mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-24 02:19:18 +01:00
353ec251a4
* Improve performance by changing std::map to std::unordered_map and std::map<id, token> id_to_token; to std::vector<token> id_to_token; * fix last commit on gpt_vocab_init add vocab.id_to_token.resize(vocab.token_to_id.size()); * Removed include <map> * Nest struct token score inside gpt_vocab * renamed token to tok
1264 lines
46 KiB
C++
1264 lines
46 KiB
C++
#include "ggml.h"
|
|
|
|
#include "utils.h"
|
|
|
|
#include <cassert>
|
|
#include <cinttypes>
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
|
#include <signal.h>
|
|
#include <unistd.h>
|
|
#elif defined (_WIN32)
|
|
#include <signal.h>
|
|
#endif
|
|
|
|
#if defined (_WIN32)
|
|
#pragma comment(lib,"kernel32.lib")
|
|
extern "C" __declspec(dllimport) void* __stdcall GetStdHandle(unsigned long nStdHandle);
|
|
extern "C" __declspec(dllimport) int __stdcall GetConsoleMode(void* hConsoleHandle, unsigned long* lpMode);
|
|
extern "C" __declspec(dllimport) int __stdcall SetConsoleMode(void* hConsoleHandle, unsigned long dwMode);
|
|
#endif
|
|
|
|
#define ANSI_COLOR_RED "\x1b[31m"
|
|
#define ANSI_COLOR_GREEN "\x1b[32m"
|
|
#define ANSI_COLOR_YELLOW "\x1b[33m"
|
|
#define ANSI_COLOR_BLUE "\x1b[34m"
|
|
#define ANSI_COLOR_MAGENTA "\x1b[35m"
|
|
#define ANSI_COLOR_CYAN "\x1b[36m"
|
|
#define ANSI_COLOR_RESET "\x1b[0m"
|
|
#define ANSI_BOLD "\x1b[1m"
|
|
|
|
/* Keep track of current color of output, and emit ANSI code if it changes. */
|
|
enum console_state {
|
|
CONSOLE_STATE_DEFAULT=0,
|
|
CONSOLE_STATE_PROMPT,
|
|
CONSOLE_STATE_USER_INPUT
|
|
};
|
|
|
|
static console_state con_st = CONSOLE_STATE_DEFAULT;
|
|
static bool con_use_color = false;
|
|
|
|
void set_console_state(console_state new_st)
|
|
{
|
|
if (!con_use_color) return;
|
|
// only emit color code if state changed
|
|
if (new_st != con_st) {
|
|
con_st = new_st;
|
|
switch(con_st) {
|
|
case CONSOLE_STATE_DEFAULT:
|
|
printf(ANSI_COLOR_RESET);
|
|
return;
|
|
case CONSOLE_STATE_PROMPT:
|
|
printf(ANSI_COLOR_YELLOW);
|
|
return;
|
|
case CONSOLE_STATE_USER_INPUT:
|
|
printf(ANSI_BOLD ANSI_COLOR_GREEN);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static const int EOS_TOKEN_ID = 2;
|
|
|
|
// determine number of model parts based on the dimension
|
|
static const std::unordered_map<int, int> LLAMA_N_PARTS = {
|
|
{ 4096, 1 },
|
|
{ 5120, 2 },
|
|
{ 6656, 4 },
|
|
{ 8192, 8 },
|
|
};
|
|
|
|
// default hparams (LLaMA 7B)
|
|
struct llama_hparams {
|
|
int32_t n_vocab = 32000;
|
|
int32_t n_ctx = 512; // this is provided as user input?
|
|
int32_t n_embd = 4096;
|
|
int32_t n_mult = 256;
|
|
int32_t n_head = 32;
|
|
int32_t n_layer = 32;
|
|
int32_t n_rot = 64;
|
|
int32_t f16 = 1;
|
|
};
|
|
|
|
struct llama_layer {
|
|
// normalization
|
|
struct ggml_tensor * attention_norm;
|
|
|
|
// attention
|
|
struct ggml_tensor * wq;
|
|
struct ggml_tensor * wk;
|
|
struct ggml_tensor * wv;
|
|
struct ggml_tensor * wo;
|
|
|
|
// normalization
|
|
struct ggml_tensor * ffn_norm;
|
|
|
|
// ff
|
|
struct ggml_tensor * w1;
|
|
struct ggml_tensor * w2;
|
|
struct ggml_tensor * w3;
|
|
};
|
|
|
|
struct llama_model {
|
|
llama_hparams hparams;
|
|
|
|
struct ggml_tensor * tok_embeddings;
|
|
|
|
struct ggml_tensor * norm;
|
|
struct ggml_tensor * output;
|
|
|
|
std::vector<llama_layer> layers;
|
|
|
|
// key + value memory
|
|
struct ggml_tensor * memory_k;
|
|
struct ggml_tensor * memory_v;
|
|
|
|
//
|
|
struct ggml_context * ctx;
|
|
std::unordered_map<std::string, struct ggml_tensor *> tensors;
|
|
};
|
|
|
|
// load the model's weights from a file
|
|
|
|
bool llama_model_load(const std::string & fname, llama_model & model, llama_vocab & vocab, int n_ctx, int n_parts, ggml_type memory_type = GGML_TYPE_F32) {
|
|
fprintf(stderr, "%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
|
|
|
|
std::vector<char> f_buf(1024*1024);
|
|
|
|
auto fin = std::ifstream(fname, std::ios::binary);
|
|
fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
|
|
if (!fin) {
|
|
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
|
|
return false;
|
|
}
|
|
|
|
// verify magic
|
|
{
|
|
uint32_t magic;
|
|
fin.read((char *) &magic, sizeof(magic));
|
|
if (magic == FILE_MAGIC_UNVERSIONED) {
|
|
fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files!)\n",
|
|
__func__, fname.c_str());
|
|
return false;
|
|
}
|
|
if (magic != FILE_MAGIC) {
|
|
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
|
|
return false;
|
|
}
|
|
|
|
uint32_t format_version;
|
|
fin.read((char *) &format_version, sizeof(format_version));
|
|
|
|
