mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-15 23:00:46 +01:00
0bf2d10c55
* server : add "tokens" output ggml-ci * server : output embeddings for all tokens when pooling = none ggml-ci * server : be explicit about the pooling type in the tests ggml-ci * server : do not normalize embeddings when there is no pooling ggml-ci * llama : add OuteTTS support (wip) * wip * extract features * first conv * group norm * resnet conv * resnet * attn * pos net * layer norm * convnext * head * hann window * fix n_embd + remove llama.cpp hacks * compute hann window * fft * spectrum processing * clean-up * tts : receive input text and generate codes * clip : fix new conv name * tts : minor fix * tts : add header + minor fixes ggml-ci * tts : add matchematical constant ggml-ci * tts : fix sampling + cut initial noise * tts : fixes * tts : update default samplers ggml-ci * tts : text pre-processing * tts : outetts-voc -> wavtokenizer-dec * tts : remove hardcoded constants ggml-ci * tts : fix tensor shapes * llama : refactor wavtokenizer tensors ggml-ci * cont ggml-ci * cont [no ci] * llama : update WavTokenizer to non-causal attn * llama : handle no-vocab detokenization * tts : add Python example for OuteTTS (wip) * tts : extend python example to generate spectrogram ggml-ci * server : fix rebase artifacts * tts : enable "return_tokens" in Python example ggml-ci * tts : minor fixes * common : support HF download for vocoder
181 lines
5.5 KiB
Python
181 lines
5.5 KiB
Python
# convert the https://huggingface.co/novateur/WavTokenizer-large-speech-75token to HF format
|
|
# the goal is to be able to reuse the convert_hf_to_gguf.py after that to create a GGUF file with the WavTokenizer decoder
|
|
#
|
|
# TODO: this script is LLM-generated and probably very inefficient and should be rewritten
|
|
|
|
import torch
|
|
import json
|
|
import os
|
|
import sys
|
|
import re
|
|
|
|
from safetensors.torch import save_file
|
|
|
|
# default
|
|
model_path = './model.pt';
|
|
|
|
# read from CLI
|
|
if len(sys.argv) > 1:
|
|
model_path = sys.argv[1]
|
|
|
|
# get the directory of the input model
|
|
path_dst = os.path.dirname(model_path)
|
|
|
|
print(f"Loading model from {model_path}")
|
|
|
|
model = torch.load(model_path, map_location='cpu')
|
|
|
|
#print(model)
|
|
|
|
# print all keys
|
|
for key in model.keys():
|
|
print(key)
|
|
if key == 'hyper_parameters':
|
|
#print(model[key])
|
|
# dump as json pretty
|
|
print(json.dumps(model[key], indent=4))
|
|
#if key != 'state_dict' and key != 'optimizer_states':
|
|
# print(model[key])
|
|
|
|
# Check if the loaded model is a state_dict or a model instance
|
|
if isinstance(model, torch.nn.Module):
|
|
state_dict = model.state_dict()
|
|
else:
|
|
state_dict = model
|
|
|
|
# Print the structure of the state_dict to understand its format
|
|
print("State dictionary keys:")
|
|
for key in state_dict.keys():
|
|
print(key)
|
|
|
|
# Ensure the state_dict is flat and contains only torch.Tensor objects
|
|
def flatten_state_dict(state_dict, parent_key='', sep='.'):
|
|
items = []
|
|
items_new = []
|
|
|
|
for k, v in state_dict.items():
|
|
new_key = f"{parent_key}{sep}{k}" if parent_key else k
|
|
if isinstance(v, torch.Tensor):
|
|
items.append((new_key, v))
|
|
elif isinstance(v, dict):
|
|
items.extend(flatten_state_dict(v, new_key, sep=sep).items())
|
|
return dict(items)
|
|
|
|
size_total_mb = 0
|
|
|
|
for key, value in list(items):
|
|
# keep only what we need for inference
|
|
if not key.startswith('state_dict.feature_extractor.encodec.quantizer.') and \
|
|
not key.startswith('state_dict.backbone.') and \
