llama.cpp/examples/server/tests/unit/test_completion.py
Xuan Son Nguyen 5896c65232
server : add OAI compat for /v1/completions (#10974)
* server : add OAI compat for /v1/completions

* add test

* add docs

* better docs
2024-12-31 12:34:13 +01:00

408 lines
15 KiB
Python
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import pytest
import time
from openai import OpenAI
from utils import *
server = ServerPreset.tinyllama2()
@pytest.fixture(scope="module", autouse=True)
def create_server():
global server
server = ServerPreset.tinyllama2()
@pytest.mark.parametrize("prompt,n_predict,re_content,n_prompt,n_predicted,truncated,return_tokens", [
("I believe the meaning of life is", 8, "(going|bed)+", 18, 8, False, False),
("Write a joke about AI from a very long prompt which will not be truncated", 256, "(princesses|everyone|kids|Anna|forest)+", 46, 64, False, True),
])
def test_completion(prompt: str, n_predict: int, re_content: str, n_prompt: int, n_predicted: int, truncated: bool, return_tokens: bool):
global server
server.start()
res = server.make_request("POST", "/completion", data={
"n_predict": n_predict,
"prompt": prompt,
"return_tokens": return_tokens,
})
assert res.status_code == 200
assert res.body["timings"]["prompt_n"] == n_prompt
assert res.body["timings"]["predicted_n"] == n_predicted
assert res.body["truncated"] == truncated
assert type(res.body["has_new_line"]) == bool
assert match_regex(re_content, res.body["content"])
if return_tokens:
assert len(res.body["tokens"]) > 0
assert all(type(tok) == int for tok in res.body["tokens"])
else:
assert res.body["tokens"] == []
@pytest.mark.parametrize("prompt,n_predict,re_content,n_prompt,n_predicted,truncated", [
("I believe the meaning of life is", 8, "(going|bed)+", 18, 8, False),
("Write a joke about AI from a very long prompt which will not be truncated", 256, "(princesses|everyone|kids|Anna|forest)+", 46, 64, False),
])
def test_completion_stream(prompt: str, n_predict: int, re_content: str, n_prompt: int, n_predicted: int, truncated: bool):
global server
server.start()
res = server.make_stream_request("POST", "/completion", data={
"n_predict": n_predict,
"prompt": prompt,
"stream": True,
})
content = ""
for data in res:
assert "stop" in data and type(data["stop"]) == bool
if data["stop"]:
assert data["timings"]["prompt_n"] == n_prompt
assert data["timings"]["predicted_n"] == n_predicted
assert data["truncated"] == truncated
assert data["stop_type"] == "limit"
assert type(data["has_new_line"]) == bool
assert "generation_settings" in data
assert server.n_predict is not None
assert data["generation_settings"]["n_predict"] == min(n_predict, server.n_predict)
assert data["generation_settings"]["seed"] == server.seed
assert match_regex(re_content, content)
else:
assert len(data["tokens"]) > 0
assert all(type(tok) == int for tok in data["tokens"])
content += data["content"]
def test_completion_stream_vs_non_stream():
global server
server.start()
res_stream = server.make_stream_request("POST", "/completion", data={
"n_predict": 8,
"prompt": "I believe the meaning of life is",
"stream": True,
})
res_non_stream = server.make_request("POST", "/completion", data={
"n_predict": 8,
"prompt": "I believe the meaning of life is",
})
content_stream = ""
for data in res_stream:
content_stream += data["content"]
assert content_stream == res_non_stream.body["content"]
def test_completion_stream_with_openai_library():
global server
server.start()
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
res = client.completions.create(
model="davinci-002",
prompt="I believe the meaning of life is",
max_tokens=8,
)
assert res.system_fingerprint is not None and res.system_fingerprint.startswith("b")
assert res.choices[0].finish_reason == "length"
assert res.choices[0].text is not None
assert match_regex("(going|bed)+", res.choices[0].text)
def test_completion_with_openai_library():
global server
server.start()
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
res = client.completions.create(
model="davinci-002",
prompt="I believe the meaning of life is",
max_tokens=8,
stream=True,
)
output_text = ''
for data in res:
choice = data.choices[0]
if choice.finish_reason is None:
assert choice.text is not None
output_text += choice.text
assert match_regex("(going|bed)+", output_text)
