mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 13:00:25 +01:00
52ee4540c0
* Create pydantic-models-to-grammar.py * Added some comments for usage * Refactored Grammar Generator Added example and usage instruction. * Update pydantic_models_to_grammar.py * Update pydantic-models-to-grammar-examples.py * Renamed module and imported it. * Update pydantic-models-to-grammar.py * Renamed file and fixed grammar generator issue.
1152 lines
52 KiB
Python
1152 lines
52 KiB
Python
import inspect
|
|
import json
|
|
from copy import copy
|
|
from inspect import isclass, getdoc
|
|
from types import NoneType
|
|
|
|
from pydantic import BaseModel, create_model, Field
|
|
from typing import Any, Type, List, get_args, get_origin, Tuple, Union, Optional, _GenericAlias
|
|
from enum import Enum
|
|
from typing import get_type_hints, Callable
|
|
import re
|
|
|
|
|
|
class PydanticDataType(Enum):
|
|
"""
|
|
Defines the data types supported by the grammar_generator.
|
|
|
|
Attributes:
|
|
STRING (str): Represents a string data type.
|
|
BOOLEAN (str): Represents a boolean data type.
|
|
INTEGER (str): Represents an integer data type.
|
|
FLOAT (str): Represents a float data type.
|
|
OBJECT (str): Represents an object data type.
|
|
ARRAY (str): Represents an array data type.
|
|
ENUM (str): Represents an enum data type.
|
|
CUSTOM_CLASS (str): Represents a custom class data type.
|
|
"""
|
|
STRING = "string"
|
|
TRIPLE_QUOTED_STRING = "triple_quoted_string"
|
|
MARKDOWN_STRING = "markdown_string"
|
|
BOOLEAN = "boolean"
|
|
INTEGER = "integer"
|
|
FLOAT = "float"
|
|
OBJECT = "object"
|
|
ARRAY = "array"
|
|
ENUM = "enum"
|
|
ANY = "any"
|
|
NULL = "null"
|
|
CUSTOM_CLASS = "custom-class"
|
|
CUSTOM_DICT = "custom-dict"
|
|
SET = "set"
|
|
|
|
|
|
def map_pydantic_type_to_gbnf(pydantic_type: Type[Any]) -> str:
|
|
if isclass(pydantic_type) and issubclass(pydantic_type, str):
|
|
return PydanticDataType.STRING.value
|
|
elif isclass(pydantic_type) and issubclass(pydantic_type, bool):
|
|
return PydanticDataType.BOOLEAN.value
|
|
elif isclass(pydantic_type) and issubclass(pydantic_type, int):
|
|
return PydanticDataType.INTEGER.value
|
|
elif isclass(pydantic_type) and issubclass(pydantic_type, float):
|
|
return PydanticDataType.FLOAT.value
|
|
elif isclass(pydantic_type) and issubclass(pydantic_type, Enum):
|
|
return PydanticDataType.ENUM.value
|
|
|
|
elif isclass(pydantic_type) and issubclass(pydantic_type, BaseModel):
|
|
return format_model_and_field_name(pydantic_type.__name__)
|
|
elif get_origin(pydantic_type) == list:
|
|
element_type = get_args(pydantic_type)[0]
|
|
return f"{map_pydantic_type_to_gbnf(element_type)}-list"
|
|
elif get_origin(pydantic_type) == set:
|
|
element_type = get_args(pydantic_type)[0]
|
|
return f"{map_pydantic_type_to_gbnf(element_type)}-set"
|
|
elif get_origin(pydantic_type) == Union:
|
|
union_types = get_args(pydantic_type)
|
|
union_rules = [map_pydantic_type_to_gbnf(ut) for ut in union_types]
|
|
return f"union-{'-or-'.join(union_rules)}"
|
|
elif get_origin(pydantic_type) == Optional:
|
|
element_type = get_args(pydantic_type)[0]
|
|
return f"optional-{map_pydantic_type_to_gbnf(element_type)}"
|
|
elif isclass(pydantic_type):
|
|
return f"{PydanticDataType.CUSTOM_CLASS.value}-{format_model_and_field_name(pydantic_type.__name__)}"
|
|
elif get_origin(pydantic_type) == dict:
|
|
key_type, value_type = get_args(pydantic_type)
|
|
return f"custom-dict-key-type-{format_model_and_field_name(map_pydantic_type_to_gbnf(key_type))}-value-type-{format_model_and_field_name(map_pydantic_type_to_gbnf(value_type))}"
|
|
else:
|
|
return "unknown"
|
|
|
|
|
|
def format_model_and_field_name(model_name: str) -> str:
|
|
parts = re.findall('[A-Z][^A-Z]*', model_name)
|
|
if not parts: # Check if the list is empty
|
|
return model_name.lower().replace("_", "-")
|
|
return '-'.join(part.lower().replace("_", "-") for part in parts)
|
|
|
|
|
|
def generate_list_rule(element_type):
|
|
"""
|
|
Generate a GBNF rule for a list of a given element type.
|
|
|
|
:param element_type: The type of the elements in the list (e.g., 'string').
|
|
:return: A string representing the GBNF rule for a list of the given type.
