mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-15 23:00:46 +01:00
2b1f616b20
* ggml : reduce hash table reset cost * fix unreachable code warnings after GGML_ASSERT(false) * GGML_ASSERT(false) -> GGML_ABORT("fatal error") * GGML_ABORT use format string
2454 lines
90 KiB
C
2454 lines
90 KiB
C
#pragma once
|
|
|
|
//
|
|
// GGML Tensor Library
|
|
//
|
|
// This documentation is still a work in progress.
|
|
// If you wish some specific topics to be covered, feel free to drop a comment:
|
|
//
|
|
// https://github.com/ggerganov/whisper.cpp/issues/40
|
|
//
|
|
// ## Overview
|
|
//
|
|
// This library implements:
|
|
//
|
|
// - a set of tensor operations
|
|
// - automatic differentiation
|
|
// - basic optimization algorithms
|
|
//
|
|
// The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
|
|
// but is not limited to, the following:
|
|
//
|
|
// - linear regression
|
|
// - support vector machines
|
|
// - neural networks
|
|
//
|
|
// The library allows the user to define a certain function using the available tensor operations. This function
|
|
// definition is represented internally via a computation graph. Each tensor operation in the function definition
|
|
// corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
|
|
// function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
|
|
// using one of the available optimization algorithms.
|
|
//
|
|
// For example, here we define the function: f(x) = a*x^2 + b
|
|
//
|
|
// {
|
|
// struct ggml_init_params params = {
|
|
// .mem_size = 16*1024*1024,
|
|
// .mem_buffer = NULL,
|
|
// };
|
|
//
|
|
// // memory allocation happens here
|
|
// struct ggml_context * ctx = ggml_init(params);
|
|
//
|
|
// struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
|
//
|
|
// ggml_set_param(ctx, x); // x is an input variable
|
|
//
|
|
// struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
|
// struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
|
// struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
|
|
// struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
|
|
//
|
|
// ...
|
|
// }
|
|
//
|
|
// Notice that the function definition above does not involve any actual computation. The computation is performed only
|
|
// when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
|
|
//
|
|
// {
|
|
// ...
|
|
//
|
|
// struct ggml_cgraph * gf = ggml_new_graph(ctx);
|
|
// ggml_build_forward_expand(gf, f);
|
|
//
|
|
// // set the input variable and parameter values
|
|
// ggml_set_f32(x, 2.0f);
|
|
// ggml_set_f32(a, 3.0f);
|
|
// ggml_set_f32(b, 4.0f);
|
|
//
|
|
// ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
|
|
//
|
|
// printf("f = %f\n", ggml_get_f32_1d(f, 0));
|
|
//
|
|
// ...
|
|
// }
|
|
//
|
|
// The actual computation is performed in the ggml_graph_compute() function.
|
|
//
|
|
// The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
|
|
// ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
|
|
// in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
|
|
// and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
|
|
// actually needed.
|
|
//
|
|
// The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
|
|
// differentiation and optimization algorithms.
|
|
//
|
|
// The described approach allows to define the function graph once and then compute its forward or backward graphs
|
|
// multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
|
|
// the user can avoid the memory allocation overhead at runtime.
|
|
//
|
|
// The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
|
|
// citizens, but in theory the library can be extended to support FP8 and integer data types.
|
|
//
|
|
// Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
|
|
// and binary operations. Most of the available operations fall into one of these two categories. With time, it became
|
|
// clear that the library needs to support more complex operations. The way to support these operations is not clear
|
|
// yet, but a few examples are demonstrated in the following operations:
|
|
//
|
|
// - ggml_permute()
|
|
// - ggml_conv_1d_1s()
|
|
// - ggml_conv_1d_2s()
|
|
//
|
|
// For each tensor operator, the library implements a forward and backward computation function. The forward function
|
|
// computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
|
|
// input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
|
|
// calculus class, or watch the following video:
|
|
//
|
|
// What is Automatic Differentiation?
|
|
// https://www.youtube.com/watch?v=wG_nF1awSSY
|
|
//
|
|
//
|
|
// ## Tensor data (struct ggml_tensor)
|
|
//
|
|
// The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
|
|
// the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
|
|
// pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
|
|
//
|
|
// {
|
|
// struct ggml_tensor * c = ggml_add(ctx, a, b);
|
|
//
|
|
// assert(c->src[0] == a);
|
|
// assert(c->src[1] == b);
|
|
// }
|
|
//
|
|
// The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
|
|
// number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
|
|
// to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
|
|
// permutation. All tensor operations have to take the stride into account and not assume that the tensor is
|
|
// contiguous in memory.
|
|
//
|
|
// The data of the tensor is accessed via the "data" pointer. For example:
|
|
//
|
|
// {
|
|
// const int nx = 2;
|
|
// const int ny = 3;
|
|
//
|
|
// struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
|
|
//
|
|
// for (int y = 0; y < ny; y++) {
|
|
// for (int x = 0; x < nx; x++) {
|
|
// *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
|
|
// }
|
|
// }
|
|
//
|
|
// ...
|
|
// }
|
|
//
|
|
// Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
|
|
//
|
|
// ## The matrix multiplication operator (ggml_mul_mat)
|
|
//
|
|
// TODO
|
|
//
|
|
//
|
|
// ## Multi-threading
|
|
//
|
|
// TODO
|
|
//
|
|
//
|
|
// ## Overview of ggml.c
|
|
//
|
|
// TODO
|
|
//
|
|
//
|
|
// ## SIMD optimizations
|
|
//
|
|
// TODO
|
|
//
|
|
//
|
|
// ## Debugging ggml
|
|
//
|
|
// TODO
|
|
//
|
|
//
|
|
|
|
#ifdef GGML_SHARED
|
|
# if defined(_WIN32) && !defined(__MINGW32__)
|
|
# ifdef GGML_BUILD
|
|
# define GGML_API __declspec(dllexport)
|
|
# else
|
|
# define GGML_API __declspec(dllimport)
|
|
# endif
|
|
# else
|
|
# define GGML_API __attribute__ ((visibility ("default")))
|
|
# endif
|
|
#else
|
|
# define GGML_API
|
|
#endif
|
|
|
|
#ifdef GGML_MULTIPLATFORM
|
|
# if defined(_WIN32)
|
|
# define GGML_CALL
|
|
# else
|
|
# define GGML_CALL __attribute__((__ms_abi__))
|
|
# endif
|
|
#else
|
|
# define GGML_CALL
|
|
#endif
|
|
|
|
// TODO: support for clang
|
|
#ifdef __GNUC__
|
|
# define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
|
|
#elif defined(_MSC_VER)
|
|
# define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
|
|
#else
|
|
# define GGML_DEPRECATED(func, hint) func
|
|
#endif
|
|
|
|
#ifndef __GNUC__
|
|
# define GGML_ATTRIBUTE_FORMAT(...)
|
|
#elif defined(__MINGW32__)
|
|
# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
|
#else
|
|
# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
|
#endif
|
|
|
|
#include <stdbool.h>
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
|
|
#define GGML_FILE_MAGIC 0x67676d6c // "ggml"
|
|
#define GGML_FILE_VERSION 1
|
|
|
|
#define GGML_QNT_VERSION 2 // bump this on quantization format changes
|
|
#define GGML_QNT_VERSION_FACTOR 1000 // do not change this
|
|
|
|
#define GGML_MAX_DIMS 4
|
|
#define GGML_MAX_PARAMS 2048
|
|
#define GGML_MAX_CONTEXTS 64
|
|
#define GGML_MAX_SRC 10
|
|
#ifndef GGML_MAX_NAME
|
|
#define GGML_MAX_NAME 64
|
|
#endif
|
|
#define GGML_MAX_OP_PARAMS 64
|
|
#define GGML_DEFAULT_N_THREADS 4
|
|
#define GGML_DEFAULT_GRAPH_SIZE 2048
|
|
#if UINTPTR_MAX == 0xFFFFFFFF
|
|
#define GGML_MEM_ALIGN 4
|
|
#else
|
|
#define GGML_MEM_ALIGN 16
|
|
#endif
|
|
|
|
#define GGML_EXIT_SUCCESS 0
|
|
#define GGML_EXIT_ABORTED 1
|
|
|
|
#define GGUF_MAGIC "GGUF"
|
|
|
|
#define GGUF_VERSION 3
|
|
|
|
#define GGUF_DEFAULT_ALIGNMENT 32
|
|
|
|
#define GGML_UNUSED(x) (void)(x)
|
|
|
|
#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
|
|
|
|
#ifndef NDEBUG
|
|
#define GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0)
|
|
#elif defined(__GNUC__)
|
|
#define GGML_UNREACHABLE() __builtin_unreachable()
|
|
#elif defined(_MSC_VER)
|
|
#define GGML_UNREACHABLE() __assume(0)
|
|
#else
|
|
#define GGML_UNREACHABLE() ((void) 0)
|
|
#endif
|
|
|
|
#ifdef __cplusplus
|
|
#define GGML_NORETURN [[noreturn]]
|
|
#elif defined(_MSC_VER)
|
|
#define GGML_NORETURN __declspec(noreturn)
|
|
#else
|
|
#define GGML_NORETURN _Noreturn
|
|
#endif
|
|
|
|
#define GGML_ABORT(...) ggml_abort(__FILE__, __LINE__, __VA_ARGS__)
|
|
#define GGML_ASSERT(x) if (!(x)) GGML_ABORT("GGML_ASSERT(%s) failed", #x)
|
|
|
|
// used to copy the number of elements and stride in bytes of tensors into local variables.
