mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-27 14:49:25 +01:00
115 lines
5.9 KiB
C++
115 lines
5.9 KiB
C++
// Various helper functions and utilities
|
|
|
|
#pragma once
|
|
|
|
#include "llama.h"
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
#include <random>
|
|
#include <thread>
|
|
#include <unordered_map>
|
|
#include <tuple>
|
|
|
|
//
|
|
// CLI argument parsing
|
|
//
|
|
int32_t get_num_physical_cores();
|
|
|
|
struct gpt_params {
|
|
uint32_t seed = -1; // RNG seed
|
|
int32_t n_threads = get_num_physical_cores();
|
|
int32_t n_predict = -1; // new tokens to predict
|
|
int32_t n_ctx = 512; // context size
|
|
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
|
|
int32_t n_gqa = 1; // grouped-query attention factor (TODO: move to hparams)
|
|
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
|
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
|
int32_t n_gpu_layers = 0; // number of layers to store in VRAM
|
|
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
|
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
|
|
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
|
float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS; // rms norm epsilon
|
|
float rope_freq_base = 10000.0f; // RoPE base frequency
|
|
float rope_freq_scale = 1.0f; // RoPE frequency scaling factor
|
|
|
|
// sampling parameters
|
|
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
|
|
int32_t top_k = 40; // <= 0 to use vocab size
|
|
float top_p = 0.95f; // 1.0 = disabled
|
|
float tfs_z = 1.00f; // 1.0 = disabled
|
|
float typical_p = 1.00f; // 1.0 = disabled
|
|
float temp = 0.80f; // 1.0 = disabled
|
|
float repeat_penalty = 1.10f; // 1.0 = disabled
|
|
int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
|
float frequency_penalty = 0.00f; // 0.0 = disabled
|
|
float presence_penalty = 0.00f; // 0.0 = disabled
|
|
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
|
float mirostat_tau = 5.00f; // target entropy
|
|
float mirostat_eta = 0.10f; // learning rate
|
|
|
|
// Classifier-Free Guidance
|
|
// https://arxiv.org/abs/2306.17806
|
|
std::string cfg_negative_prompt; // string to help guidance
|
|
float cfg_scale = 1.f; // How strong is guidance
|
|
|
|
std::string model = "models/7B/ggml-model.bin"; // model path
|
|
std::string model_alias = "unknown"; // model alias
|
|
std::string prompt = "";
|
|
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
|
|
std::string input_prefix = ""; // string to prefix user inputs with
|
|
std::string input_suffix = ""; // string to suffix user inputs with
|
|
std::string grammar = ""; // optional BNF-like grammar to constrain sampling
|
|
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
|
|
|
std::string lora_adapter = ""; // lora adapter path
|
|
std::string lora_base = ""; // base model path for the lora adapter
|
|
|
|
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
|
|
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
|
|
|
|
bool low_vram = false; // if true, reduce VRAM usage at the cost of performance
|
|
bool mul_mat_q = false; // if true, use experimental mul_mat_q kernels
|
|
bool memory_f16 = true; // use f16 instead of f32 for memory kv
|
|
bool random_prompt = false; // do not randomize prompt if none provided
|
|
bool use_color = false; // use color to distinguish generations and inputs
|
|
bool interactive = false; // interactive mode
|
|
bool prompt_cache_all = false; // save user input and generations to prompt cache
|
|
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
|
|
|
|
bool embedding = false; // get only sentence embedding
|
|
bool interactive_first = false; // wait for user input immediately
|
|
bool multiline_input = false; // reverse the usage of `\`
|
|
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
|
|
|
|
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
|
|
bool instruct = false; // instruction mode (used for Alpaca models)
|
|
bool penalize_nl = true; // consider newlines as a repeatable token
|
|
bool perplexity = false; // compute perplexity over the prompt
|
|
bool use_mmap = true; // use mmap for faster loads
|
|
bool use_mlock = false; // use mlock to keep model in memory
|
|
bool mem_test = false; // compute maximum memory usage
|
|
bool numa = false; // attempt optimizations that help on some NUMA systems
|
|
bool export_cgraph = false; // export the computation graph
|
|
bool verbose_prompt = false; // print prompt tokens before generation
|
|
};
|
|
|
|
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
|
|
|
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
|
|
|
|
std::string gpt_random_prompt(std::mt19937 & rng);
|
|
|
|
//
|
|
// Vocab utils
|
|
//
|
|
|
|
std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos);
|
|
|
|
//
|
|
// Model utils
|
|
//
|
|
|
|
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(const gpt_params & params);
|
|
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
|