if (format_version != FILE_VERSION) {
|
|
fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ", expected %d)\n",
|
|
__func__, fname.c_str(), format_version, FILE_VERSION);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
int n_ff = 0;
|
|
|
|
// load hparams
|
|
{
|
|
auto & hparams = model.hparams;
|
|
|
|
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
|
|
//fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
|
|
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
|
|
fin.read((char *) &hparams.n_mult, sizeof(hparams.n_mult));
|
|
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
|
|
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
|
|
fin.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
|
|
fin.read((char *) &hparams.f16, sizeof(hparams.f16));
|
|
|
|
hparams.n_ctx = n_ctx;
|
|
|
|
n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
|
|
|
|
if (n_parts < 1) {
|
|
n_parts = LLAMA_N_PARTS.at(hparams.n_embd);
|
|
}
|
|
|
|
// temp warning to tell the user to use "--n_parts"
|
|
if (hparams.f16 == 4 && n_parts != 1) {
|
|
fprintf(stderr, "%s: GPTQ model detected - are you sure n_parts should be %d? we normally expect it to be 1\n", __func__, n_parts);
|
|
fprintf(stderr, "%s: use '--n_parts 1' if necessary\n", __func__);
|
|
}
|
|
|
|
fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
|
fprintf(stderr, "%s: n_ctx = %d\n", __func__, hparams.n_ctx);
|
|
fprintf(stderr, "%s: n_embd = %d\n", __func__, hparams.n_embd);
|
|
fprintf(stderr, "%s: n_mult = %d\n", __func__, hparams.n_mult);
|
|
fprintf(stderr, "%s: n_head = %d\n", __func__, hparams.n_head);
|
|
fprintf(stderr, "%s: n_layer = %d\n", __func__, hparams.n_layer);
|
|
fprintf(stderr, "%s: n_rot = %d\n", __func__, hparams.n_rot);
|
|
fprintf(stderr, "%s: f16 = %d\n", __func__, hparams.f16);
|
|
fprintf(stderr, "%s: n_ff = %d\n", __func__, n_ff);
|
|
fprintf(stderr, "%s: n_parts = %d\n", __func__, n_parts);
|
|
}
|
|
|
|
// load vocab
|
|
{
|
|
std::string word;
|
|
vocab.id_to_token.resize(model.hparams.n_vocab);
|
|
std::vector<char> tmp(64);
|
|
|
|
for (int i = 0; i < model.hparams.n_vocab; i++) {
|
|
uint32_t len;
|
|
fin.read((char *) &len, sizeof(len));
|
|
|
|
word.resize(len);
|
|
if (len > 0) {
|
|
tmp.resize(len);
|
|
fin.read(tmp.data(), len);
|
|
word.assign(tmp.data(), len);
|
|
} else {
|
|
word.clear();
|
|
}
|
|
|
|
float score;
|
|
fin.read((char *) &score, sizeof(score));
|
|
|
|
vocab.token_to_id[word] = i;
|
|
|
|
auto &tok_score = vocab.id_to_token[i];
|
|
tok_score.tok = word;
|
|
tok_score.score = score;
|
|
}
|
|
}
|
|
|
|
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
|
|
// in order to save memory and also to speed up the computation
|
|
// wtype is for per-layer weights, while vtype is for other weights
|
|
ggml_type wtype, vtype;
|
|
switch (model.hparams.f16) {
|
|
case 0: wtype = vtype = GGML_TYPE_F32; break;
|
|
case 1: wtype = vtype = GGML_TYPE_F16; break;
|
|
case 2: wtype = vtype = GGML_TYPE_Q4_0; break;
|
|
case 3: wtype = vtype = GGML_TYPE_Q4_1; break;
|
|
case 4: wtype = GGML_TYPE_Q4_1; vtype = GGML_TYPE_F16; break;
|
|
default:
|
|
{
|
|
fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
|
|
__func__, fname.c_str(), model.hparams.f16);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
auto & ctx = model.ctx;
|
|
|
|
size_t ctx_size = 0;
|
|
|
|
{
|
|
const auto & hparams = model.hparams;
|
|
|
|
const int n_embd = hparams.n_embd;
|
|
const int n_layer = hparams.n_layer;
|
|
const int n_ctx = hparams.n_ctx;
|
|
const int n_vocab = hparams.n_vocab;
|
|
|
|
ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // tok_embeddings
|
|
|
|
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm
|
|
|
|
ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // output
|
|
|
|
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm
|
|
|
|
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wq
|
|
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wk
|
|
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wv
|
|
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wo
|
|
|
|
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ffn_norm
|
|
|
|
ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w1
|
|
ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w2
|
|
ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w3
|
|
|
|
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_k
|
|
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_v
|
|
|
|
ctx_size += (5 + 10*n_layer)*256; // object overhead
|
|
|
|
fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
|
|
}
|
|
|
|
// create the ggml context
|
|
{
|
|