|
|
// main purpose is to reduce code duplication and improve readability.
|
|
//
|
|
// example:
|
|
//
|
|
// GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
|
|
// GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
|
|
//
|
|
#define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
|
|
const type prefix##0 = (pointer)->array[0]; \
|
|
GGML_UNUSED(prefix##0);
|
|
#define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
|
|
GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
|
|
const type prefix##1 = (pointer)->array[1]; \
|
|
GGML_UNUSED(prefix##1);
|
|
#define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
|
|
GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
|
|
const type prefix##2 = (pointer)->array[2]; \
|
|
GGML_UNUSED(prefix##2);
|
|
#define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
|
|
GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
|
|
const type prefix##3 = (pointer)->array[3]; \
|
|
GGML_UNUSED(prefix##3);
|
|
|
|
#define GGML_TENSOR_UNARY_OP_LOCALS \
|
|
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
|
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
|
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
|
|
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
|
|
|
#define GGML_TENSOR_BINARY_OP_LOCALS \
|
|
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
|
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
|
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
|
|
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
|
|
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
|
|
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
|
|
|
#define GGML_TENSOR_BINARY_OP_LOCALS01 \
|
|
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
|
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
|
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
|
|
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
GGML_NORETURN GGML_ATTRIBUTE_FORMAT(3, 4)
|
|
GGML_API void ggml_abort(const char * file, int line, const char * fmt, ...);
|
|
|
|
enum ggml_status {
|
|
GGML_STATUS_ALLOC_FAILED = -2,
|
|
GGML_STATUS_FAILED = -1,
|
|
GGML_STATUS_SUCCESS = 0,
|
|
GGML_STATUS_ABORTED = 1,
|
|
};
|
|
|
|
// get ggml_status name string
|
|
GGML_API GGML_CALL const char * ggml_status_to_string(enum ggml_status status);
|
|
|
|
// ieee 754-2008 half-precision float16
|
|
// todo: make this not an integral type
|
|
typedef uint16_t ggml_fp16_t;
|
|
GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
|
|
GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
|
|
GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
|
|
GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
|
|
|
|
// google brain half-precision bfloat16
|
|
typedef struct { uint16_t bits; } ggml_bf16_t;
|
|
GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
|
|
GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
|
|
GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
|
|
GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
|
|
|
|
struct ggml_object;
|
|
struct ggml_context;
|
|
|
|
// NOTE: always add types at the end of the enum to keep backward compatibility
|
|
enum ggml_type {
|
|
GGML_TYPE_F32 = 0,
|
|
GGML_TYPE_F16 = 1,
|
|
GGML_TYPE_Q4_0 = 2,
|
|
GGML_TYPE_Q4_1 = 3,
|
|
// GGML_TYPE_Q4_2 = 4, support has been removed
|
|
// GGML_TYPE_Q4_3 = 5, support has been removed
|
|
GGML_TYPE_Q5_0 = 6,
|
|
GGML_TYPE_Q5_1 = 7,
|
|
GGML_TYPE_Q8_0 = 8,
|
|
GGML_TYPE_Q8_1 = 9,
|
|
GGML_TYPE_Q2_K = 10,
|
|
GGML_TYPE_Q3_K = 11,
|
|
GGML_TYPE_Q4_K = 12,
|
|
GGML_TYPE_Q5_K = 13,
|
|
GGML_TYPE_Q6_K = 14,
|
|
GGML_TYPE_Q8_K = 15,
|
|
GGML_TYPE_IQ2_XXS = 16,
|
|
GGML_TYPE_IQ2_XS = 17,
|
|
GGML_TYPE_IQ3_XXS = 18,
|
|
GGML_TYPE_IQ1_S = 19,
|
|
GGML_TYPE_IQ4_NL = 20,
|
|
GGML_TYPE_IQ3_S = 21,
|
|
GGML_TYPE_IQ2_S = 22,
|
|
GGML_TYPE_IQ4_XS = 23,
|
|
GGML_TYPE_I8 = 24,
|
|
GGML_TYPE_I16 = 25,
|
|
GGML_TYPE_I32 = 26,
|
|
GGML_TYPE_I64 = 27,
|
|
GGML_TYPE_F64 = 28,
|
|
GGML_TYPE_IQ1_M = 29,
|
|
GGML_TYPE_BF16 = 30,
|
|
GGML_TYPE_Q4_0_4_4 = 31,
|
|
GGML_TYPE_Q4_0_4_8 = 32,
|
|
GGML_TYPE_Q4_0_8_8 = 33,
|
|
GGML_TYPE_COUNT,
|
|
};
|
|
|
|
// precision
|
|
enum ggml_prec {
|
|
GGML_PREC_DEFAULT,
|
|
GGML_PREC_F32,
|
|
};
|
|
|
|
enum ggml_backend_type {
|
|
GGML_BACKEND_TYPE_CPU = 0,
|
|
GGML_BACKEND_TYPE_GPU = 10,
|
|
GGML_BACKEND_TYPE_GPU_SPLIT = 20,
|
|
};
|
|
|
|
// model file types
|
|
enum ggml_ftype {
|
|
GGML_FTYPE_UNKNOWN = -1,
|
|
GGML_FTYPE_ALL_F32 = 0,
|
|
GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
|
|
GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q4_0_4_4 = 25, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q4_0_4_8 = 26, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q4_0_8_8 = 27, // except 1d tensors
|
|
};
|
|
|
|
// available tensor operations:
|
|
enum ggml_op {
|
|
GGML_OP_NONE = 0,
|
|
|
|
GGML_OP_DUP,
|
|
GGML_OP_ADD,
|
|
GGML_OP_ADD1,
|
|
GGML_OP_ACC,
|
|
GGML_OP_SUB,
|
|
GGML_OP_MUL,
|
|
GGML_OP_DIV,
|
|
GGML_OP_SQR,
|
|
GGML_OP_SQRT,
|
|
GGML_OP_LOG,
|
|
GGML_OP_SUM,
|
|
GGML_OP_SUM_ROWS,
|
|
GGML_OP_MEAN,
|
|
GGML_OP_ARGMAX,
|
|
GGML_OP_REPEAT,
|
|
GGML_OP_REPEAT_BACK,
|
|
GGML_OP_CONCAT,
|
|
GGML_OP_SILU_BACK,
|
|
GGML_OP_NORM, // normalize
|
|
GGML_OP_RMS_NORM,
|
|
GGML_OP_RMS_NORM_BACK,
|
|
GGML_OP_GROUP_NORM,
|
|
|
|
GGML_OP_MUL_MAT,
|
|
GGML_OP_MUL_MAT_ID,
|
|
GGML_OP_OUT_PROD,
|
|
|
|
GGML_OP_SCALE,
|
|
GGML_OP_SET,
|
|
GGML_OP_CPY,
|
|
GGML_OP_CONT,
|
|
GGML_OP_RESHAPE,
|
|
GGML_OP_VIEW,
|
|
GGML_OP_PERMUTE,
|
|
GGML_OP_TRANSPOSE,
|
|
GGML_OP_GET_ROWS,
|
|
GGML_OP_GET_ROWS_BACK,
|
|
GGML_OP_DIAG,
|
|
GGML_OP_DIAG_MASK_INF,
|
|
GGML_OP_DIAG_MASK_ZERO,
|
|
GGML_OP_SOFT_MAX,
|
|
GGML_OP_SOFT_MAX_BACK,
|
|
GGML_OP_ROPE,
|
|
GGML_OP_ROPE_BACK,
|
|
GGML_OP_CLAMP,
|
|
GGML_OP_CONV_TRANSPOSE_1D,
|
|
GGML_OP_IM2COL,
|
|
GGML_OP_CONV_TRANSPOSE_2D,
|
|
GGML_OP_POOL_1D,
|
|
GGML_OP_POOL_2D,
|
|
GGML_OP_UPSCALE, // nearest interpolate
|
|
GGML_OP_PAD,
|
|
GGML_OP_ARANGE,
|
|
GGML_OP_TIMESTEP_EMBEDDING,
|
|
GGML_OP_ARGSORT,
|
|
GGML_OP_LEAKY_RELU,
|
|
|
|
GGML_OP_FLASH_ATTN_EXT,
|
|
GGML_OP_FLASH_ATTN_BACK,
|
|
GGML_OP_SSM_CONV,
|
|
GGML_OP_SSM_SCAN,
|
|
GGML_OP_WIN_PART,
|
|
GGML_OP_WIN_UNPART,
|
|
GGML_OP_GET_REL_POS,
|
|
GGML_OP_ADD_REL_POS,
|
|
|
|
GGML_OP_UNARY,
|
|
|
|
GGML_OP_MAP_UNARY,
|
|
GGML_OP_MAP_BINARY,
|
|
|
|
GGML_OP_MAP_CUSTOM1_F32,
|
|
GGML_OP_MAP_CUSTOM2_F32,
|
|
GGML_OP_MAP_CUSTOM3_F32,
|
|
|
|
GGML_OP_MAP_CUSTOM1,
|
|
GGML_OP_MAP_CUSTOM2,
|
|
GGML_OP_MAP_CUSTOM3,
|
|
|
|
GGML_OP_CROSS_ENTROPY_LOSS,
|
|
GGML_OP_CROSS_ENTROPY_LOSS_BACK,
|
|
|
|
GGML_OP_COUNT,
|
|
};
|
|
|
|
enum ggml_unary_op {
|
|
GGML_UNARY_OP_ABS,
|
|
GGML_UNARY_OP_SGN,
|
|
GGML_UNARY_OP_NEG,
|
|
GGML_UNARY_OP_STEP,
|
|
GGML_UNARY_OP_TANH,
|
|
GGML_UNARY_OP_ELU,
|
|
GGML_UNARY_OP_RELU,
|
|
GGML_UNARY_OP_SIGMOID,
|
|
GGML_UNARY_OP_GELU,
|
|
GGML_UNARY_OP_GELU_QUICK,
|
|
GGML_UNARY_OP_SILU,
|
|
GGML_UNARY_OP_HARDSWISH,
|
|
GGML_UNARY_OP_HARDSIGMOID,
|
|
|
|
GGML_UNARY_OP_COUNT,
|
|
};
|
|
|
|
enum ggml_object_type {
|
|
GGML_OBJECT_TYPE_TENSOR,
|
|
GGML_OBJECT_TYPE_GRAPH,
|
|
GGML_OBJECT_TYPE_WORK_BUFFER
|
|
};
|
|
|
|
enum ggml_log_level {
|
|
GGML_LOG_LEVEL_ERROR = 2,
|
|
GGML_LOG_LEVEL_WARN = 3,
|
|
GGML_LOG_LEVEL_INFO = 4,
|
|
GGML_LOG_LEVEL_DEBUG = 5
|
|
};
|
|
|
|
enum ggml_tensor_flag {
|
|
GGML_TENSOR_FLAG_INPUT = 1,
|
|
GGML_TENSOR_FLAG_OUTPUT = 2,
|
|
GGML_TENSOR_FLAG_PARAM = 4,
|
|
};
|
|
|
|
// ggml object
|
|
struct ggml_object {
|
|
size_t offs;
|
|
size_t size;
|
|
|
|
struct ggml_object * next;
|
|
|
|
enum ggml_object_type type;
|
|
|
|
char padding[4];
|
|
};
|
|
|
|
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
|
|
|
|
// n-dimensional tensor
|
|
struct ggml_tensor {
|
|
enum ggml_type type;
|
|
|
|
GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
|
|
|
|
struct ggml_backend_buffer * buffer;
|
|
|
|
int64_t ne[GGML_MAX_DIMS]; // number of elements
|
|
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
|
|
// nb[0] = ggml_type_size(type)
|
|
// nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
|
|
// nb[i] = nb[i-1] * ne[i-1]
|
|
|
|
// compute data
|
|
enum ggml_op op;
|
|
|
|
// op params - allocated as int32_t for alignment
|
|
int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
|
|
|
|
int32_t flags;
|
|
|
|
struct ggml_tensor * grad;
|
|
struct ggml_tensor * src[GGML_MAX_SRC];
