mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-22 09:39:08 +01:00
248 lines
7.6 KiB
Python
248 lines
7.6 KiB
Python
# Quick and dirty HF llama --> gguf conversion, GQA/70b wont work
|
|
|
|
import gguf
|
|
import sys
|
|
import struct
|
|
import json
|
|
import numpy as np
|
|
from typing import Any, List
|
|
from pathlib import Path
|
|
from transformers import AutoModelForCausalLM
|
|
from sentencepiece import SentencePieceProcessor
|
|
|
|
|
|
NDArray = np.ndarray[Any, Any]
|
|
|
|
|
|
def permute(weights: NDArray, n_head: int) -> NDArray:
|
|
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
|
.swapaxes(1, 2)
|
|
.reshape(weights.shape))
|
|
|
|
|
|
if len(sys.argv) < 3:
|
|
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
|
|
print(" ftype == 0 -> float32")
|
|
print(" ftype == 1 -> float16")
|
|
sys.exit(1)
|
|
|
|
|
|
# output in the same directory as the model
|
|
dir_model = sys.argv[1]
|
|
fname_out = sys.argv[1] + "/ggml-model.bin"
|
|
|
|
|
|
# possible tensor data types
|
|
# ftype == 0 -> float32
|
|
# ftype == 1 -> float16
|
|
#
|
|
# map from ftype to string
|
|
ftype_str = ["f32", "f16"]
|
|
|
|
ftype = 1
|
|
if len(sys.argv) > 2:
|
|
ftype = int(sys.argv[2])
|
|
if ftype < 0 or ftype > 1:
|
|
print("Invalid ftype: " + str(ftype))
|
|
sys.exit(1)
|
|
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
|
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
|
|
list_vars = model.state_dict()
|
|
|
|
# count tensors to be converted
|
|
tensor_count = 0
|
|
for name in list_vars.keys():
|
|
# we don't need these
|
|
if name.endswith(".rotary_emb.inv_freq"):
|
|
continue
|
|
tensor_count += 1
|
|
|
|
gguf_writer = gguf.GGUFWriter.open(fname_out)
|
|
|
|
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
|
|
hparams = json.load(f)
|
|
|
|
# This mmust be changed when adding/deleting kv
|
|
kv_count = 13
|
|
|
|
print("tensors " + str(tensor_count) + " kv " + str(kv_count))
|
|
|
|
print("write gguf header")
|
|
|
|
gguf_writer.write_header(tensor_count, kv_count)
|
|
|
|
print("write gguf hparams")
|
|
|
|
llm_arch = "llama"
|
|
|
|
gguf_writer.write_name("llama2-7b")
|
|
gguf_writer.write_description("gguf test model")
|
|
gguf_writer.write_architecture(llm_arch)
|
|
gguf_writer.write_context_length(llm_arch, hparams["max_position_embeddings"])
|
|
gguf_writer.write_embedding_length(llm_arch, hparams["hidden_size"])
|
|
gguf_writer.write_layer_count(llm_arch, hparams["num_hidden_layers"])
|
|
gguf_writer.write_feed_forward_length(llm_arch, hparams["intermediate_size"])
|
|
gguf_writer.write_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"])
|
|
gguf_writer.write_head_count(llm_arch, hparams["num_attention_heads"])
|
|
gguf_writer.write_float32(llm_arch + ".attention.layer_norm_rms_epsilon", hparams["rms_norm_eps"])
|
|
|
|
|
|
# TOKENIZATION
|
|
|
|
print("write gguf tokenizer")
|
|
|
|
tokens: List[str] = []
|
|
scores: List[float] = []
|
|
|
|
if Path(dir_model + "/tokenizer.model").is_file():
|
|
# vocab type sentencepiece
|
|
print("Adding sentencepiece tokenizer vocab.")
