
# (TODO): fixme
|
||
# Hack here and replace the \x00 characters.
|
||
logger.debug(f"InternLM2 convert token '{text}' to '🐉'!")
|
||
text = "🐉"
|
||
|
||
toktype = SentencePieceTokenTypes.NORMAL
|
||
if tokenizer.is_unknown(token_id):
|
||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||
elif tokenizer.is_control(token_id):
|
||
toktype = SentencePieceTokenTypes.CONTROL
|
||
elif tokenizer.is_unused(token_id):
|
||
toktype = SentencePieceTokenTypes.UNUSED
|
||
elif tokenizer.is_byte(token_id):
|
||
toktype = SentencePieceTokenTypes.BYTE
|
||
|
||
tokens.append(text)
|
||
scores.append(score)
|
||
toktypes.append(toktype)
|
||
|
||
added_tokens_file = self.dir_model / 'added_tokens.json'
|
||
if added_tokens_file.is_file():
|
||
with open(added_tokens_file, "r", encoding="utf-8") as f:
|
||
added_tokens_json = json.load(f)
|
||
|
||
for key in added_tokens_json:
|
||
tokens.append(key.encode("utf-8"))
|
||
scores.append(-1000.0)
|
||
toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
|
||
|
||
self.gguf_writer.add_tokenizer_model("llama")
|
||
self.gguf_writer.add_tokenizer_pre("default")
|
||
self.gguf_writer.add_token_list(tokens)
|
||
self.gguf_writer.add_token_scores(scores)
|
||
self.gguf_writer.add_token_types(toktypes)
|
||
self.gguf_writer.add_add_space_prefix(add_prefix)
|
||
|
||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||
old_eos = special_vocab.special_token_ids["eos"]
|
||
if "chat" in os.path.basename(self.dir_model.absolute()):
|
||
# For the chat model, we replace the eos with '<|im_end|>'.
|
||
# TODO: this is a hack, should be fixed
|
||
# https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
|
||
special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
|
||
logger.warning(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
|
||
in chat mode so that the conversation can end normally.")
|
||
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
def _try_get_sft_eos(self, tokenizer):
|
||
unused_145_list = tokenizer.encode('[UNUSED_TOKEN_145]')
|
||
im_end_list = tokenizer.encode('<|im_end|>')
|
||
assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
|
||
if len(unused_145_list) == 1:
|
||
eos_token = unused_145_list[0]
|
||
if len(im_end_list) == 1:
|
||
eos_token = im_end_list[0]
|
||
return eos_token
|
||
|
||
def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
|
||
if n_head_kv is not None and n_head != n_head_kv:
|
||
n_head = n_head_kv
|
||
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||
.swapaxes(1, 2)
|
||
.reshape(weights.shape))
|
||
|
||
def set_gguf_parameters(self):
|
||
self.gguf_writer.add_name("InternLM2")
|
||
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
||
self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
|
||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||
self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
|
||
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
|
||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
|
||
|
||
def post_write_tensors(self, tensor_map, name, data_torch):
|
||
old_dtype = data_torch.dtype
|
||
|
||
# convert any unsupported data types to float32
|
||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||
data_torch = data_torch.to(torch.float32)
|
||
|
||
data = data_torch.squeeze().numpy()
|
||
|
||
# map tensor names
|
||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
|
||
n_dims = len(data.shape)
|
||
data_dtype = data.dtype
|
||
|
||
# if f32 desired, convert any float16 to float32
|
||
if self.ftype == 0 and data_dtype == np.float16:
|
||
data = data.astype(np.float32)
|
||
|
||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||
data = data.astype(np.float32)
|
||
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||
data = data.astype(np.float16)
|
||
|
||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
|
||
def write_tensors(self):
|
||
from einops import rearrange
|
||
|
||
num_heads = self.hparams.get("num_attention_heads")
|
||
num_kv_heads = self.hparams.get("num_key_value_heads")
|
||
hidden_size = self.hparams.get("hidden_size")
|
||
q_per_kv = num_heads // num_kv_heads
|
||
head_dim = hidden_size // num_heads
|
||
num_groups = num_heads // q_per_kv
|
||
|
||
block_count = self.hparams["num_hidden_layers"]
|
||
model_kv = dict(self.get_tensors())
|
||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||
qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
|
||
for name, data_torch in model_kv.items():
|
||
# we don't need these
|
||
if name.endswith(".rotary_emb.inv_freq"):
|
||
continue
|
||
|
||
if re.match(qkv_pattern, name):
|
||
bid = re.findall(qkv_pattern, name)[0]