|
|
|
|
// source tensor and offset for views
|
|
struct ggml_tensor * view_src;
|
|
size_t view_offs;
|
|
|
|
void * data;
|
|
|
|
char name[GGML_MAX_NAME];
|
|
|
|
void * extra; // extra things e.g. for ggml-cuda.cu
|
|
|
|
// char padding[4];
|
|
};
|
|
|
|
static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
|
|
|
|
// Abort callback
|
|
// If not NULL, called before ggml computation
|
|
// If it returns true, the computation is aborted
|
|
typedef bool (*ggml_abort_callback)(void * data);
|
|
|
|
// the compute plan that needs to be prepared for ggml_graph_compute()
|
|
// since https://github.com/ggerganov/ggml/issues/287
|
|
struct ggml_cplan {
|
|
size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
|
|
uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
|
|
|
|
int n_threads;
|
|
|
|
// abort ggml_graph_compute when true
|
|
ggml_abort_callback abort_callback;
|
|
void * abort_callback_data;
|
|
};
|
|
|
|
enum ggml_cgraph_eval_order {
|
|
GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
|
|
GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
|
|
GGML_CGRAPH_EVAL_ORDER_COUNT
|
|
};
|
|
|
|
typedef uint32_t ggml_bitset_t;
|
|
|
|
struct ggml_hash_set {
|
|
size_t size;
|
|
ggml_bitset_t * used;
|
|
struct ggml_tensor ** keys;
|
|
};
|
|
|
|
// computation graph
|
|
struct ggml_cgraph {
|
|
int size;
|
|
int n_nodes;
|
|
int n_leafs;
|
|
|
|
struct ggml_tensor ** nodes;
|
|
struct ggml_tensor ** grads;
|
|
struct ggml_tensor ** leafs;
|
|
|
|
struct ggml_hash_set visited_hash_set;
|
|
|
|
enum ggml_cgraph_eval_order order;
|
|
};
|
|
|
|
// scratch buffer
|
|
struct ggml_scratch {
|
|
size_t offs;
|
|
size_t size;
|
|
void * data;
|
|
};
|
|
|
|
struct ggml_init_params {
|
|
// memory pool
|
|
size_t mem_size; // bytes
|
|
void * mem_buffer; // if NULL, memory will be allocated internally
|
|
bool no_alloc; // don't allocate memory for the tensor data
|
|
};
|
|
|
|
// numa strategies
|
|
enum ggml_numa_strategy {
|
|
GGML_NUMA_STRATEGY_DISABLED = 0,
|
|
GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
|
|
GGML_NUMA_STRATEGY_ISOLATE = 2,
|
|
GGML_NUMA_STRATEGY_NUMACTL = 3,
|
|
GGML_NUMA_STRATEGY_MIRROR = 4,
|
|
GGML_NUMA_STRATEGY_COUNT
|
|
};
|
|
|
|
//
|
|
// GUID
|
|
//
|
|
|
|
// GUID types
|
|
typedef uint8_t ggml_guid[16];
|
|
typedef ggml_guid * ggml_guid_t;
|
|
|
|
GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
|
|
|
|
// misc
|
|
|
|
GGML_API void ggml_time_init(void); // call this once at the beginning of the program
|
|
GGML_API int64_t ggml_time_ms(void);
|
|
GGML_API int64_t ggml_time_us(void);
|
|
GGML_API int64_t ggml_cycles(void);
|
|
GGML_API int64_t ggml_cycles_per_ms(void);
|
|
|
|
// accepts a UTF-8 path, even on Windows
|
|
GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
|
|
|
|
GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
|
|
GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
|
|
|
|
GGML_API void ggml_print_object (const struct ggml_object * obj);
|
|
GGML_API void ggml_print_objects(const struct ggml_context * ctx);
|
|
|
|
GGML_API GGML_CALL int64_t ggml_nelements (const struct ggml_tensor * tensor);
|
|
GGML_API GGML_CALL int64_t ggml_nrows (const struct ggml_tensor * tensor);
|
|
GGML_API GGML_CALL size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
|
GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
|
|
|
|
GGML_API GGML_CALL int64_t ggml_blck_size(enum ggml_type type);
|
|
GGML_API GGML_CALL size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
|
|
GGML_API GGML_CALL size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
|
|
|
|
GGML_DEPRECATED(
|
|
GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
|
|
"use ggml_row_size() instead");
|
|
|
|
GGML_API GGML_CALL const char * ggml_type_name(enum ggml_type type);
|
|
GGML_API GGML_CALL const char * ggml_op_name (enum ggml_op op);
|
|
GGML_API const char * ggml_op_symbol(enum ggml_op op);
|
|
|
|
GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
|
|
GGML_API GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
|
|
|
|
GGML_API GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor);
|
|
|
|
GGML_API GGML_CALL bool ggml_is_quantized(enum ggml_type type);
|
|
|
|
// TODO: temporary until model loading of ggml examples is refactored
|
|
GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
|
|
|
|
GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor);
|
|
GGML_API GGML_CALL bool ggml_is_permuted (const struct ggml_tensor * tensor);
|
|
GGML_API GGML_CALL bool ggml_is_empty (const struct ggml_tensor * tensor);
|
|
GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
|
|
GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
|
|
GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
|
|
GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
|
|
GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
|
|
|
|
GGML_API GGML_CALL bool ggml_is_contiguous (const struct ggml_tensor * tensor);
|
|
GGML_API GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
|
|
GGML_API GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
|
|
GGML_API GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
|
|
|
|
GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
|
GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
|
|
|
GGML_API bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
|
|
|
// use this to compute the memory overhead of a tensor
|
|
GGML_API size_t ggml_tensor_overhead(void);
|
|
|
|
GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
|
|
|
|
// main
|
|
|
|
GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
|
|
GGML_API void ggml_free(struct ggml_context * ctx);
|
|
|
|
GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
|
|
|
|
GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
|
|
GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
|
|
GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
|
|
|
|
GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
|
|
GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
|
|
GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
|
|
|
|
GGML_API struct ggml_tensor * ggml_new_tensor(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int n_dims,
|
|
const int64_t *ne);
|
|
|
|
GGML_API struct ggml_tensor * ggml_new_tensor_1d(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int64_t ne0);
|
|
|
|
GGML_API struct ggml_tensor * ggml_new_tensor_2d(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int64_t ne0,
|
|
int64_t ne1);
|
|
|
|
GGML_API struct ggml_tensor * ggml_new_tensor_3d(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2);
|
|
|
|
GGML_API struct ggml_tensor * ggml_new_tensor_4d(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2,
|
|
int64_t ne3);
|
|
|
|
GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
|
|
GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
|
|
|
|
GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
|
|
GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
|
|
|
|
// Context tensor enumeration and lookup
|
|
GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
|
|
GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
|
|
GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
|
|
|
|
GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
|
|
GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
|
|
GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
|
|
|
|
// Converts a flat index into coordinates
|
|
GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
|
|
|
|
GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
|
|
GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
|
|
|
|
GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
|
|
GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
|
|
|
|
GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
|
|
GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
|
|
|
|
GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
|
|
GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
|
|
|
|
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
|
|
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
|
|
|
|
GGML_API GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
|
|
|
|
GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
|
|
GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
|
|
GGML_ATTRIBUTE_FORMAT(2, 3)