|
|
not key.startswith('state_dict.head.out'):
|
|
print('Skipping key: ', key)
|
|
continue
|
|
|
|
new_key = key
|
|
|
|
new_key = new_key.replace('state_dict.', '')
|
|
new_key = new_key.replace('pos_net', 'posnet')
|
|
|
|
# check if matches "backbone.posnet.%d.bias" or "backbone.posnet.%d.weight"
|
|
if new_key.startswith("backbone.posnet."):
|
|
match = re.match(r"backbone\.posnet\.(\d+)\.(bias|weight)", new_key)
|
|
if match:
|
|
new_key = f"backbone.posnet.{match.group(1)}.norm.{match.group(2)}"
|
|
|
|
# "feature_extractor.encodec.quantizer.vq.layers.0._codebook.embed" -> "backbone.embedding.weight"
|
|
if new_key == "feature_extractor.encodec.quantizer.vq.layers.0._codebook.embed":
|
|
new_key = "backbone.embedding.weight"
|
|
|
|
# these are the only rows used
|
|
# ref: https://github.com/edwko/OuteTTS/blob/a613e79c489d8256dd657ea9168d78de75895d82/outetts/wav_tokenizer/audio_codec.py#L100
|
|
if new_key.endswith("norm.scale.weight"):
|
|
new_key = new_key.replace("norm.scale.weight", "norm.weight")
|
|
value = value[0]
|
|
|
|
if new_key.endswith("norm.shift.weight"):
|
|
new_key = new_key.replace("norm.shift.weight", "norm.bias")
|
|
value = value[0]
|
|
|
|
if new_key.endswith("gamma"):
|
|
new_key = new_key.replace("gamma", "gamma.weight")
|
|
|
|
# convert from 1D [768] to 2D [768, 1] so that ggml_add can broadcast the bias
|
|
if (new_key.endswith("norm.weight") or new_key.endswith("norm1.weight") or new_key.endswith("norm2.weight") or new_key.endswith(".bias")) and (new_key.startswith("backbone.posnet") or new_key.startswith("backbone.embed.bias")):
|
|
value = value.unsqueeze(1)
|
|
|
|
if new_key.endswith("dwconv.bias"):
|
|
value = value.unsqueeze(1)
|
|
|
|
size_mb = value.element_size() * value.nelement() / (1024 * 1024)
|
|
print(f"{size_mb:8.2f} MB - {new_key}: {value.shape}")
|
|
|
|
size_total_mb += size_mb
|
|
|
|
#print(key, '->', new_key, ': ', value)
|
|
#print(key, '->', new_key)
|
|
|
|
items_new.append((new_key, value))
|
|
|
|
print(f"Total size: {size_total_mb:8.2f} MB")
|
|
|
|
return dict(items_new)
|
|
|
|
flattened_state_dict = flatten_state_dict(state_dict)
|
|
|
|
|
|
# Convert the model to the safetensors format
|
|
output_path = path_dst + '/model.safetensors'
|
|
save_file(flattened_state_dict, output_path)
|
|
|
|
print(f"Model has been successfully converted and saved to {output_path}")
|
|
|
|
# Calculate the total size of the .safetensors file
|
|
total_size = os.path.getsize(output_path)
|
|
|
|
# Create the weight map
|
|
weight_map = {
|
|
"model.safetensors": ["*"] # Assuming all weights are in one file
|
|
}
|
|
|
|
# Create metadata for the index.json file
|
|
metadata = {
|
|
"total_size": total_size,
|
|
"weight_map": weight_map
|
|
}
|
|
|
|
# Save the metadata to index.json
|
|
index_path = path_dst + '/index.json'
|
|
with open(index_path, 'w') as f:
|
|
json.dump(metadata, f, indent=4)
|
|
|
|
print(f"Metadata has been saved to {index_path}")
|
|
|
|
config = {
|
|
"architectures": [
|
|
"WavTokenizerDec"
|
|
],
|
|
"hidden_size": 1282,
|
|
"n_embd_features": 512,
|
|
"n_ff": 2304,
|
|
"vocab_size": 4096,
|
|
"n_head": 1,
|
|
"layer_norm_epsilon": 1e-6,
|
|
"group_norm_epsilon": 1e-6,
|
|
"group_norm_groups": 32,
|
|
"max_position_embeddings": 8192, # ?
|
|
"n_layer": 12,
|
|
"posnet": {
|
|
"n_embd": 768,
|
|
"n_layer": 6
|
|
},
|
|
"convnext": {
|
|
"n_embd": 768,
|
|
"n_layer": 12
|
|
},
|
|
}
|
|
|
|
with open(path_dst + '/config.json', 'w') as f:
|
|
json.dump(config, f, indent=4)
|
|
|
|
print(f"Config has been saved to {path_dst + 'config.json'}")
|