struct ggml_init_params params = {
|
|
/*.mem_size =*/ ctx_size,
|
|
/*.mem_buffer =*/ NULL,
|
|
};
|
|
|
|
model.ctx = ggml_init(params);
|
|
if (!model.ctx) {
|
|
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// prepare memory for the weights
|
|
{
|
|
const auto & hparams = model.hparams;
|
|
|
|
const int n_embd = hparams.n_embd;
|
|
const int n_layer = hparams.n_layer;
|
|
const int n_vocab = hparams.n_vocab;
|
|
|
|
model.layers.resize(n_layer);
|
|
|
|
model.tok_embeddings = ggml_new_tensor_2d(ctx, vtype, n_embd, n_vocab);
|
|
|
|
model.norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
|
model.output = ggml_new_tensor_2d(ctx, vtype, n_embd, n_vocab);
|
|
|
|
// map by name
|
|
model.tensors["tok_embeddings.weight"] = model.tok_embeddings;
|
|
|
|
model.tensors["norm.weight"] = model.norm;
|
|
model.tensors["output.weight"] = model.output;
|
|
|
|
for (int i = 0; i < n_layer; ++i) {
|
|
auto & layer = model.layers[i];
|
|
|
|
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
|
|
|
layer.wq = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
|
layer.wk = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
|
layer.wv = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
|
layer.wo = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
|
|
|
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
|
|
|
layer.w1 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff);
|
|
layer.w2 = ggml_new_tensor_2d(ctx, wtype, n_ff, n_embd);
|
|
layer.w3 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff);
|
|
|
|
// map by name
|
|
model.tensors["layers." + std::to_string(i) + ".attention_norm.weight"] = layer.attention_norm;
|
|
|
|
model.tensors["layers." + std::to_string(i) + ".attention.wq.weight"] = layer.wq;
|
|
model.tensors["layers." + std::to_string(i) + ".attention.wk.weight"] = layer.wk;
|
|
model.tensors["layers." + std::to_string(i) + ".attention.wv.weight"] = layer.wv;
|
|
model.tensors["layers." + std::to_string(i) + ".attention.wo.weight"] = layer.wo;
|
|
|
|
model.tensors["layers." + std::to_string(i) + ".ffn_norm.weight"] = layer.ffn_norm;
|
|
|
|
model.tensors["layers." + std::to_string(i) + ".feed_forward.w1.weight"] = layer.w1;
|
|
model.tensors["layers." + std::to_string(i) + ".feed_forward.w2.weight"] = layer.w2;
|
|
model.tensors["layers." + std::to_string(i) + ".feed_forward.w3.weight"] = layer.w3;
|
|
}
|
|
}
|
|
|
|
// key + value memory
|
|
{
|
|
const auto & hparams = model.hparams;
|
|
|
|
const int n_embd = hparams.n_embd;
|
|
const int n_layer = hparams.n_layer;
|
|
const int n_ctx = hparams.n_ctx;
|
|
|
|
const int n_mem = n_layer*n_ctx;
|
|
const int n_elements = n_embd*n_mem;
|
|
|
|
model.memory_k = ggml_new_tensor_1d(ctx, memory_type, n_elements);
|
|
model.memory_v = ggml_new_tensor_1d(ctx, memory_type, n_elements);
|
|
|
|
const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
|
|
|
|
fprintf(stderr, "%s: memory_size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
|
|
}
|
|
|
|
const size_t file_offset = fin.tellg();
|
|
|
|
fin.close();
|
|
|
|
std::vector<uint8_t> tmp;
|
|
|
|
for (int i = 0; i < n_parts; ++i) {
|
|
const int part_id = i;
|
|
//const int part_id = n_parts - i - 1;
|
|
|
|
std::string fname_part = fname;
|
|
if (i > 0) {
|
|
fname_part += "." + std::to_string(i);
|
|
}
|
|
|
|
fprintf(stderr, "%s: loading model part %d/%d from '%s'\n", __func__, i+1, n_parts, fname_part.c_str());
|
|
|
|
fin = std::ifstream(fname_part, std::ios::binary);
|
|
fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
|
|
fin.seekg(file_offset);
|
|
|
|
// load weights
|
|
{
|
|
int n_tensors = 0;
|
|
size_t total_size = 0;
|
|
|
|
fprintf(stderr, "%s: ", __func__);
|
|
|
|
while (true) {
|
|
int32_t n_dims;
|
|
int32_t length;
|
|
int32_t ftype;
|
|
|
|
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
|
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
|
|
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
|
|
|
|
if (fin.eof()) {
|
|
break;
|
|
}
|
|
|
|
int32_t nelements = 1;
|
|
int32_t ne[2] = { 1, 1 };
|
|
for (int i = 0; i < n_dims; ++i) {
|
|
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
|
nelements *= ne[i];
|
|
}
|
|
|
|
std::string name(length, 0);
|
|
fin.read(&name[0], length);
|
|
|
|
if (model.tensors.find(name.data()) == model.tensors.end()) {
|
|
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
|
|
return false;
|
|
}
|
|
|
|
// split_type = 0: split by columns
|
|
// split_type = 1: split by rows
|
|
int split_type = 0;
|
|
|
|
// split_type = 0:
|
|
// regex:
|
|
// - tok_embeddings.*
|
|
// - layers.*.attention.wo.weight
|
|