|
|
GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
|
|
|
|
//
|
|
// operations on tensors with backpropagation
|
|
//
|
|
|
|
GGML_API struct ggml_tensor * ggml_dup(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_dup_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_add(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_add_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_add_cast(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
enum ggml_type type);
|
|
|
|
GGML_API struct ggml_tensor * ggml_add1(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_add1_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// dst = a
|
|
// view(dst, nb1, nb2, nb3, offset) += b
|
|
// return dst
|
|
GGML_API struct ggml_tensor * ggml_acc(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t nb2,
|
|
size_t nb3,
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_acc_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t nb2,
|
|
size_t nb3,
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sub(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sub_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_mul(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_mul_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_div(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_div_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sqr(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sqr_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sqrt(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sqrt_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_log(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_log_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// return scalar
|
|
GGML_API struct ggml_tensor * ggml_sum(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
|
|
GGML_API struct ggml_tensor * ggml_sum_rows(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// mean along rows
|
|
GGML_API struct ggml_tensor * ggml_mean(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// argmax along rows
|
|
GGML_API struct ggml_tensor * ggml_argmax(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// if a is the same shape as b, and a is not parameter, return a
|
|
// otherwise, return a new tensor: repeat(a) to fit in b
|
|
GGML_API struct ggml_tensor * ggml_repeat(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// sums repetitions in a into shape of b
|
|
GGML_API struct ggml_tensor * ggml_repeat_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// concat a and b along dim
|
|
// used in stable-diffusion
|
|
GGML_API struct ggml_tensor * ggml_concat(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
int dim);
|
|
|
|
GGML_API struct ggml_tensor * ggml_abs(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_abs_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sgn(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sgn_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_neg(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_neg_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_step(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_step_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_tanh(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_tanh_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_elu(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_elu_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_relu(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_leaky_relu(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a, float negative_slope, bool inplace);
|
|
|
|
GGML_API struct ggml_tensor * ggml_relu_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sigmoid(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_gelu(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_gelu_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_gelu_quick(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_silu(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_silu_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// a - x
|
|
// b - dy
|
|
GGML_API struct ggml_tensor * ggml_silu_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// hardswish(x) = x * relu6(x + 3) / 6
|
|
GGML_API struct ggml_tensor * ggml_hardswish(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// hardsigmoid(x) = relu6(x + 3) / 6
|
|
GGML_API struct ggml_tensor * ggml_hardsigmoid(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// normalize along rows
|
|
GGML_API struct ggml_tensor * ggml_norm(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
float eps);
|
|
|
|
GGML_API struct ggml_tensor * ggml_norm_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
float eps);
|
|
|
|
GGML_API struct ggml_tensor * ggml_rms_norm(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
float eps);
|
|
|
|
GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
float eps);
|
|
|
|
// group normalize along ne0*ne1*n_groups
|
|
// used in stable-diffusion
|
|
// TODO: eps is hardcoded to 1e-6 for now
|
|
GGML_API struct ggml_tensor * ggml_group_norm(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_groups);
|
|
|
|
GGML_API struct ggml_tensor * ggml_group_norm_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_groups);
|
|
|
|
// a - x
|
|
// b - dy
|
|
GGML_API struct ggml_tensor * ggml_rms_norm_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
float eps);
|
|
|
|
// A: k columns, n rows => [ne03, ne02, n, k]
|
|
// B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
|
|
// result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
|
|
GGML_API struct ggml_tensor * ggml_mul_mat(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// change the precision of a matrix multiplication
|
|
// set to GGML_PREC_F32 for higher precision (useful for phi-2)
|
|
GGML_API void ggml_mul_mat_set_prec(
|
|
struct ggml_tensor * a,
|
|
enum ggml_prec prec);
|
|
|
|
// indirect matrix multiplication
|
|
GGML_API struct ggml_tensor * ggml_mul_mat_id(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * as,
|
|
struct ggml_tensor * b,
|
|
struct ggml_tensor * ids);
|
|
|
|
// A: m columns, n rows,
|
|
// B: p columns, n rows,
|
|
// result is m columns, p rows
|
|
GGML_API struct ggml_tensor * ggml_out_prod(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
//
|
|
// operations on tensors without backpropagation
|
|
//
|
|
|
|
GGML_API struct ggml_tensor * ggml_scale(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
float s);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_scale_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
float s);
|
|
|
|
// b -> view(a,offset,nb1,nb2,3), return modified a
|
|
GGML_API struct ggml_tensor * ggml_set(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t nb2,
|
|
size_t nb3,
|
|
size_t offset);
|
|
|
|
// b -> view(a,offset,nb1,nb2,3), return view(a)
|
|
GGML_API struct ggml_tensor * ggml_set_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t nb2,
|
|
size_t nb3,
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_set_1d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_set_1d_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t offset);
|
|
|
|
// b -> view(a,offset,nb1,nb2,3), return modified a
|
|
GGML_API struct ggml_tensor * ggml_set_2d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t offset);
|
|
|
|
// b -> view(a,offset,nb1,nb2,3), return view(a)
|
|
GGML_API struct ggml_tensor * ggml_set_2d_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t offset);
|
|
|
|
// a -> b, return view(b)
|
|
GGML_API struct ggml_tensor * ggml_cpy(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_cast(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
enum ggml_type type);
|
|
|
|
// make contiguous
|
|
GGML_API struct ggml_tensor * ggml_cont(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// make contiguous, with new shape
|
|
GGML_API struct ggml_tensor * ggml_cont_1d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0);
|
|
|
|
GGML_API struct ggml_tensor * ggml_cont_2d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1);
|
|
|
|
GGML_API struct ggml_tensor * ggml_cont_3d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2);
|
|
|
|
GGML_API struct ggml_tensor * ggml_cont_4d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2,
|
|
int64_t ne3);
