mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 21:10:24 +01:00
a93120236f
this restricts malicious weights from executing arbitrary code by restricting the unpickler to only loading tensors, primitive types, and dictionaries
163 lines
4.6 KiB
Python
163 lines
4.6 KiB
Python
# Convert a LLaMA model checkpoint to a ggml compatible file
|
|
#
|
|
# Load the model using Torch
|
|
# Iterate over all variables and write them to a binary file.
|
|
#
|
|
# For each variable, write the following:
|
|
# - Number of dimensions (int)
|
|
# - Name length (int)
|
|
# - Dimensions (int[n_dims])
|
|
# - Name (char[name_length])
|
|
# - Data (float[n_dims])
|
|
#
|
|
# By default, the bigger matrices are converted to 16-bit floats.
|
|
# This can be disabled by adding the "use-f32" CLI argument.
|
|
#
|
|
# At the start of the ggml file we write the model parameters
|
|
# and vocabulary.
|
|
#
|
|
|
|
import sys
|
|
import json
|
|
import struct
|
|
import numpy as np
|
|
import torch
|
|
|
|
from sentencepiece import SentencePieceProcessor
|
|
|
|
if len(sys.argv) < 3:
|
|
print("Usage: convert-ckpt-to-ggml.py dir-model ftype\n")
|
|
print(" ftype == 0 -> float32")
|
|
print(" ftype == 1 -> float16")
|
|
sys.exit(1)
|
|
|
|
# output in the same directory as the model
|
|
dir_model = sys.argv[1]
|
|
|
|
fname_hparams = sys.argv[1] + "/params.json"
|
|
fname_tokenizer = sys.argv[1] + "/../tokenizer.model"
|
|
|
|
def get_n_parts(dim):
|
|
if dim == 4096:
|
|
return 1
|
|
elif dim == 5120:
|
|
return 2
|
|
elif dim == 6656:
|
|
return 4
|
|
elif dim == 8192:
|
|
return 8
|
|
else:
|
|
print("Invalid dim: " + str(dim))
|
|
sys.exit(1)
|
|
|
|
# possible data types
|
|
# ftype == 0 -> float32
|
|
# ftype == 1 -> float16
|
|
#
|
|
# map from ftype to string
|
|
ftype_str = ["f32", "f16"]
|
|
|
|
ftype = 1
|
|
if len(sys.argv) > 2:
|
|
ftype = int(sys.argv[2])
|
|
if ftype < 0 or ftype > 1:
|
|
print("Invalid ftype: " + str(ftype))
|
|
sys.exit(1)
|
|
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
|
|
|
|
with open(fname_hparams, "r") as f:
|
|
hparams = json.load(f)
|
|
|
|
tokenizer = SentencePieceProcessor(fname_tokenizer)
|
|
|
|
hparams.update({"vocab_size": tokenizer.vocab_size()})
|
|
|
|
n_parts = get_n_parts(hparams["dim"])
|
|
|
|
print(hparams)
|
|
print('n_parts = ', n_parts)
|
|
|
|
for p in range(n_parts):
|
|
print('Processing part ', p)
|
|
|
|
#fname_model = sys.argv[1] + "/consolidated.00.pth"
|
|
fname_model = sys.argv[1] + "/consolidated.0" + str(p) + ".pth"
|
|
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
|
|
if (p > 0):
|
|
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin" + "." + str(p)
|
|
|
|
model = torch.load(fname_model, map_location="cpu", weights_only=True)
|
|
|
|
fout = open(fname_out, "wb")
|
|
|
|
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
|
|
fout.write(struct.pack("i", hparams["vocab_size"]))
|
|
fout.write(struct.pack("i", hparams["dim"]))
|
|
fout.write(struct.pack("i", hparams["multiple_of"]))
|
|
fout.write(struct.pack("i", hparams["n_heads"]))
|
|
fout.write(struct.pack("i", hparams["n_layers"]))
|
|
fout.write(struct.pack("i", hparams["dim"] // hparams["n_heads"])) # rot (obsolete)
|
|
fout.write(struct.pack("i", ftype))
|
|
|
|
# Is this correct??
|
|
for i in range(32000):
|
|
# TODO: this is probably wrong - not sure how this tokenizer works
|
|
text = tokenizer.decode([29889, i]).encode('utf-8')
|
|
# remove the first byte (it's always '.')
|
|
text = text[1:]
|
|
fout.write(struct.pack("i", len(text)))
|
|
fout.write(text)
|
|
|
|
for k, v in model.items():
|
|
name = k
|
|
shape = v.shape
|
|
|
|
# skip layers.X.attention.inner_attention.rope.freqs
|
|
if name[-5:] == "freqs":
|
|
continue
|
|
|
|
print("Processing variable: " + name + " with shape: ", shape, " and type: ", v.dtype)
|
|
|
|
#data = tf.train.load_variable(dir_model, name).squeeze()
|
|
data = v.numpy().squeeze()
|
|
n_dims = len(data.shape);
|
|
|
|
# for efficiency - transpose some matrices
|
|
# "model/h.*/attn/c_attn/w"
|
|
# "model/h.*/attn/c_proj/w"
|
|
# "model/h.*/mlp/c_fc/w"
|
|
# "model/h.*/mlp/c_proj/w"
|
|
#if name[-14:] == "/attn/c_attn/w" or \
|
|
# name[-14:] == "/attn/c_proj/w" or \
|
|
# name[-11:] == "/mlp/c_fc/w" or \
|
|
# name[-13:] == "/mlp/c_proj/w":
|
|
# print(" Transposing")
|
|
# data = data.transpose()
|
|
|
|
dshape = data.shape
|
|
|
|
# default type is fp16
|
|
ftype_cur = 1
|
|
if ftype == 0 or n_dims == 1:
|
|
print(" Converting to float32")
|
|
data = data.astype(np.float32)
|
|
ftype_cur = 0
|
|
|
|
# header
|
|
sname = name.encode('utf-8')
|
|
fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur))
|
|
for i in range(n_dims):
|
|
fout.write(struct.pack("i", dshape[n_dims - 1 - i]))
|
|
fout.write(sname);
|
|
|
|
# data
|
|
data.tofile(fout)
|
|
|
|
# I hope this deallocates the memory ..
|
|
model = None
|
|
|
|
fout.close()
|
|
|
|
print("Done. Output file: " + fname_out + ", (part ", p, ")")
|
|
print("")
|