// - layers.*.feed_forward.w2.weight
|
|
|
|
// split_type = 1:
|
|
// regex:
|
|
// - output.*
|
|
// - layers.*.attention.wq.weight
|
|
// - layers.*.attention.wk.weight
|
|
// - layers.*.attention.wv.weight
|
|
// - layers.*.feed_forward.w1.weight
|
|
// - layers.*.feed_forward.w3.weight
|
|
if (name.find("tok_embeddings") != std::string::npos) {
|
|
split_type = 0;
|
|
} else if (name.find("layers") != std::string::npos) {
|
|
if (name.find("attention.wo.weight") != std::string::npos) {
|
|
split_type = 0;
|
|
} else if (name.find("feed_forward.w2.weight") != std::string::npos) {
|
|
split_type = 0;
|
|
} else {
|
|
split_type = 1;
|
|
}
|
|
} else if (name.find("output") != std::string::npos) {
|
|
split_type = 1;
|
|
}
|
|
|
|
auto tensor = model.tensors[name.data()];
|
|
|
|
if (n_dims == 1) {
|
|
if (ggml_nelements(tensor) != nelements) {
|
|
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
|
|
return false;
|
|
}
|
|
} else {
|
|
if (ggml_nelements(tensor)/n_parts != nelements) {
|
|
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (n_dims == 1) {
|
|
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
|
|
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
|
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
|
|
return false;
|
|
}
|
|
} else {
|
|
if (split_type == 0) {
|
|
if (tensor->ne[0]/n_parts != ne[0] || tensor->ne[1] != ne[1]) {
|
|
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
|
__func__, name.data(), tensor->ne[0]/n_parts, tensor->ne[1], ne[0], ne[1]);
|
|
return false;
|
|
}
|
|
} else {
|
|
if (tensor->ne[0] != ne[0] || tensor->ne[1]/n_parts != ne[1]) {
|
|
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
|
__func__, name.data(), tensor->ne[0], tensor->ne[1]/n_parts, ne[0], ne[1]);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (0) {
|
|
static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
|
|
fprintf(stderr, "%24s - [%5d, %5d], type = %6s, split = %d\n", name.data(), ne[0], ne[1], ftype_str[ftype], split_type);
|
|
}
|
|
|
|
size_t bpe = 0;
|
|
|
|
switch (ftype) {
|
|
case 0: bpe = ggml_type_size(GGML_TYPE_F32); break;
|
|
case 1: bpe = ggml_type_size(GGML_TYPE_F16); break;
|
|
case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break;
|
|
case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break;
|
|
default:
|
|
{
|
|
fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
|
|
return false;
|
|
}
|
|
};
|
|
|
|
if (n_dims == 1 || n_parts == 1) {
|
|
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
|
|
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
|
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
|
|
return false;
|
|
}
|
|
|
|
if (part_id == 0) {
|
|
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
|
|
} else {
|
|
fin.seekg(ggml_nbytes(tensor), std::ios::cur);
|
|
}
|
|
|
|
total_size += ggml_nbytes(tensor);
|
|
} else {
|
|
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)/n_parts) {
|
|
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
|
__func__, name.data(), ggml_nbytes(tensor)/n_parts, nelements*bpe);
|
|
return false;
|
|
}
|
|
|
|
if (split_type == 0) {
|
|
const int np0 = ne[0];
|
|
|
|
const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
|
|
assert(row_size == tensor->nb[1]);
|
|
|
|
for (int i1 = 0; i1 < ne[1]; ++i1) {
|
|
const size_t offset_row = i1*row_size;
|
|
const size_t offset = offset_row + ((part_id*np0)/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
|
|
fin.read(reinterpret_cast<char *>(tensor->data) + offset, row_size/n_parts);
|
|
}
|
|
} else {
|
|
const int np1 = ne[1];
|
|
|
|
const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
|
|
|
|
for (int i1 = 0; i1 < ne[1]; ++i1) {
|
|
const size_t offset_row = (i1 + part_id*np1)*row_size;
|
|
fin.read(reinterpret_cast<char *>(tensor->data) + offset_row, row_size);
|
|
}
|
|
}
|
|
|
|
total_size += ggml_nbytes(tensor)/n_parts;
|
|
}
|
|
|
|
//fprintf(stderr, "%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
|
|
if (++n_tensors % 8 == 0) {
|
|
fprintf(stderr, ".");
|
|
fflush(stderr);
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, " done\n");
|
|
|
|
fprintf(stderr, "%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors);
|
|
}
|
|
|
|
fin.close();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// evaluate the transformer
|
|
//
|
|
// - model: the model
|
|
// - n_threads: number of threads to use
|
|
// - n_past: the context size so far
|
|
// - embd_inp: the embeddings of the tokens in the context
|
|
// - embd_w: the predicted logits for the next token
|
|
//
|
|
// The GPT-J model requires about 16MB of memory per input token.