|
|
|
|
// return view(a), b specifies the new shape
|
|
// TODO: when we start computing gradient, make a copy instead of view
|
|
GGML_API struct ggml_tensor * ggml_reshape(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// return view(a)
|
|
// TODO: when we start computing gradient, make a copy instead of view
|
|
GGML_API struct ggml_tensor * ggml_reshape_1d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0);
|
|
|
|
GGML_API struct ggml_tensor * ggml_reshape_2d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1);
|
|
|
|
// return view(a)
|
|
// TODO: when we start computing gradient, make a copy instead of view
|
|
GGML_API struct ggml_tensor * ggml_reshape_3d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2);
|
|
|
|
GGML_API struct ggml_tensor * ggml_reshape_4d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2,
|
|
int64_t ne3);
|
|
|
|
// offset in bytes
|
|
GGML_API struct ggml_tensor * ggml_view_1d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_view_2d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
size_t nb1, // row stride in bytes
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_view_3d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2,
|
|
size_t nb1, // row stride in bytes
|
|
size_t nb2, // slice stride in bytes
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_view_4d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2,
|
|
int64_t ne3,
|
|
size_t nb1, // row stride in bytes
|
|
size_t nb2, // slice stride in bytes
|
|
size_t nb3,
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_permute(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int axis0,
|
|
int axis1,
|
|
int axis2,
|
|
int axis3);
|
|
|
|
// alias for ggml_permute(ctx, a, 1, 0, 2, 3)
|
|
GGML_API struct ggml_tensor * ggml_transpose(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// supports 3D: a->ne[2] == b->ne[1]
|
|
GGML_API struct ggml_tensor * ggml_get_rows(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_get_rows_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
struct ggml_tensor * c);
|
|
|
|
GGML_API struct ggml_tensor * ggml_diag(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// set elements above the diagonal to -INF
|
|
GGML_API struct ggml_tensor * ggml_diag_mask_inf(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past);
|
|
|
|
// set elements above the diagonal to 0
|
|
GGML_API struct ggml_tensor * ggml_diag_mask_zero(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past);
|
|
|
|
GGML_API struct ggml_tensor * ggml_soft_max(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_soft_max_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// fused soft_max(a*scale + mask*(ALiBi slope))
|
|
// mask is optional
|
|
// max_bias = 0.0f for no ALiBi
|
|
GGML_API struct ggml_tensor * ggml_soft_max_ext(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * mask,
|
|
float scale,
|
|
float max_bias);
|
|
|
|
GGML_API struct ggml_tensor * ggml_soft_max_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// rotary position embedding
|
|
// if mode & 1 == 1, skip n_past elements (NOT SUPPORTED)
|
|
// if mode & 2 == 1, GPT-NeoX style
|
|
//
|
|
// b is an int32 vector with size a->ne[2], it contains the positions
|
|
// c is freq factors (e.g. phi3-128k), (optional)
|
|
GGML_API struct ggml_tensor * ggml_rope(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
int n_dims,
|
|
int mode);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_rope_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
int n_dims,
|
|
int mode);
|
|
|
|
// custom RoPE
|
|
GGML_API struct ggml_tensor * ggml_rope_ext(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
struct ggml_tensor * c,
|
|
int n_dims,
|
|
int mode,
|
|
int n_ctx_orig,
|
|
float freq_base,
|
|
float freq_scale,
|
|
float ext_factor,
|
|
float attn_factor,
|
|
float beta_fast,
|
|
float beta_slow);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
struct ggml_tensor * c,
|
|
int n_dims,
|
|
int mode,
|
|
int n_ctx_orig,
|
|
float freq_base,
|
|
float freq_scale,
|
|
float ext_factor,
|
|
float attn_factor,
|
|
float beta_fast,
|
|
float beta_slow);
|
|
|
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
int n_dims,
|
|
int mode,
|
|
int n_ctx_orig,
|
|
float freq_base,
|
|
float freq_scale,
|
|
float ext_factor,
|
|
float attn_factor,
|
|
float beta_fast,
|
|
float beta_slow),
|
|
"use ggml_rope_ext instead");
|
|
|
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
int n_dims,
|
|
int mode,
|
|
int n_ctx_orig,
|
|
float freq_base,
|
|
float freq_scale,
|
|
float ext_factor,
|
|
float attn_factor,
|
|
float beta_fast,
|
|
float beta_slow),
|
|
"use ggml_rope_ext_inplace instead");
|
|
|
|
// compute correction dims for YaRN RoPE scaling
|
|
GGML_CALL void ggml_rope_yarn_corr_dims(
|
|
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
|
|
|
|
// rotary position embedding backward, i.e compute dx from dy
|
|
// a - dy
|
|
GGML_API struct ggml_tensor * ggml_rope_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
struct ggml_tensor * c,
|
|
int n_dims,
|
|
int mode,
|
|
int n_ctx_orig,
|
|
float freq_base,
|
|
float freq_scale,
|
|
float ext_factor,
|
|
float attn_factor,
|
|
float beta_fast,
|
|
float beta_slow);
|
|
|
|
// clamp
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_clamp(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
float min,
|
|
float max);
|
|
|
|
GGML_API struct ggml_tensor * ggml_im2col(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
int s0,
|
|
int s1,
|
|
int p0,
|
|
int p1,
|
|
int d0,
|
|
int d1,
|
|
bool is_2D,
|
|
enum ggml_type dst_type);
|
|
|
|
GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
int s0,
|
|
int s1,
|
|
int p0,
|
|
int p1,
|
|
int d0,
|
|
int d1);
|
|
|
|
GGML_API struct ggml_tensor * ggml_conv_1d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
int s0, // stride
|
|
int p0, // padding
|
|
int d0); // dilation
|
|
|
|
// conv_1d with padding = half
|
|
// alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
|
|
GGML_API struct ggml_tensor* ggml_conv_1d_ph(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
int s,
|
|
int d);
|
|
|
|
GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
int s0,
|
|
int p0,
|
|
int d0);
|
|
|
|
GGML_API struct ggml_tensor * ggml_conv_2d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
int s0,
|
|
int s1,
|
|
int p0,
|
|
int p1,
|
|
int d0,
|
|
int d1);
|
|
|
|
|
|
// kernel size is a->ne[0] x a->ne[1]
|
|
// stride is equal to kernel size
|
|
// padding is zero
|
|
// example:
|
|
// a: 16 16 3 768
|
|
// b: 1024 1024 3 1
|
|
// res: 64 64 768 1
|
|
// used in sam
|
|
GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// kernel size is a->ne[0] x a->ne[1]
|
|
// stride is 1
|
|
// padding is half
|
|
// example:
|
|
// a: 3 3 256 256
|
|
// b: 64 64 256 1
|
|
// res: 64 64 256 1
|
|
// used in sam
|
|
GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
int stride);
|
|
|
|
enum ggml_op_pool {
|
|
GGML_OP_POOL_MAX,
|
|
GGML_OP_POOL_AVG,
|
|
GGML_OP_POOL_COUNT,
|
|
};
|
|
|
|
GGML_API struct ggml_tensor * ggml_pool_1d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
enum ggml_op_pool op,
|
|
int k0, // kernel size
|
|
int s0, // stride
|
|
int p0); // padding
|
|
|
|
// the result will have 2*p0 padding for the first dimension
|
|
// and 2*p1 padding for the second dimension
|
|
GGML_API struct ggml_tensor * ggml_pool_2d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
enum ggml_op_pool op,
|
|
int k0,
|
|
int k1,
|
|
int s0,
|
|
int s1,
|
|
float p0,
|
|
float p1);
|
|
|
|
// nearest interpolate
|
|
// multiplies ne0 and ne1 by scale factor
|
|
// used in stable-diffusion
|
|
GGML_API struct ggml_tensor * ggml_upscale(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int scale_factor);
|
|
|
|
// nearest interpolate
|
|
// nearest interpolate to specified dimensions
|
|
// used in tortoise.cpp
|
|
GGML_API struct ggml_tensor * ggml_upscale_ext(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int ne0,
|
|
int ne1,
|
|
int ne2,
|
|
int ne3);
|
|
|
|
// pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
|
|
GGML_API struct ggml_tensor * ggml_pad(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int p0,
|
|
int p1,
|
|
int p2,
|
|
int p3);
|
|
|
|
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