|
|
tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model")
|
|
|
|
# output vocab_size followed by all piece/score pairs
|
|
outbytes: bytes
|
|
outbytes = b""
|
|
outbytes += struct.pack("I", tokenizer.vocab_size())
|
|
|
|
for i in range(tokenizer.vocab_size()):
|
|
text: bytes
|
|
if tokenizer.is_unknown(i):
|
|
text = " \u2047 ".encode("utf-8")
|
|
elif tokenizer.is_control(i):
|
|
text = b""
|
|
if tokenizer.is_byte(i):
|
|
piece = tokenizer.id_to_piece(i)
|
|
if len(piece) != 6:
|
|
raise Exception(f"Invalid token: {piece}")
|
|
byte_value = int(piece[3:-1], 16)
|
|
text = struct.pack("B", byte_value)
|
|
else:
|
|
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
|
|
score: float = tokenizer.get_score(i)
|
|
|
|
tokens.append(text)
|
|
scores.append(score)
|
|
|
|
gguf_writer.write_tokenizer_model("llama")
|
|
gguf_writer.write_token_list(tokens)
|
|
gguf_writer.write_token_scores(scores)
|
|
|
|
# TENSORS
|
|
|
|
# tensor info
|
|
print("write gguf tensor info")
|
|
|
|
for name in list_vars.keys():
|
|
data = list_vars[name].squeeze().numpy()
|
|
|
|
# we don't need these
|
|
if name.endswith(".rotary_emb.inv_freq"):
|
|
continue
|
|
|
|
# permute these
|
|
if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
|
|
data = permute(data, hparams["num_attention_heads"])
|
|
|
|
# chnage tensor name
|
|
|
|
if name == "model.embed_tokens.weight":
|
|
name = "tok_embeddings.weight"
|
|
elif name == "model.norm.weight":
|
|
name = "norm.weight"
|
|
elif name == "lm_head.weight":
|
|
name = "output.weight"
|
|
else:
|
|
for i in range(80): # maximum number of layers
|
|
if name == "model.layers." + str(i) + ".input_layernorm.weight":
|
|
name = "layers." + str(i) + ".attention_norm.weight"
|
|
break
|
|
if name == "model.layers." + str(i) + ".self_attn.q_proj.weight":
|
|
name = "layers." + str(i) + ".attention.wq.weight"
|
|
break
|
|
if name == "model.layers." + str(i) + ".self_attn.k_proj.weight":
|
|
name = "layers." + str(i) + ".attention.wk.weight"
|
|
break
|
|
if name == "model.layers." + str(i) + ".self_attn.v_proj.weight":
|
|
name = "layers." + str(i) + ".attention.wv.weight"
|
|
break
|
|
if name == "model.layers." + str(i) + ".self_attn.o_proj.weight":
|
|
name = "layers." + str(i) + ".attention.wo.weight"
|
|
break
|
|
if name == "model.layers." + str(i) + ".post_attention_layernorm.weight":
|
|
name = "layers." + str(i) + ".ffn_norm.weight"
|
|
break
|
|
if name == "model.layers." + str(i) + ".mlp.gate_proj.weight":
|
|
name = "layers." + str(i) + ".feed_forward.w1.weight"
|
|
break
|
|
if name == "model.layers." + str(i) + ".mlp.down_proj.weight":
|
|
name = "layers." + str(i) + ".feed_forward.w2.weight"
|
|
break
|
|
if name == "model.layers." + str(i) + ".mlp.up_proj.weight":
|
|
name = "layers." + str(i) + ".feed_forward.w3.weight"
|
|
break
|
|
|
|
n_dims = len(data.shape)
|
|
|
|
# ftype == 0 -> float32, ftype == 1 -> float16
|
|
ftype_cur = 0
|
|
if ftype != 0:
|
|
if name.endswith(".weight") and n_dims == 2:
|
|
data = data.astype(np.float16)
|
|
ftype_cur = 1
|
|
else:
|
|
data = data.astype(np.float32)
|
|
ftype_cur = 0
|
|
else:
|
|
if data.dtype != np.float32:
|
|
data = data.astype(np.float32)
|
|
ftype_cur = 0
|
|
|
|
gguf_writer.write_tensor_info(name, data)
|
|
|
|
|
|
# tensor data
|
|
print("write gguf tensor data")
|
|
|
|
for name in list_vars.keys():
|
|
data = list_vars[name].squeeze().numpy()
|
|
print("Process tensor: " + name + " with shape: ", data.shape)
|
|
|
|
# we don't need these
|
|
if name.endswith(".rotary_emb.inv_freq"):
|
|
print(" Skip tensor: " + name)
|
|
continue
|
|
|
|
# permute these
|
|
if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
|
|
print(" Permute tensor: " + name)
|
|
data = permute(data, hparams["num_attention_heads"])
|
|
|
|
n_dims = len(data.shape)
|
|
|
|
# ftype == 0 -> float32, ftype == 1 -> float16
|
|
ftype_cur = 0
|
|
if ftype != 0:
|
|
if name.endswith(".weight") and n_dims == 2:
|
|
print(" Converting to float16")
|
|
data = data.astype(np.float16)
|
|
ftype_cur = 1
|
|
else:
|
|
print(" Converting to float32")
|
|
data = data.astype(np.float32)
|
|
ftype_cur = 0
|
|
else:
|
|
if data.dtype != np.float32:
|
|
print(" Converting to float32")
|
|
data = data.astype(np.float32)
|
|
ftype_cur = 0
|
|
|
|
gguf_writer.write_tensor(data)
|
|
|
|
gguf_writer.close()
|
|
|
|
|
|
print("Done. Output file: " + fname_out)
|
|
print("")
|