|
|
//
|
|
bool llama_eval(
|
|
const llama_model & model,
|
|
const int n_threads,
|
|
const int n_past,
|
|
const std::vector<llama_vocab::id> & embd_inp,
|
|
std::vector<float> & embd_w,
|
|
size_t & mem_per_token,
|
|
bool return_all_logits = false) {
|
|
const int N = embd_inp.size();
|
|
|
|
const auto & hparams = model.hparams;
|
|
|
|
const int n_embd = hparams.n_embd;
|
|
const int n_layer = hparams.n_layer;
|
|
const int n_ctx = hparams.n_ctx;
|
|
const int n_head = hparams.n_head;
|
|
const int n_vocab = hparams.n_vocab;
|
|
const int n_rot = hparams.n_embd/hparams.n_head;
|
|
|
|
// TODO: check if this size scales with n_ctx linearly and remove constant. somehow I feel it wasn't the case
|
|
// static size_t buf_size = hparams.n_ctx*1024*1024;
|
|
static size_t buf_size = 512u*1024*1024;
|
|
static void * buf = malloc(buf_size);
|
|
|
|
if (mem_per_token > 0 && mem_per_token*N > buf_size) {
|
|
const size_t buf_size_new = 1.3*(mem_per_token*N); // add 30% to account for ggml object overhead
|
|
//fprintf(stderr, "\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
|
|
|
|
// reallocate
|
|
buf_size = buf_size_new;
|
|
buf = realloc(buf, buf_size);
|
|
if (buf == nullptr) {
|
|
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
struct ggml_init_params params = {
|
|
/*.mem_size =*/ buf_size,
|
|
/*.mem_buffer =*/ buf,
|
|
};
|
|
|
|
struct ggml_context * ctx0 = ggml_init(params);
|
|
ggml_cgraph gf = {};
|
|
gf.n_threads = n_threads;
|
|
|
|
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
|
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
|
|
|
|
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
|
|
|
|
for (int il = 0; il < n_layer; ++il) {
|
|
struct ggml_tensor * inpSA = inpL;
|
|
|
|
struct ggml_tensor * cur;
|
|
|
|
// norm
|
|
{
|
|
cur = ggml_rms_norm(ctx0, inpL);
|
|
|
|
// cur = attention_norm*cur
|
|
cur = ggml_mul(ctx0,
|
|
ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
|
|
cur);
|
|
}
|
|
|
|
// self-attention
|
|
{
|
|
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
|
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
|
|
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
|
|
|
|
// store key and value to memory
|
|
if (N >= 1) {
|
|
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
|
|
struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
|
|
|
|
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
|
|
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
|
|
}
|
|
|
|
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
|
|
struct ggml_tensor * Q =
|
|
ggml_permute(ctx0,
|
|
ggml_rope(ctx0,
|
|
ggml_cpy(ctx0,
|
|
Qcur,
|
|
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
|
|
n_past, n_rot, 0),
|
|
0, 2, 1, 3);
|
|
|
|
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
|
|
struct ggml_tensor * K =
|
|
ggml_permute(ctx0,
|
|
ggml_rope(ctx0,
|
|
ggml_reshape_3d(ctx0,
|
|
ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
|
|
n_embd/n_head, n_head, n_past + N),
|
|
n_past, n_rot, 1),
|
|
0, 2, 1, 3);
|
|
|
|
// K * Q
|
|
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
|
|
|
// KQ_scaled = KQ / sqrt(n_embd/n_head)
|
|
struct ggml_tensor * KQ_scaled =
|
|
ggml_scale(ctx0,
|
|
KQ,
|
|
ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
|
|
);
|
|
|
|
// KQ_masked = mask_past(KQ_scaled)
|
|
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
|
|
|
|
// KQ = soft_max(KQ_masked)
|
|
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
|
|
|
|
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
|
|
struct ggml_tensor * V_trans =
|
|
ggml_permute(ctx0,
|
|
ggml_reshape_3d(ctx0,
|
|
ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
|
|
n_embd/n_head, n_head, n_past + N),
|
|
1, 2, 0, 3);
|
|
|
|
// KQV = transpose(V) * KQ_soft_max
|
|
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
|
|
|
|
// KQV_merged = KQV.permute(0, 2, 1, 3)
|
|
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
|
|
|
// cur = KQV_merged.contiguous().view(n_embd, N)
|
|
cur = ggml_cpy(ctx0,
|
|
KQV_merged,
|
|
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
|
|
|
|
// projection (no bias)
|
|
cur = ggml_mul_mat(ctx0,
|
|
model.layers[il].wo,
|
|
cur);
|
|
}
|
|
|
|
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
|
|
|
|
// feed-forward network
|
|
{
|
|
// norm
|
|
{
|
|
cur = ggml_rms_norm(ctx0, inpFF);
|
|
|
|
// cur = ffn_norm*cur
|
|
cur = ggml_mul(ctx0,
|
|
ggml_repeat(ctx0, model.layers[il].ffn_norm, cur),
|
|
cur);
|
|
}
|
|
|
|
struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
|
|
model.layers[il].w3,
|
|
cur);
|
|
|
|
|
|
cur = ggml_mul_mat(ctx0,
|
|
model.layers[il].w1,
|
|
cur);
|
|
|
|
// SILU activation
|
|
cur = ggml_silu(ctx0, cur);
|
|
|
|
cur = ggml_mul(ctx0, cur, tmp);