|
|
// timesteps: [N,]
|
|
// return: [N, dim]
|
|
GGML_API struct ggml_tensor * ggml_timestep_embedding(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * timesteps,
|
|
int dim,
|
|
int max_period);
|
|
|
|
// sort rows
|
|
enum ggml_sort_order {
|
|
GGML_SORT_ORDER_ASC,
|
|
GGML_SORT_ORDER_DESC,
|
|
};
|
|
|
|
GGML_API struct ggml_tensor * ggml_argsort(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
enum ggml_sort_order order);
|
|
|
|
GGML_API struct ggml_tensor * ggml_arange(
|
|
struct ggml_context * ctx,
|
|
float start,
|
|
float stop,
|
|
float step);
|
|
|
|
// top k elements per row
|
|
GGML_API struct ggml_tensor * ggml_top_k(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int k);
|
|
|
|
#define GGML_KQ_MASK_PAD 32
|
|
|
|
// q: [n_embd, n_batch, n_head, 1]
|
|
// k: [n_embd, n_kv, n_head_kv, 1]
|
|
// v: [n_embd, n_kv, n_head_kv, 1] !! not transposed !!
|
|
// mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
|
|
// res: [n_embd, n_head, n_batch, 1] !! permuted !!
|
|
GGML_API struct ggml_tensor * ggml_flash_attn_ext(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * q,
|
|
struct ggml_tensor * k,
|
|
struct ggml_tensor * v,
|
|
struct ggml_tensor * mask,
|
|
float scale,
|
|
float max_bias);
|
|
|
|
GGML_API void ggml_flash_attn_ext_set_prec(
|
|
struct ggml_tensor * a,
|
|
enum ggml_prec prec);
|
|
|
|
// TODO: needs to be adapted to ggml_flash_attn_ext
|
|
GGML_API struct ggml_tensor * ggml_flash_attn_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * q,
|
|
struct ggml_tensor * k,
|
|
struct ggml_tensor * v,
|
|
struct ggml_tensor * d,
|
|
bool masked);
|
|
|
|
GGML_API struct ggml_tensor * ggml_ssm_conv(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * s,
|
|
struct ggml_tensor * x,
|
|
struct ggml_tensor * c,
|
|
struct ggml_tensor * sq);
|
|
|
|
GGML_API struct ggml_tensor * ggml_ssm_scan(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * s,
|
|
struct ggml_tensor * x,
|
|
struct ggml_tensor * dt,
|
|
struct ggml_tensor * A,
|
|
struct ggml_tensor * B,
|
|
struct ggml_tensor * C,
|
|
struct ggml_tensor * sq);
|
|
|
|
// partition into non-overlapping windows with padding if needed
|
|
// example:
|
|
// a: 768 64 64 1
|
|
// w: 14
|
|
// res: 768 14 14 25
|
|
// used in sam
|
|
GGML_API struct ggml_tensor * ggml_win_part(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int w);
|
|
|
|
// reverse of ggml_win_part
|
|
// used in sam
|
|
GGML_API struct ggml_tensor * ggml_win_unpart(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int w0,
|
|
int h0,
|
|
int w);
|
|
|
|
GGML_API struct ggml_tensor * ggml_unary(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
enum ggml_unary_op op);
|
|
|
|
GGML_API struct ggml_tensor * ggml_unary_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
enum ggml_unary_op op);
|
|
|
|
// used in sam
|
|
GGML_API struct ggml_tensor * ggml_get_rel_pos(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int qh,
|
|
int kh);
|
|
|
|
// used in sam
|
|
GGML_API struct ggml_tensor * ggml_add_rel_pos(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * pw,
|
|
struct ggml_tensor * ph);
|
|
|
|
GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * pw,
|
|
struct ggml_tensor * ph);
|
|
|
|
// custom operators
|
|
|
|
typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
|
|
typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
|
|
|
|
typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
|
|
typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
|
|
typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
|
|
|
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
ggml_unary_op_f32_t fun),
|
|
"use ggml_map_custom1 instead");
|
|
|
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
ggml_unary_op_f32_t fun),
|
|
"use ggml_map_custom1_inplace instead");
|
|
|
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
ggml_binary_op_f32_t fun),
|
|
"use ggml_map_custom2 instead");
|
|
|
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
ggml_binary_op_f32_t fun),
|
|
"use ggml_map_custom2_inplace instead");
|
|
|
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
ggml_custom1_op_f32_t fun),
|
|
"use ggml_map_custom1 instead");
|
|
|
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
ggml_custom1_op_f32_t fun),
|
|
"use ggml_map_custom1_inplace instead");
|
|
|
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
ggml_custom2_op_f32_t fun),
|
|
"use ggml_map_custom2 instead");
|
|
|
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
ggml_custom2_op_f32_t fun),
|
|
"use ggml_map_custom2_inplace instead");
|
|
|
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
struct ggml_tensor * c,
|
|
ggml_custom3_op_f32_t fun),
|
|
"use ggml_map_custom3 instead");
|
|
|
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
struct ggml_tensor * c,
|
|
ggml_custom3_op_f32_t fun),
|
|
"use ggml_map_custom3_inplace instead");
|
|
|
|
// custom operators v2
|
|
|
|
typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
|
|
typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
|
|
typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
|
|
|
|
#define GGML_N_TASKS_MAX -1
|
|
|
|
GGML_API struct ggml_tensor * ggml_map_custom1(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
ggml_custom1_op_t fun,
|
|
int n_tasks,
|
|
void * userdata);
|
|
|
|
GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
ggml_custom1_op_t fun,
|
|
int n_tasks,
|
|
void * userdata);
|
|
|
|
GGML_API struct ggml_tensor * ggml_map_custom2(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
ggml_custom2_op_t fun,
|
|
int n_tasks,
|
|
void * userdata);
|
|
|
|
GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
ggml_custom2_op_t fun,
|
|
int n_tasks,
|
|
void * userdata);
|
|
|
|
GGML_API struct ggml_tensor * ggml_map_custom3(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
struct ggml_tensor * c,
|
|
ggml_custom3_op_t fun,
|
|
int n_tasks,
|
|
void * userdata);
|
|
|
|
GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
struct ggml_tensor * c,
|
|
ggml_custom3_op_t fun,
|
|
int n_tasks,
|
|
void * userdata);
|
|
|
|
// loss function
|
|
|
|
GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
struct ggml_tensor * c);
|
|
|
|
//
|
|
// automatic differentiation
|
|
//
|
|
|
|
GGML_API void ggml_set_param(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * tensor);
|
|
|
|
|
|
GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
|
GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
|
|
|
|
// graph allocation in a context
|
|
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
|
|
GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads);
|
|
GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
|
|
GGML_API struct ggml_cgraph ggml_graph_view (struct ggml_cgraph * cgraph, int i0, int i1);
|
|
GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
|
|
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
|
|
GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
|
|
|
|
GGML_API size_t ggml_graph_overhead(void);
|
|
GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
|
|
|
|
// ggml_graph_plan() has to be called before ggml_graph_compute()
|
|
// when plan.work_size > 0, caller must allocate memory for plan.work_data
|
|
GGML_API struct ggml_cplan ggml_graph_plan (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
|
|
GGML_API enum ggml_status ggml_graph_compute( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
|
|
// same as ggml_graph_compute() but the work data is allocated as a part of the context
|
|
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
|
|
GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
|
|
|
|
GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
|
|
|
|
GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
|
|
GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
|
|
|
|
// print info and performance information for the graph
|
|
GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
|
|
|
|
// dump the graph into a file using the dot format
|
|
GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
|
|
|
|
// build gradient checkpointing backward graph gb for gf using provided checkpoints
|
|
// gb_tmp will contain original backward graph with rewritten backward process nodes,
|
|
// but without the second forward pass nodes.