@pytest.mark.parametrize("n_slots", [1, 2])
def test_consistent_result_same_seed(n_slots: int):
global server
server.n_slots = n_slots
server.start()
last_res = None
for _ in range(4):
res = server.make_request("POST", "/completion", data={
"prompt": "I believe the meaning of life is",
"seed": 42,
"temperature": 0.0,
"cache_prompt": False, # TODO: remove this once test_cache_vs_nocache_prompt is fixed
})
if last_res is not None:
assert res.body["content"] == last_res.body["content"]
last_res = res
@pytest.mark.parametrize("n_slots", [1, 2])
def test_different_result_different_seed(n_slots: int):
global server
server.n_slots = n_slots
server.start()
last_res = None
for seed in range(4):
res = server.make_request("POST", "/completion", data={
"prompt": "I believe the meaning of life is",
"seed": seed,
"temperature": 1.0,
"cache_prompt": False, # TODO: remove this once test_cache_vs_nocache_prompt is fixed
})
if last_res is not None:
assert res.body["content"] != last_res.body["content"]
last_res = res
# TODO figure why it don't work with temperature = 1
# @pytest.mark.parametrize("temperature", [0.0, 1.0])
@pytest.mark.parametrize("n_batch", [16, 32])
@pytest.mark.parametrize("temperature", [0.0])
def test_consistent_result_different_batch_size(n_batch: int, temperature: float):
global server
server.n_batch = n_batch
server.start()
last_res = None
for _ in range(4):
res = server.make_request("POST", "/completion", data={
"prompt": "I believe the meaning of life is",
"seed": 42,
"temperature": temperature,
"cache_prompt": False, # TODO: remove this once test_cache_vs_nocache_prompt is fixed
})
if last_res is not None:
assert res.body["content"] == last_res.body["content"]
last_res = res
@pytest.mark.skip(reason="This test fails on linux, need to be fixed")
def test_cache_vs_nocache_prompt():
global server
server.start()
res_cache = server.make_request("POST", "/completion", data={
"prompt": "I believe the meaning of life is",
"seed": 42,
"temperature": 1.0,
"cache_prompt": True,
})
res_no_cache = server.make_request("POST", "/completion", data={
"prompt": "I believe the meaning of life is",
"seed": 42,
"temperature": 1.0,
"cache_prompt": False,
})
assert res_cache.body["content"] == res_no_cache.body["content"]
def test_completion_with_tokens_input():
global server
server.temperature = 0.0
server.start()
prompt_str = "I believe the meaning of life is"
res = server.make_request("POST", "/tokenize", data={
"content": prompt_str,
"add_special": True,
})
assert res.status_code == 200
tokens = res.body["tokens"]
# single completion
res = server.make_request("POST", "/completion", data={
"prompt": tokens,
})
assert res.status_code == 200
assert type(res.body["content"]) == str
# batch completion
res = server.make_request("POST", "/completion", data={
"prompt": [tokens, tokens],
})
assert res.status_code == 200
assert type(res.body) == list
assert len(res.body) == 2
assert res.body[0]["content"] == res.body[1]["content"]
# mixed string and tokens
res = server.make_request("POST", "/completion", data={
"prompt": [tokens, prompt_str],
})
assert res.status_code == 200
assert type(res.body) == list
assert len(res.body) == 2
assert res.body[0]["content"] == res.body[1]["content"]
# mixed string and tokens in one sequence
res = server.make_request("POST", "/completion", data={
"prompt": [1, 2, 3, 4, 5, 6, prompt_str, 7, 8, 9, 10, prompt_str],
})
assert res.status_code == 200
assert type(res.body["content"]) == str
@pytest.mark.parametrize("n_slots,n_requests", [
(1, 3),
(2, 2),
(2, 4),
(4, 2), # some slots must be idle
(4, 6),
])
def test_completion_parallel_slots(n_slots: int, n_requests: int):
global server
server.n_slots = n_slots
server.temperature = 0.0
server.start()
PROMPTS = [
("Write a very long book.", "(very|special|big)+"),
("Write another a poem.", "(small|house)+"),
("What is LLM?", "(Dad|said)+"),
("The sky is blue and I love it.", "(climb|leaf)+"),
("Write another very long music lyrics.", "(friends|step|sky)+"),
("Write a very long joke.", "(cat|Whiskers)+"),
]
def check_slots_status():
should_all_slots_busy = n_requests >= n_slots
time.sleep(0.1)
res = server.make_request("GET", "/slots")
n_busy = sum([1 for slot in res.body if slot["is_processing"]])
if should_all_slots_busy:
assert n_busy == n_slots
else:
assert n_busy <= n_slots
tasks = []
for i in range(n_requests):
prompt, re_content = PROMPTS[i % len(PROMPTS)]
tasks.append((server.make_request, ("POST", "/completion", {
"prompt": prompt,
"seed": 42,
"temperature": 1.0,
})))
tasks.append((check_slots_status, ()))
results = parallel_function_calls(tasks)
# check results
for i in range(n_requests):
prompt, re_content = PROMPTS[i % len(PROMPTS)]
res = results[i]
assert res.status_code == 200
assert type(res.body["content"]) == str
assert len(res.body["content"]) > 10
# FIXME: the result is not deterministic when using other slot than slot 0
# assert match_regex(re_content, res.body["content"])
@pytest.mark.parametrize(
"prompt,n_predict,response_fields",
[
("I believe the meaning of life is", 8, []),
("I believe the meaning of life is", 32, ["content", "generation_settings/n_predict", "prompt"]),
],
)
def test_completion_response_fields(
prompt: str, n_predict: int, response_fields: list[str]
):
global server
server.start()
res = server.make_request(
"POST",
"/completion",
data={
"n_predict": n_predict,
"prompt": prompt,
"response_fields": response_fields,
},
)
assert res.status_code == 200
assert "content" in res.body
assert len(res.body["content"])
if len(response_fields):
assert res.body["generation_settings/n_predict"] == n_predict
assert res.body["prompt"] == "<s> " + prompt
assert isinstance(res.body["content"], str)
assert len(res.body) == len(response_fields)
else:
assert len(res.body)
assert "generation_settings" in res.body
def test_n_probs():
global server
server.start()
res = server.make_request("POST", "/completion", data={
"prompt": "I believe the meaning of life is",
"n_probs": 10,
"temperature": 0.0,
"n_predict": 5,
})
assert res.status_code == 200
assert "completion_probabilities" in res.body
assert len(res.body["completion_probabilities"]) == 5
for tok in res.body["completion_probabilities"]:
assert "id" in tok and tok["id"] > 0
assert "token" in tok and type(tok["token"]) == str
assert "logprob" in tok and tok["logprob"] <= 0.0
assert "bytes" in tok and type(tok["bytes"]) == list
assert len(tok["top_logprobs"]) == 10
for prob in tok["top_logprobs"]:
assert "id" in prob and prob["id"] > 0
assert "token" in prob and type(prob["token"]) == str
assert "logprob" in prob and prob["logprob"] <= 0.0
assert "bytes" in prob and type(prob["bytes"]) == list
def test_n_probs_stream():
global server
server.start()
res = server.make_stream_request("POST", "/completion", data={
"prompt": "I believe the meaning of life is",
"n_probs": 10,
"temperature": 0.0,
"n_predict": 5,
"stream": True,
})
for data in res:
if data["stop"] == False:
assert "completion_probabilities" in data
assert len(data["completion_probabilities"]) == 1
for tok in data["completion_probabilities"]:
assert "id" in tok and tok["id"] > 0
assert "token" in tok and type(tok["token"]) == str
assert "logprob" in tok and tok["logprob"] <= 0.0
assert "bytes" in tok and type(tok["bytes"]) == list
assert len(tok["top_logprobs"]) == 10
for prob in tok["top_logprobs"]:
assert "id" in prob and prob["id"] > 0
assert "token" in prob and type(prob["token"]) == str
assert "logprob" in prob and prob["logprob"] <= 0.0
assert "bytes" in prob and type(prob["bytes"]) == list
def test_n_probs_post_sampling():
global server
server.start()
res = server.make_request("POST", "/completion", data={
"prompt": "I believe the meaning of life is",
"n_probs": 10,
"temperature": 0.0,
"n_predict": 5,
"post_sampling_probs": True,
})
assert res.status_code == 200
assert "completion_probabilities" in res.body
assert len(res.body["completion_probabilities"]) == 5
for tok in res.body["completion_probabilities"]:
assert "id" in tok and tok["id"] > 0
assert "token" in tok and type(tok["token"]) == str
assert "prob" in tok and 0.0 < tok["prob"] <= 1.0
assert "bytes" in tok and type(tok["bytes"]) == list
assert len(tok["top_probs"]) == 10
for prob in tok["top_probs"]:
assert "id" in prob and prob["id"] > 0
assert "token" in prob and type(prob["token"]) == str
assert "prob" in prob and 0.0 <= prob["prob"] <= 1.0
assert "bytes" in prob and type(prob["bytes"]) == list
# because the test model usually output token with either 100% or 0% probability, we need to check all the top_probs
assert any(prob["prob"] == 1.0 for prob in tok["top_probs"])