|
|
|
|
cur = ggml_mul_mat(ctx0,
|
|
model.layers[il].w2,
|
|
cur);
|
|
}
|
|
|
|
cur = ggml_add(ctx0, cur, inpFF);
|
|
|
|
// input for next layer
|
|
inpL = cur;
|
|
}
|
|
|
|
// norm
|
|
{
|
|
inpL = ggml_rms_norm(ctx0, inpL);
|
|
|
|
// inpL = norm*inpL
|
|
inpL = ggml_mul(ctx0,
|
|
ggml_repeat(ctx0, model.norm, inpL),
|
|
inpL);
|
|
}
|
|
|
|
// lm_head
|
|
{
|
|
inpL = ggml_mul_mat(ctx0, model.output, inpL);
|
|
}
|
|
|
|
// logits -> probs
|
|
//inpL = ggml_soft_max(ctx0, inpL);
|
|
|
|
// run the computation
|
|
ggml_build_forward_expand(&gf, inpL);
|
|
ggml_graph_compute (ctx0, &gf);
|
|
|
|
//if (n_past%100 == 0) {
|
|
// ggml_graph_print (&gf);
|
|
// ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
|
|
//}
|
|
|
|
//embd_w.resize(n_vocab*N);
|
|
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
|
|
|
|
if (return_all_logits) {
|
|
embd_w.resize(n_vocab * N);
|
|
memcpy(embd_w.data(), (float *) ggml_get_data(inpL), sizeof(float)*n_vocab*N);
|
|
} else {
|
|
// return result for just the last token
|
|
embd_w.resize(n_vocab);
|
|
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
|
|
}
|
|
|
|
if (mem_per_token == 0) {
|
|
mem_per_token = ggml_used_mem(ctx0)/N;
|
|
}
|
|
//fprintf(stderr, "used_mem = %zu\n", ggml_used_mem(ctx0));
|
|
|
|
ggml_free(ctx0);
|
|
|
|
return true;
|
|
}
|
|
|
|
std::vector<double> softmax(const std::vector<float>& logits) {
|
|
std::vector<double> probs(logits.size());
|
|
float max_logit = logits[0];
|
|
for (float v : logits) max_logit = std::max(max_logit, v);
|
|
double sum_exp = 0.0;
|
|
for (size_t i = 0; i < logits.size(); i++) {
|
|
// Subtract the maximum logit value from the current logit value for numerical stability
|
|
float logit = logits[i] - max_logit;
|
|
double exp_logit = std::exp(logit);
|
|
sum_exp += exp_logit;
|
|
probs[i] = exp_logit;
|
|
}
|
|
for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
|
|
return probs;
|
|
}
|
|
|
|
void perplexity(const llama_vocab &vocab, const llama_model &model, const gpt_params ¶ms, size_t mem_per_token) {
|
|
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
|
|
// Run `./main --perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
|
|
// Output: `perplexity: 13.5106 [114/114]`
|
|
std::vector<llama_vocab::id> tokens = ::llama_tokenize(vocab, params.prompt, true);
|
|
|
|
int count = 0;
|
|
double nll = 0.0;
|
|
int seq_count = tokens.size() / params.n_ctx;
|
|
printf("Calculating perplexity over %d chunks\n", seq_count);
|
|
for (int i = 0; i < seq_count; ++i) {
|
|
int start = i * params.n_ctx;
|
|
int end = start + params.n_ctx - 1;
|
|
std::vector<llama_vocab::id> embd(tokens.begin() + start, tokens.begin() + end);
|
|
std::vector<float> logits;
|
|
auto start_t = std::chrono::high_resolution_clock::now();
|
|
if (!llama_eval(model, params.n_threads, 0, embd, logits, mem_per_token, true)) {
|
|
fprintf(stderr, "Failed to predict\n");
|
|
return;
|
|
}
|
|
auto end_t = std::chrono::high_resolution_clock::now();
|
|
if (i == 0) {
|
|
double seconds = std::chrono::duration<double>(end_t - start_t).count();
|
|
printf("%.2f seconds per pass - ETA %.2f hours\n", seconds, (seconds * seq_count) / (60.0*60.0));
|
|
}
|
|
// We get the logits for all the tokens in the context window (params.n_ctx)
|
|
// from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
|
|
// calculate the perplexity over the last half the window (so the model always has
|
|
// some context to predict the token).
|
|
//
|
|
// We rely on the fact that attention in the forward pass only looks at previous
|
|
// tokens here, so the logits returned for each token are an accurate representation
|
|
// of what the model would have predicted at that point.
|
|
//
|
|
// Example, we have a context window of 512, we will compute perplexity for each of the
|
|
// last 256 tokens. Then, we split the input up into context window size chunks to
|
|
// process the entire prompt.
|
|
for (int j = params.n_ctx / 2; j < params.n_ctx - 1; ++j) {
|
|
// Calculate probability of next token, given the previous ones.
|
|
int n_vocab = model.hparams.n_vocab;
|
|
std::vector<float> tok_logits(
|
|
logits.begin() + j * n_vocab,
|
|
logits.begin() + (j + 1) * n_vocab);
|
|
double prob = softmax(tok_logits)[tokens[start + j + 1]];
|
|
nll += -std::log(prob);
|
|
++count;
|
|
}
|
|
// perplexity is e^(average negative log-likelihood)
|
|
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
|
|
fflush(stdout);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
static bool is_interacting = false;
|
|
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
|
void sigint_handler(int signo) {
|
|
set_console_state(CONSOLE_STATE_DEFAULT);
|
|
printf("\n"); // this also force flush stdout.