|
||
qkv = data_torch
|
||
qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
|
||
q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
|
||
# The model weights of q and k equire additional reshape.
|
||
q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
|
||
k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
|
||
v = rearrange(v, " o g n i -> o (g n i)").T
|
||
self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q)
|
||
self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k)
|
||
self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v)
|
||
else:
|
||
self.post_write_tensors(tensor_map, name, data_torch)
|
||
|
||
|
||
@Model.register("BertModel", "CamembertModel")
|
||
class BertModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.BERT
|
||
|
||
def __init__(self, *args, **kwargs):
|
||
super().__init__(*args, **kwargs)
|
||
self.vocab_size = None
|
||
|
||
def set_gguf_parameters(self):
|
||
super().set_gguf_parameters()
|
||
self.gguf_writer.add_causal_attention(False)
|
||
|
||
# get pooling path
|
||
pooling_path = None
|
||
module_path = self.dir_model / "modules.json"
|
||
if module_path.is_file():
|
||
with open(module_path, encoding="utf-8") as f:
|
||
modules = json.load(f)
|
||
for mod in modules:
|
||
if mod["type"] == "sentence_transformers.models.Pooling":
|
||
pooling_path = mod["path"]
|
||
break
|
||
|
||
# get pooling type
|
||
if pooling_path is not None:
|
||
with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
|
||
pooling = json.load(f)
|
||
if pooling["pooling_mode_mean_tokens"]:
|
||
pooling_type = gguf.PoolingType.MEAN
|
||
elif pooling["pooling_mode_cls_token"]:
|
||
pooling_type = gguf.PoolingType.CLS
|
||
else:
|
||
raise NotImplementedError("Only MEAN and CLS pooling types supported")
|
||
self.gguf_writer.add_pooling_type(pooling_type)
|
||
|
||
def set_vocab(self):
|
||
tokens, toktypes, tokpre = self.get_vocab_base()
|
||
self.vocab_size = len(tokens)
|
||
|
||
# we need this to validate the size of the token_type embeddings
|
||
# though currently we are passing all zeros to the token_type embeddings
|
||
self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
|
||
|
||
# convert to phantom space vocab
|
||
def phantom(tok):
|
||
if tok.startswith("[") and tok.endswith("]"):
|
||
return tok
|
||
if tok.startswith("##"):
|
||
return tok[2:]
|
||
return "\u2581" + tok
|
||
tokens = list(map(phantom, tokens))
|
||
|
||
# add vocab to gguf
|
||
self.gguf_writer.add_tokenizer_model("bert")
|
||
self.gguf_writer.add_tokenizer_pre(tokpre)
|
||
self.gguf_writer.add_token_list(tokens)
|
||
self.gguf_writer.add_token_types(toktypes)
|
||
|
||
# handle special tokens
|
||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
def write_tensors(self):
|
||
tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
|
||
tensors = dict(self.get_tensors())
|
||
for name, data_torch in tensors.items():
|
||
# we are only using BERT for embeddings so we don't need the pooling layer
|
||
if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
|
||
continue # we don't need these
|
||
|
||
# map tensor names
|
||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
|
||
# convert any unsupported data types to float32
|
||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||
data_torch = data_torch.to(torch.float32)
|
||
|
||
data = data_torch.squeeze().numpy()
|
||
n_dims = len(data.shape)
|
||
new_dtype: type[np.floating[Any]]
|
||
|
||
if (
|
||
self.ftype == 1 and name.endswith(".weight") and n_dims == 2
|
||
and name != "embeddings.token_type_embeddings.weight" # not used with get_rows, must be F32
|
||
):
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||
new_dtype = np.float16
|
||
else:
|
||
# if f32 desired, convert any float16 to float32
|
||
new_dtype = np.float32
|
||
|
||
logger.info(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}")
|
||
|
||
if data.dtype != new_dtype:
|
||
data = data.astype(new_dtype)
|
||
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
|
||
|
||
@Model.register("NomicBertModel")
|
||
class NomicBertModel(BertModel):
|
||
model_arch = gguf.MODEL_ARCH.NOMIC_BERT
|
||
|
||
def __init__(self, *args, **kwargs):
|
||
super().__init__(*args, **kwargs)
|
||
|
||
# the HF config claims n_ctx=8192, but it uses RoPE scaling
|
||
self.hparams["n_ctx"] = 2048
|
||
|
||
# SwigLU activation
|
||
assert self.hparams["activation_function"] == "swiglu"
|
||
# this doesn't do anything in the HF version
|
||
assert self.hparams["causal"] is False
|
||
# no bias tensors
|
||
assert self.hparams["qkv_proj_bias"] is False