|
|
GGML_API void ggml_build_backward_gradient_checkpointing(
|
|
struct ggml_context * ctx,
|
|
struct ggml_cgraph * gf,
|
|
struct ggml_cgraph * gb,
|
|
struct ggml_cgraph * gb_tmp,
|
|
struct ggml_tensor * * checkpoints,
|
|
int n_checkpoints);
|
|
//
|
|
// optimization
|
|
//
|
|
|
|
// optimization methods
|
|
enum ggml_opt_type {
|
|
GGML_OPT_TYPE_ADAM,
|
|
GGML_OPT_TYPE_LBFGS,
|
|
};
|
|
|
|
// linesearch methods
|
|
enum ggml_linesearch {
|
|
GGML_LINESEARCH_DEFAULT = 1,
|
|
|
|
GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
|
|
GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
|
|
GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
|
|
};
|
|
|
|
// optimization return values
|
|
enum ggml_opt_result {
|
|
GGML_OPT_RESULT_OK = 0,
|
|
GGML_OPT_RESULT_DID_NOT_CONVERGE,
|
|
GGML_OPT_RESULT_NO_CONTEXT,
|
|
GGML_OPT_RESULT_INVALID_WOLFE,
|
|
GGML_OPT_RESULT_FAIL,
|
|
GGML_OPT_RESULT_CANCEL,
|
|
|
|
GGML_LINESEARCH_FAIL = -128,
|
|
GGML_LINESEARCH_MINIMUM_STEP,
|
|
GGML_LINESEARCH_MAXIMUM_STEP,
|
|
GGML_LINESEARCH_MAXIMUM_ITERATIONS,
|
|
GGML_LINESEARCH_INVALID_PARAMETERS,
|
|
};
|
|
|
|
typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
|
|
typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
|
|
|
|
// optimization parameters
|
|
//
|
|
// see ggml.c (ggml_opt_default_params) for default values
|
|
//
|
|
struct ggml_opt_params {
|
|
enum ggml_opt_type type;
|
|
|
|
size_t graph_size;
|
|
|
|
int n_threads;
|
|
|
|
// delta-based convergence test
|
|
//
|
|
// if past == 0 - disabled
|
|
// if past > 0:
|
|
// stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
|
|
//
|
|
int past;
|
|
float delta;
|
|
|
|
// maximum number of iterations without improvement
|
|
//
|
|
// if 0 - disabled
|
|
// if > 0:
|
|
// assume convergence if no cost improvement in this number of iterations
|
|
//
|
|
int max_no_improvement;
|
|
|
|
bool print_forward_graph;
|
|
bool print_backward_graph;
|
|
|
|
int n_gradient_accumulation;
|
|
|
|
// ADAM parameters
|
|
struct {
|
|
int n_iter;
|
|
|
|
float sched; // schedule multiplier (fixed, decay or warmup)
|
|
float decay; // weight decay for AdamW, use 0.0f to disable
|
|
int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
|
|
float alpha; // learning rate
|
|
float beta1;
|
|
float beta2;
|
|
float eps; // epsilon for numerical stability
|
|
float eps_f; // epsilon for convergence test
|
|
float eps_g; // epsilon for convergence test
|
|
float gclip; // gradient clipping
|
|
} adam;
|
|
|
|
// LBFGS parameters
|
|
struct {
|
|
int m; // number of corrections to approximate the inv. Hessian
|
|
int n_iter;
|
|
int max_linesearch;
|
|
|
|
float eps; // convergence tolerance
|
|
float ftol; // line search tolerance
|
|
float wolfe;
|
|
float min_step;
|
|
float max_step;
|
|
|
|
enum ggml_linesearch linesearch;
|
|
} lbfgs;
|
|
};
|
|
|
|
struct ggml_opt_context {
|
|
struct ggml_context * ctx;
|
|
struct ggml_opt_params params;
|
|
|
|
int iter;
|
|
int64_t nx; // number of parameter elements
|
|
|
|
bool just_initialized;
|
|
|
|
float loss_before;
|
|
float loss_after;
|
|
|
|
struct {
|
|
struct ggml_tensor * g; // current gradient
|
|
struct ggml_tensor * m; // first moment
|
|
struct ggml_tensor * v; // second moment
|
|
struct ggml_tensor * pf; // past function values
|
|
float fx_best;
|
|
float fx_prev;
|
|
int n_no_improvement;
|
|
} adam;
|
|
|
|
struct {
|
|
struct ggml_tensor * x; // current parameters
|
|
struct ggml_tensor * xp; // previous parameters
|
|
struct ggml_tensor * g; // current gradient
|
|
struct ggml_tensor * gp; // previous gradient
|
|
struct ggml_tensor * d; // search direction
|
|
struct ggml_tensor * pf; // past function values
|
|
struct ggml_tensor * lmal; // the L-BFGS memory alpha
|
|
struct ggml_tensor * lmys; // the L-BFGS memory ys
|
|
struct ggml_tensor * lms; // the L-BFGS memory s
|
|
struct ggml_tensor * lmy; // the L-BFGS memory y
|
|
float fx_best;
|
|
float step;
|
|
int j;
|
|
int k;
|
|
int end;
|
|
int n_no_improvement;
|
|
} lbfgs;
|
|
};
|
|
|
|
GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
|
|
|
|
// optimize the function defined by the tensor f
|
|
GGML_API enum ggml_opt_result ggml_opt(
|
|
struct ggml_context * ctx,
|
|
struct ggml_opt_params params,
|
|
struct ggml_tensor * f);
|
|
|
|
// initialize optimizer context
|
|
GGML_API void ggml_opt_init(
|
|
struct ggml_context * ctx,
|
|
struct ggml_opt_context * opt,
|
|
struct ggml_opt_params params,
|
|
int64_t nx);
|
|
|
|
// continue optimizing the function defined by the tensor f
|
|
GGML_API enum ggml_opt_result ggml_opt_resume(
|
|
struct ggml_context * ctx,
|
|
struct ggml_opt_context * opt,
|
|
struct ggml_tensor * f);
|
|
|
|
// continue optimizing the function defined by the tensor f
|
|
GGML_API enum ggml_opt_result ggml_opt_resume_g(
|
|
struct ggml_context * ctx,
|
|
struct ggml_opt_context * opt,
|
|
struct ggml_tensor * f,
|
|
struct ggml_cgraph * gf,
|
|
struct ggml_cgraph * gb,
|
|
ggml_opt_callback callback,
|
|
void * callback_data);
|
|
|
|
//
|
|
// tensor flags
|
|
//
|
|
GGML_API void ggml_set_input(struct ggml_tensor * tensor);
|
|
GGML_API void ggml_set_output(struct ggml_tensor * tensor);
|
|
|
|
//
|
|
// quantization
|
|
//
|
|
|
|
// - ggml_quantize_init can be called multiple times with the same type
|
|
// it will only initialize the quantization tables for the first call or after ggml_quantize_free
|
|
// automatically called by ggml_quantize_chunk for convenience
|
|
//
|
|
// - ggml_quantize_free will free any memory allocated by ggml_quantize_init
|
|
// call this at the end of the program to avoid memory leaks
|
|
//
|
|
// note: these are thread-safe
|
|
//
|
|
GGML_API void ggml_quantize_init(enum ggml_type type);
|
|
GGML_API void ggml_quantize_free(void);
|
|
|
|
// some quantization type cannot be used without an importance matrix
|
|
GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
|
|
|
|
// calls ggml_quantize_init internally (i.e. can allocate memory)
|
|
GGML_API size_t ggml_quantize_chunk(
|
|
enum ggml_type type,
|
|
const float * src,
|
|
void * dst,
|
|
int64_t start,
|
|
int64_t nrows,
|
|
int64_t n_per_row,
|
|
const float * imatrix);
|
|
|
|
//
|
|
// gguf
|
|
//
|
|
|
|
enum gguf_type {
|
|
GGUF_TYPE_UINT8 = 0,
|
|
GGUF_TYPE_INT8 = 1,
|
|
GGUF_TYPE_UINT16 = 2,
|
|
GGUF_TYPE_INT16 = 3,
|
|
GGUF_TYPE_UINT32 = 4,
|
|
GGUF_TYPE_INT32 = 5,
|
|
GGUF_TYPE_FLOAT32 = 6,
|
|
GGUF_TYPE_BOOL = 7,
|
|
GGUF_TYPE_STRING = 8,
|
|
GGUF_TYPE_ARRAY = 9,
|
|
GGUF_TYPE_UINT64 = 10,
|
|
GGUF_TYPE_INT64 = 11,
|
|
GGUF_TYPE_FLOAT64 = 12,
|
|
GGUF_TYPE_COUNT, // marks the end of the enum
|
|
};
|
|
|
|
struct gguf_context;
|
|
|
|
struct gguf_init_params {
|
|
bool no_alloc;
|
|
|
|
// if not NULL, create a ggml_context and allocate the tensor data in it
|
|
struct ggml_context ** ctx;
|
|
};
|
|
|
|
GGML_API struct gguf_context * gguf_init_empty(void);
|
|
GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
|
|
//GGML_API struct gguf_context * gguf_init_from_buffer(..);