|
|
if (signo == SIGINT) {
|
|
if (!is_interacting) {
|
|
is_interacting=true;
|
|
} else {
|
|
_exit(130);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
const char * llama_print_system_info(void) {
|
|
static std::string s;
|
|
|
|
s = "";
|
|
s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
|
|
s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
|
|
s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
|
|
s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
|
|
s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
|
|
s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
|
|
s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
|
|
s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
|
|
s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
|
|
s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
|
|
s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
|
|
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
|
|
|
|
return s.c_str();
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
ggml_time_init();
|
|
const int64_t t_main_start_us = ggml_time_us();
|
|
|
|
gpt_params params;
|
|
params.model = "models/llama-7B/ggml-model.bin";
|
|
|
|
if (gpt_params_parse(argc, argv, params) == false) {
|
|
return 1;
|
|
}
|
|
|
|
if (params.n_ctx > 2048) {
|
|
fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
|
|
"expect poor results\n", __func__, params.n_ctx);
|
|
}
|
|
|
|
if (params.seed < 0) {
|
|
params.seed = time(NULL);
|
|
}
|
|
|
|
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
|
|
|
|
std::mt19937 rng(params.seed);
|
|
if (params.random_prompt) {
|
|
params.prompt = gpt_random_prompt(rng);
|
|
}
|
|
|
|
// save choice to use color for later
|
|
// (note for later: this is a slightly awkward choice)
|
|
con_use_color = params.use_color;
|
|
|
|
// params.prompt = R"(// this function checks if the number n is prime
|
|
//bool is_prime(int n) {)";
|
|
|
|
int64_t t_load_us = 0;
|
|
|
|
llama_vocab vocab;
|
|
llama_model model;
|
|
|
|
// load the model
|
|
{
|
|
const ggml_type memory_type = params.memory_f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
|
const int64_t t_start_us = ggml_time_us();
|
|
if (!llama_model_load(params.model, model, vocab, params.n_ctx, params.n_parts, memory_type)) {
|
|
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
|
|
return 1;
|
|
}
|
|
|
|
t_load_us = ggml_time_us() - t_start_us;
|
|
}
|
|
|
|
// print system information
|
|
{
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
|
|
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
|
}
|
|
|
|
std::vector<float> logits;
|
|
|
|
// determine the required inference memory per token:
|
|
size_t mem_per_token = 0;
|
|
llama_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
|
|
|
|
if (params.perplexity) {
|
|
perplexity(vocab, model, params, mem_per_token);
|
|
exit(0);
|
|
}
|
|
|
|
int n_past = 0;
|
|
|
|
int64_t t_sample_us = 0;
|
|
int64_t t_predict_us = 0;
|
|
|
|
// Add a space in front of the first character to match OG llama tokenizer behavior
|
|
params.prompt.insert(0, 1, ' ');
|
|
// tokenize the prompt
|
|
std::vector<llama_vocab::id> embd_inp = ::llama_tokenize(vocab, params.prompt, true);
|
|
|
|
params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
|
|
|
|
// prefix & suffix for instruct mode
|
|
const std::vector<llama_vocab::id> inp_pfx = ::llama_tokenize(vocab, "\n\n### Instruction:\n\n", true);
|
|
const std::vector<llama_vocab::id> inp_sfx = ::llama_tokenize(vocab, "\n\n### Response:\n\n", false);
|
|
|
|
// in instruct mode, we inject a prefix and a suffix to each input by the user
|
|
if (params.instruct) {
|
|
params.interactive = true;
|
|
params.antiprompt.push_back("### Instruction:\n\n");
|
|
}
|
|
|
|
// enable interactive mode if reverse prompt is specified
|
|
if (params.antiprompt.size() != 0) {
|
|
params.interactive = true;
|
|
}
|
|
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
|
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
|
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
|
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], vocab.id_to_token.at(embd_inp[i]).tok.c_str());
|
|
}
|
|
fprintf(stderr, "\n");
|
|
if (params.interactive) {
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
|
struct sigaction sigint_action;
|
|
sigint_action.sa_handler = sigint_handler;
|
|
sigemptyset (&sigint_action.sa_mask);
|
|
sigint_action.sa_flags = 0;
|
|
sigaction(SIGINT, &sigint_action, NULL);
|
|
#elif defined (_WIN32)
|
|
signal(SIGINT, sigint_handler);
|
|
#endif
|
|
|
|
fprintf(stderr, "%s: interactive mode on.\n", __func__);
|
|
|
|
if(params.antiprompt.size()) {
|
|
for (auto antiprompt : params.antiprompt) {
|
|
fprintf(stderr, "Reverse prompt: '%s'\n", antiprompt.c_str());
|
|
}
|
|
}
|
|
}
|
|
fprintf(stderr, "sampling parameters: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty);
|
|
fprintf(stderr, "\n\n");
|
|
|
|
std::vector<llama_vocab::id> embd;
|
|
|
|
int last_n_size = params.repeat_last_n;
|
|
std::vector<llama_vocab::id> last_n_tokens(last_n_size);
|
|
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
|
|
|
if (params.interactive) {
|
|
fprintf(stderr, "== Running in interactive mode. ==\n"
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
|
" - Press Ctrl+C to interject at any time.\n"
|
|
#endif
|
|
" - Press Return to return control to LLaMa.\n"
|
|
" - If you want to submit another line, end your input in '\\'.\n\n");
|
|
is_interacting = true;
|
|
}
|
|
|
|
int input_consumed = 0;
|
|
bool input_noecho = false;