|
||
assert self.hparams["mlp_fc1_bias"] is False
|
||
assert self.hparams["mlp_fc2_bias"] is False
|
||
# norm at end of layer
|
||
assert self.hparams["prenorm"] is False
|
||
# standard RoPE
|
||
assert self.hparams["rotary_emb_fraction"] == 1.0
|
||
assert self.hparams["rotary_emb_interleaved"] is False
|
||
assert self.hparams["rotary_emb_scale_base"] is None
|
||
|
||
def set_gguf_parameters(self):
|
||
super().set_gguf_parameters()
|
||
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
|
||
|
||
|
||
@Model.register("GemmaForCausalLM")
|
||
class GemmaModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.GEMMA
|
||
|
||
def set_vocab(self):
|
||
self._set_vocab_sentencepiece()
|
||
|
||
# TODO: these special tokens should be exported only for the CodeGemma family
|
||
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
|
||
special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
|
||
special_vocab._set_special_token("prefix", 67)
|
||
special_vocab._set_special_token("suffix", 69)
|
||
special_vocab._set_special_token("middle", 68)
|
||
special_vocab._set_special_token("fsep", 70)
|
||
special_vocab._set_special_token("eot", 107)
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
def set_gguf_parameters(self):
|
||
hparams = self.hparams
|
||
block_count = hparams["num_hidden_layers"]
|
||
|
||
self.gguf_writer.add_name(self.dir_model.name)
|
||
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
|
||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||
self.gguf_writer.add_key_length(hparams["head_dim"])
|
||
self.gguf_writer.add_value_length(hparams["head_dim"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
def write_tensors(self):
|
||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||
|
||
for name, data_torch in self.get_tensors():
|
||
# lm_head is not used in llama.cpp, while autoawq will include this tensor in model
|
||
# To prevent errors, skip loading lm_head.weight.
|
||
if name == "lm_head.weight":
|
||
logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
|
||
continue
|
||
|
||
old_dtype = data_torch.dtype
|
||
|
||
# convert any unsupported data types to float32
|
||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||
data_torch = data_torch.to(torch.float32)
|
||
|
||
# ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
|
||
if name.endswith("norm.weight"):
|
||
data_torch = data_torch + 1
|
||
data = data_torch.squeeze().numpy()
|
||
|
||
# map tensor names
|
||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
|
||
n_dims = len(data.shape)
|
||
data_dtype = data.dtype
|
||
|
||
data = data.astype(np.float32)
|
||
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||
data = data.astype(np.float16)
|
||
|
||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
|
||
|
||
@Model.register("Starcoder2ForCausalLM")
|
||
class StarCoder2Model(Model):
|
||
model_arch = gguf.MODEL_ARCH.STARCODER2
|
||
|
||
|
||
@Model.register("MambaForCausalLM", "MambaLMHeadModel")
|
||
class MambaModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.MAMBA
|
||
|
||
def set_vocab(self):
|
||
vocab_size = self.hparams["vocab_size"]
|
||
# Round vocab size to next multiple of 8
|
||
pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
|
||
# pad using ceiling division
|
||
# ref: https://stackoverflow.com/a/17511341/22827863
|
||
vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
|
||
self.hparams["vocab_size"] = vocab_size
|
||
|
||
if (self.dir_model / "tokenizer.json").is_file():
|
||
self._set_vocab_gpt2()
|
||
else:
|
||
# Use the GPT-NeoX tokenizer when no tokenizer files are present
|
||
tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
|
||
logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
|
||
neox_reader = gguf.GGUFReader(tokenizer_path, "r")
|
||
|
||
field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
|
||
self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]))
|
||
|
||
field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE)
|
||
self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]))
|
||
|
||
field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
|
||
self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
|
||
|
||
field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
|
||
self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
|
||
|
||
field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
|
||
self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
|
||
|
||
field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
|
||