|
|
|
|
GGML_API void gguf_free(struct gguf_context * ctx);
|
|
|
|
GGML_API const char * gguf_type_name(enum gguf_type type);
|
|
|
|
GGML_API int gguf_get_version (const struct gguf_context * ctx);
|
|
GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
|
|
GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
|
|
GGML_API void * gguf_get_data (const struct gguf_context * ctx);
|
|
|
|
GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
|
|
GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
|
|
GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
|
|
|
|
GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
|
|
GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
|
|
|
|
// will abort if the wrong type is used for the key
|
|
GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
|
|
GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
|
|
GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
|
|
GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
|
|
GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
|
|
GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
|
|
GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
|
|
GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
|
|
GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
|
|
GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
|
|
GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
|
|
GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
|
|
GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
|
|
GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
|
|
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
|
|
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
|
|
|
|
GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
|
|
GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
|
|
GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
|
|
GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
|
|
GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
|
|
|
|
// removes key if it exists
|
|
GGML_API void gguf_remove_key(struct gguf_context * ctx, const char * key);
|
|
|
|
// overrides existing values or adds a new one
|
|
GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
|
|
GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
|
|
GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
|
|
GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
|
|
GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
|
|
GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
|
|
GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
|
|
GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
|
|
GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
|
|
GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
|
|
GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
|
|
GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
|
|
GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
|
|
GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
|
|
|
|
// set or add KV pairs from another context
|
|
GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
|
|
|
|
// manage tensor info
|
|
GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
|
|
GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
|
|
GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
|
|
|
|
// writing gguf files can be done in 2 ways:
|
|
//
|
|
// - write the entire gguf_context to a binary file in a single pass:
|
|
//
|
|
// gguf_write_to_file(ctx, fname);
|
|
//
|
|
// - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
|
|
//
|
|
// FILE * f = fopen(fname, "wb");
|
|
// fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
|
|
// fwrite(f, ...);
|
|
// void * data = gguf_meta_get_meta_data(ctx);
|
|
// fseek(f, 0, SEEK_SET);
|
|
// fwrite(f, data, gguf_get_meta_size(ctx));
|
|
// free(data);
|
|
// fclose(f);
|
|
//
|
|
|
|
// write the entire context to a binary file
|
|
GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
|
|
|
|
// get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
|
|
GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
|
|
GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
|
|
|
|
//
|
|
// system info
|
|
//
|
|
|
|
GGML_API int ggml_cpu_has_avx (void);
|
|
GGML_API int ggml_cpu_has_avx_vnni (void);
|
|
GGML_API int ggml_cpu_has_avx2 (void);
|
|
GGML_API int ggml_cpu_has_avx512 (void);
|
|
GGML_API int ggml_cpu_has_avx512_vbmi(void);
|
|
GGML_API int ggml_cpu_has_avx512_vnni(void);
|
|
GGML_API int ggml_cpu_has_avx512_bf16(void);
|
|
GGML_API int ggml_cpu_has_fma (void);
|
|
GGML_API int ggml_cpu_has_neon (void);
|
|
GGML_API int ggml_cpu_has_sve (void);
|
|
GGML_API int ggml_cpu_has_arm_fma (void);
|
|
GGML_API int ggml_cpu_has_metal (void);
|
|
GGML_API int ggml_cpu_has_f16c (void);
|
|
GGML_API int ggml_cpu_has_fp16_va (void);
|
|
GGML_API int ggml_cpu_has_wasm_simd (void);
|
|
GGML_API int ggml_cpu_has_blas (void);
|
|
GGML_API int ggml_cpu_has_cuda (void);
|
|
GGML_API int ggml_cpu_has_vulkan (void);
|
|
GGML_API int ggml_cpu_has_kompute (void);
|
|
GGML_API int ggml_cpu_has_gpublas (void);
|
|
GGML_API int ggml_cpu_has_sse3 (void);
|
|
GGML_API int ggml_cpu_has_ssse3 (void);
|
|
GGML_API int ggml_cpu_has_sycl (void);
|
|
GGML_API int ggml_cpu_has_rpc (void);
|
|
GGML_API int ggml_cpu_has_vsx (void);
|
|
GGML_API int ggml_cpu_has_matmul_int8(void);
|
|
GGML_API int ggml_cpu_has_cann (void);
|
|
GGML_API int ggml_cpu_has_llamafile (void);
|
|
|
|
//
|
|
// Internal types and functions exposed for tests and benchmarks
|
|
//
|
|
|
|
#ifdef __cplusplus
|
|
// restrict not standard in C++
|
|
#define GGML_RESTRICT
|
|
#else
|
|
#define GGML_RESTRICT restrict
|
|
#endif
|
|
typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
|
typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
|
typedef void (*ggml_from_float_to_mat_t)
|
|
(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nr, int64_t k, int64_t bs);
|
|
typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
|
|
const void * GGML_RESTRICT y, size_t by, int nrc);
|
|
typedef void (*ggml_gemv_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
|
|
const void * GGML_RESTRICT y, int nr, int nc);
|
|
typedef void (*ggml_gemm_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
|
|
const void * GGML_RESTRICT y, int nr, int nc);
|
|
|
|
typedef struct {
|
|
const char * type_name;
|
|
int64_t blck_size;
|
|
int64_t blck_size_interleave; // interleave elements in blocks
|
|
size_t type_size;
|
|
bool is_quantized;
|
|
ggml_to_float_t to_float;
|
|
ggml_from_float_t from_float;
|
|
ggml_from_float_t from_float_ref;
|
|
ggml_from_float_to_mat_t from_float_to_mat;
|
|
ggml_vec_dot_t vec_dot;
|
|
enum ggml_type vec_dot_type;
|
|
int64_t nrows; // number of rows to process simultaneously
|
|
int64_t ncols; // number of columns to process simultaneously
|
|
ggml_gemv_t gemv;
|
|
ggml_gemm_t gemm;
|
|
} ggml_type_traits_t;
|
|
|
|
GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|