mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-01 15:40:21 +01:00
80ea089d77
* create append_pooling operation; allow to specify attention_type; add last token pooling; update examples * find result_norm/result_embd tensors properly; update output allocation logic * only use embd output for pooling_type NONE * get rid of old causal_attn accessor * take out attention_type; add in llama_set_embeddings * bypass logits when doing non-NONE pooling |
||
---|---|---|
.. | ||
CMakeLists.txt | ||
embedding.cpp | ||
README.md |
llama.cpp/example/embedding
This example demonstrates generate high-dimensional embedding vector of a given text with llama.cpp.
Quick Start
To get started right away, run the following command, making sure to use the correct path for the model you have:
Unix-based systems (Linux, macOS, etc.):
./llama-embedding -m ./path/to/model --log-disable -p "Hello World!" 2>/dev/null
Windows:
llama-embedding.exe -m ./path/to/model --log-disable -p "Hello World!" 2>$null
The above command will output space-separated float values.