self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
|
||
|
||
field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
|
||
self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
|
||
|
||
field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
|
||
self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
|
||
|
||
def set_gguf_parameters(self):
|
||
d_model = self.find_hparam(["hidden_size", "d_model"])
|
||
d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
|
||
d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
|
||
d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
|
||
# ceiling division
|
||
# ref: https://stackoverflow.com/a/17511341/22827863
|
||
# ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
|
||
dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
|
||
rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
|
||
|
||
# Fail early for models which don't have a block expansion factor of 2
|
||
assert d_inner == 2 * d_model
|
||
|
||
self.gguf_writer.add_name(self.dir_model.name)
|
||
self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
|
||
self.gguf_writer.add_embedding_length(d_model)
|
||
self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
|
||
self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
|
||
self.gguf_writer.add_block_count(self.hparams["n_layer"])
|
||
self.gguf_writer.add_ssm_conv_kernel(d_conv)
|
||
self.gguf_writer.add_ssm_inner_size(d_inner)
|
||
self.gguf_writer.add_ssm_state_size(d_state)
|
||
self.gguf_writer.add_ssm_time_step_rank(dt_rank)
|
||
self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
def write_tensors(self):
|
||
block_count = self.hparams["n_layer"]
|
||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||
|
||
tok_embd = None
|
||
tok_embd_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.TOKEN_EMBD] + ".weight"
|
||
output_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.OUTPUT] + ".weight"
|
||
|
||
for name, data_torch in self.get_tensors():
|
||
old_dtype = data_torch.dtype
|
||
|
||
# convert any unsupported data types to float32
|
||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||
data_torch = data_torch.to(torch.float32)
|
||
|
||
# map tensor names
|
||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
|
||
if name.endswith(".A_log"):
|
||
logger.debug("A_log --> A ==> " + new_name)
|
||
data_torch = -torch.exp(data_torch)
|
||
|
||
# assuming token_embd.weight is seen before output.weight
|
||
if tok_embd is not None and new_name == output_name:
|
||
if torch.equal(tok_embd, data_torch):
|
||
logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
|
||
continue
|
||
if new_name == tok_embd_name:
|
||
tok_embd = data_torch
|
||
|
||
data = data_torch.squeeze().numpy()
|
||
|
||
n_dims = len(data.shape)
|
||
data_dtype = data.dtype
|
||
|
||
# if f32 desired, convert any float16 to float32
|
||
if self.ftype == 0 and data_dtype == np.float16:
|
||
data = data.astype(np.float32)
|
||
|
||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||
data = data.astype(np.float32)
|
||
|
||
# if f16 desired, convert big float32 2-dim weight tensors to float16
|
||
new_weight_name = new_name[:-len(".weight")] if new_name.endswith(".weight") else ""
|
||
if self.ftype == 1 and data_dtype == np.float32 and new_weight_name.endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
|
||
data = data.astype(np.float16)
|
||
|
||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
|
||
|
||
@Model.register("CohereForCausalLM")
|
||
class CommandR2Model(Model):
|
||
model_arch = gguf.MODEL_ARCH.COMMAND_R
|
||
|
||
def __init__(self, *args, **kwargs):
|
||
super().__init__(*args, **kwargs)
|
||
|
||
# max_position_embeddings = 8192 in config.json but model was actually
|
||
# trained on 128k context length
|
||
self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
|
||
|
||
def set_gguf_parameters(self):
|
||
super().set_gguf_parameters()
|
||
self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
|
||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
|
||
|
||
|
||
@Model.register("OlmoForCausalLM")
|
||
@Model.register("OLMoForCausalLM")
|
||
class OlmoModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.OLMO
|
||
|
||
def set_gguf_parameters(self):
|
||
super().set_gguf_parameters()
|
||
self.gguf_writer.add_layer_norm_eps(1e-5)
|
||
if "clip_qkv" in self.hparams is not None:
|
||
self.gguf_writer.add_clamp_kqv(self.hparams["clip_qkv"])
|
||
|
||
# Same as super class, but permuting q_proj, k_proj
|
||
# Copied from: LlamaModel
|
||
def write_tensors(self):
|