|
|
|
|
int remaining_tokens = params.n_predict;
|
|
|
|
#if defined (_WIN32)
|
|
if (params.use_color) {
|
|
// Enable ANSI colors on Windows 10+
|
|
unsigned long dwMode = 0;
|
|
void* hConOut = GetStdHandle((unsigned long)-11); // STD_OUTPUT_HANDLE (-11)
|
|
if (hConOut && hConOut != (void*)-1 && GetConsoleMode(hConOut, &dwMode) && !(dwMode & 0x4)) {
|
|
SetConsoleMode(hConOut, dwMode | 0x4); // ENABLE_VIRTUAL_TERMINAL_PROCESSING (0x4)
|
|
}
|
|
}
|
|
#endif
|
|
// the first thing we will do is to output the prompt, so set color accordingly
|
|
set_console_state(CONSOLE_STATE_PROMPT);
|
|
|
|
while (remaining_tokens > 0 || params.interactive) {
|
|
// predict
|
|
if (embd.size() > 0) {
|
|
const int64_t t_start_us = ggml_time_us();
|
|
|
|
if (!llama_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) {
|
|
fprintf(stderr, "Failed to predict\n");
|
|
return 1;
|
|
}
|
|
|
|
t_predict_us += ggml_time_us() - t_start_us;
|
|
}
|
|
|
|
n_past += embd.size();
|
|
embd.clear();
|
|
|
|
if ((int) embd_inp.size() <= input_consumed) {
|
|
// out of user input, sample next token
|
|
const float top_k = params.top_k;
|
|
const float top_p = params.top_p;
|
|
const float temp = params.temp;
|
|
const float repeat_penalty = params.repeat_penalty;
|
|
|
|
const int n_vocab = model.hparams.n_vocab;
|
|
|
|
llama_vocab::id id = 0;
|
|
|
|
{
|
|
const int64_t t_start_sample_us = ggml_time_us();
|
|
|
|
if (params.ignore_eos) {
|
|
// set the logit of the eos token to zero to avoid sampling it
|
|
logits[logits.size() - n_vocab + EOS_TOKEN_ID] = 0;
|
|
}
|
|
|
|
id = llama_sample_top_p_top_k(vocab, logits.data() + (logits.size() - n_vocab), last_n_tokens, repeat_penalty, top_k, top_p, temp, rng);
|
|
|
|
last_n_tokens.erase(last_n_tokens.begin());
|
|
last_n_tokens.push_back(id);
|
|
|
|
t_sample_us += ggml_time_us() - t_start_sample_us;
|
|
}
|
|
|
|
// add it to the context
|
|
embd.push_back(id);
|
|
|
|
// echo this to console
|
|
input_noecho = false;
|
|
|
|
// decrement remaining sampling budget
|
|
--remaining_tokens;
|
|
} else {
|
|
// some user input remains from prompt or interaction, forward it to processing
|
|
while ((int) embd_inp.size() > input_consumed) {
|
|
embd.push_back(embd_inp[input_consumed]);
|
|
last_n_tokens.erase(last_n_tokens.begin());
|
|
last_n_tokens.push_back(embd_inp[input_consumed]);
|
|
++input_consumed;
|
|
if ((int) embd.size() >= params.n_batch) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// display text
|
|
if (!input_noecho) {
|
|
for (auto id : embd) {
|
|
printf("%s", vocab.id_to_token[id].tok.c_str());
|
|
}
|
|
fflush(stdout);
|
|
}
|
|
// reset color to default if we there is no pending user input
|
|
if (!input_noecho && (int)embd_inp.size() == input_consumed) {
|
|
set_console_state(CONSOLE_STATE_DEFAULT);
|
|
}
|
|
|
|
// in interactive mode, and not currently processing queued inputs;
|
|
// check if we should prompt the user for more
|
|
if (params.interactive && (int) embd_inp.size() <= input_consumed) {
|
|
// check for reverse prompt
|
|
std::string last_output;
|
|
for (auto id : last_n_tokens) {
|
|
last_output += vocab.id_to_token[id].tok;
|
|
}
|
|
|
|
// Check if each of the reverse prompts appears at the end of the output.
|
|
for (std::string antiprompt : params.antiprompt) {
|
|
if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) {
|
|
is_interacting = true;
|
|
break;
|
|
}
|
|
}
|
|
if (is_interacting) {
|
|
// potentially set color to indicate we are taking user input
|
|
set_console_state(CONSOLE_STATE_USER_INPUT);
|
|
|
|
if (params.instruct) {
|
|
input_consumed = embd_inp.size();
|
|
embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
|
|
|
|
printf("\n> ");
|
|
}
|
|
|
|
std::string buffer;
|
|
std::string line;
|
|
bool another_line = true;
|
|
do {
|
|
std::getline(std::cin, line);
|
|
if (line.empty() || line.back() != '\\') {
|
|
another_line = false;
|
|
} else {
|
|
line.pop_back(); // Remove the continue character
|
|
}
|
|
buffer += line + '\n'; // Append the line to the result
|
|
} while (another_line);
|
|
|
|
// done taking input, reset color
|
|
set_console_state(CONSOLE_STATE_DEFAULT);
|
|
|
|
std::vector<llama_vocab::id> line_inp = ::llama_tokenize(vocab, buffer, false);
|
|
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
|
|
|
if (params.instruct) {
|
|
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
|
|
}
|
|
|
|
remaining_tokens -= line_inp.size();
|
|
|
|
input_noecho = true; // do not echo this again
|
|
}
|
|
is_interacting = false;
|
|
}
|
|
|
|
// end of text token
|
|
if (embd.back() == EOS_TOKEN_ID) {
|
|
if (params.interactive) {
|
|
is_interacting = true;
|
|
} else {
|
|
fprintf(stderr, " [end of text]\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
|
|
if (params.interactive && remaining_tokens <= 0) {
|
|
remaining_tokens = params.n_predict;
|
|
is_interacting = true;
|
|
}
|
|
}
|
|
|
|
#if defined (_WIN32)
|
|
signal(SIGINT, SIG_DFL);
|
|
#endif
|
|
|
|
// report timing
|
|
{
|
|
const int64_t t_main_end_us = ggml_time_us();
|
|
|
|
fprintf(stderr, "\n\n");
|
|
fprintf(stderr, "%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
|
|
fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
|
|
fprintf(stderr, "%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
|
|
fprintf(stderr, "%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
|
|
fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
|
|
}
|
|
|
|
ggml_free(model.ctx);
|
|
|
|
set_console_state(CONSOLE_STATE_DEFAULT);
|
|
|
|
return 0;
|
|
}
|