||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||
n_head = self.hparams.get("num_attention_heads")
|
||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||
for name, data_torch in self.get_tensors():
|
||
old_dtype = data_torch.dtype
|
||
|
||
# convert any unsupported data types to float32
|
||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||
data_torch = data_torch.to(torch.float32)
|
||
|
||
data = data_torch.numpy()
|
||
|
||
if name.endswith("q_proj.weight"):
|
||
data = permute(data, n_head, n_head)
|
||
if name.endswith("k_proj.weight"):
|
||
data = permute(data, n_head, n_kv_head)
|
||
|
||
data = data.squeeze()
|
||
|
||
# map tensor names
|
||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
|
||
n_dims = len(data.shape)
|
||
data_dtype = data.dtype
|
||
|
||
# if f32 desired, convert any float16 to float32
|
||
if self.ftype == 0 and data_dtype == np.float16:
|
||
data = data.astype(np.float32)
|
||
|
||
# 1d tensors need to be converted to float32
|
||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||
data = data.astype(np.float32)
|
||
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||
if self.ftype == 1 and data_dtype == np.float32 and n_dims == 2:
|
||
data = data.astype(np.float16)
|
||
|
||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||
|
||
self.gguf_writer.add_tensor(new_name, data)
|
||
|
||
|
||
###### CONVERSION LOGIC ######
|
||
|
||
|
||
def parse_args() -> argparse.Namespace:
|
||
parser = argparse.ArgumentParser(
|
||
description="Convert a huggingface model to a GGML compatible file")
|
||
parser.add_argument(
|
||
"--vocab-only", action="store_true",
|
||
help="extract only the vocab",
|
||
)
|
||
parser.add_argument(
|
||
"--awq-path", type=Path, default=None,
|
||
help="Path to scale awq cache file")
|
||
parser.add_argument(
|
||
"--outfile", type=Path,
|
||
help="path to write to; default: based on input",
|
||
)
|
||
parser.add_argument(
|
||
"--outtype", type=str, choices=["f32", "f16"], default="f16",
|
||
help="output format - use f32 for float32, f16 for float16",
|
||
)
|
||
parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
|
||
parser.add_argument(
|
||
"model", type=Path,
|
||
help="directory containing model file",
|
||
)
|
||
parser.add_argument("--use-temp-file", action="store_true", help="use the tempfile library while processing (helpful when running out of memory, process killed)")
|
||
parser.add_argument("--model-name", type=str, default=None, help="name of the model")
|
||
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
||
|
||
return parser.parse_args()
|
||
|
||
|
||
def main() -> None:
|
||
args = parse_args()
|
||
|
||
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
|
||
|
||
dir_model = args.model
|
||
|
||
if args.awq_path:
|
||
sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
|
||
from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
|
||
tmp_model_path = args.model / "weighted_model"
|
||
dir_model = tmp_model_path
|
||
if tmp_model_path.is_dir():
|
||
logger.info(f"{tmp_model_path} exists as a weighted model.")
|
||
else:
|
||
tmp_model_path.mkdir(parents=True, exist_ok=True)
|
||
logger.info("Saving new weighted model ...")
|
||
add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
|
||
logger.info(f"Saved weighted model at {tmp_model_path}.")
|
||
|
||
if not dir_model.is_dir():
|
||
logger.error(f'Error: {args.model} is not a directory')
|
||
sys.exit(1)
|
||
|
||
ftype_map = {
|
||
"f32": gguf.GGMLQuantizationType.F32,
|
||
"f16": gguf.GGMLQuantizationType.F16,
|
||
}
|
||
|
||
if args.outfile is not None:
|
||
fname_out = args.outfile
|
||
else:
|
||
# output in the same directory as the model by default
|
||
fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
|
||
|
||
logger.info(f"Loading model: {dir_model.name}")
|
||
|
||
hparams = Model.load_hparams(dir_model)
|
||
|
||
with torch.inference_mode():
|
||
model_class = Model.from_model_architecture(hparams["architectures"][0])
|
||
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file)
|
||
|
||
logger.info("Set model parameters")
|
||
model_instance.set_gguf_parameters()
|
||
|
||
logger.info("Set model tokenizer")
|
||
model_instance.set_vocab()
|
||
|
||
if args.vocab_only:
|
||
logger.info(f"Exporting model vocab to '{fname_out}'")
|
||
model_instance.write_vocab()
|
||
else:
|
||
logger.info(f"Exporting model to '{fname_out}'")
|
||
model_instance.write()
|
||
|
||
logger.info(f"Model successfully exported to '{fname_out}'")
|
||
|
||
|
||
if __name__ == '__main__':
|
||
main()
|