|
|
"""
|
|
rule_name = f"{map_pydantic_type_to_gbnf(element_type)}-list"
|
|
element_rule = map_pydantic_type_to_gbnf(element_type)
|
|
list_rule = fr'{rule_name} ::= "[" {element_rule} ("," {element_rule})* "]"'
|
|
return list_rule
|
|
|
|
|
|
def get_members_structure(cls, rule_name):
|
|
if issubclass(cls, Enum):
|
|
# Handle Enum types
|
|
members = [f'\"\\\"{member.value}\\\"\"' for name, member in cls.__members__.items()]
|
|
return f"{cls.__name__.lower()} ::= " + " | ".join(members)
|
|
if cls.__annotations__ and cls.__annotations__ != {}:
|
|
result = f'{rule_name} ::= "{{"'
|
|
type_list_rules = []
|
|
# Modify this comprehension
|
|
members = [f' \"\\\"{name}\\\"\" ":" {map_pydantic_type_to_gbnf(param_type)}'
|
|
for name, param_type in cls.__annotations__.items()
|
|
if name != 'self']
|
|
|
|
result += '"," '.join(members)
|
|
result += ' "}"'
|
|
return result, type_list_rules
|
|
elif rule_name == "custom-class-any":
|
|
result = f'{rule_name} ::= '
|
|
result += 'value'
|
|
type_list_rules = []
|
|
return result, type_list_rules
|
|
else:
|
|
init_signature = inspect.signature(cls.__init__)
|
|
parameters = init_signature.parameters
|
|
result = f'{rule_name} ::= "{{"'
|
|
type_list_rules = []
|
|
# Modify this comprehension too
|
|
members = [f' \"\\\"{name}\\\"\" ":" {map_pydantic_type_to_gbnf(param.annotation)}'
|
|
for name, param in parameters.items()
|
|
if name != 'self' and param.annotation != inspect.Parameter.empty]
|
|
|
|
result += '", "'.join(members)
|
|
result += ' "}"'
|
|
return result, type_list_rules
|
|
|
|
|
|
def regex_to_gbnf(regex_pattern: str) -> str:
|
|
"""
|
|
Translate a basic regex pattern to a GBNF rule.
|
|
Note: This function handles only a subset of simple regex patterns.
|
|
"""
|
|
gbnf_rule = regex_pattern
|
|
|
|
# Translate common regex components to GBNF
|
|
gbnf_rule = gbnf_rule.replace('\\d', '[0-9]')
|
|
gbnf_rule = gbnf_rule.replace('\\s', '[ \t\n]')
|
|
|
|
# Handle quantifiers and other regex syntax that is similar in GBNF
|
|
# (e.g., '*', '+', '?', character classes)
|
|
|
|
return gbnf_rule
|
|
|
|
|
|
def generate_gbnf_integer_rules(max_digit=None, min_digit=None):
|
|
"""
|
|
|
|
Generate GBNF Integer Rules
|
|
|
|
Generates GBNF (Generalized Backus-Naur Form) rules for integers based on the given maximum and minimum digits.
|
|
|
|
Parameters:
|
|
max_digit (int): The maximum number of digits for the integer. Default is None.
|
|
min_digit (int): The minimum number of digits for the integer. Default is None.
|
|
|
|
Returns:
|
|
integer_rule (str): The identifier for the integer rule generated.
|
|
additional_rules (list): A list of additional rules generated based on the given maximum and minimum digits.
|
|
|
|
"""
|
|
additional_rules = []
|
|
|
|
# Define the rule identifier based on max_digit and min_digit
|
|
integer_rule = "integer-part"
|
|
if max_digit is not None:
|
|
integer_rule += f"-max{max_digit}"
|
|
if min_digit is not None:
|
|
integer_rule += f"-min{min_digit}"
|
|
|
|
# Handling Integer Rules
|
|
if max_digit is not None or min_digit is not None:
|
|
# Start with an empty rule part
|
|
integer_rule_part = ''
|
|
|
|
# Add mandatory digits as per min_digit
|
|
if min_digit is not None:
|
|
integer_rule_part += '[0-9] ' * min_digit
|
|
|
|
# Add optional digits up to max_digit
|
|
if max_digit is not None:
|
|
optional_digits = max_digit - (min_digit if min_digit is not None else 0)
|
|
integer_rule_part += ''.join(['[0-9]? ' for _ in range(optional_digits)])
|
|
|
|
# Trim the rule part and append it to additional rules
|
|
integer_rule_part = integer_rule_part.strip()
|
|
if integer_rule_part:
|
|
additional_rules.append(f'{integer_rule} ::= {integer_rule_part}')
|
|
|
|
return integer_rule, additional_rules
|
|
|
|
|
|
def generate_gbnf_float_rules(max_digit=None, min_digit=None, max_precision=None, min_precision=None):
|
|
"""
|
|
Generate GBNF float rules based on the given constraints.
|
|
|
|
:param max_digit: Maximum number of digits in the integer part (default: None)
|
|
:param min_digit: Minimum number of digits in the integer part (default: None)
|
|
:param max_precision: Maximum number of digits in the fractional part (default: None)
|
|
:param min_precision: Minimum number of digits in the fractional part (default: None)
|
|
:return: A tuple containing the float rule and additional rules as a list
|
|
|
|
Example Usage:
|
|
max_digit = 3
|
|
min_digit = 1
|
|
max_precision = 2
|
|
min_precision = 1
|
|
generate_gbnf_float_rules(max_digit, min_digit, max_precision, min_precision)
|
|
|
|
Output:
|
|
('float-3-1-2-1', ['integer-part-max3-min1 ::= [0-9] [0-9] [0-9]?', 'fractional-part-max2-min1 ::= [0-9] [0-9]?', 'float-3-1-2-1 ::= integer-part-max3-min1 "." fractional-part-max2-min
|
|
*1'])
|
|
|
|
Note:
|
|
GBNF stands for Generalized Backus-Naur Form, which is a notation technique to specify the syntax of programming languages or other formal grammars.
|
|
"""
|
|
additional_rules = []
|
|
|
|
# Define the integer part rule
|
|
integer_part_rule = "integer-part" + (f"-max{max_digit}" if max_digit is not None else "") + (
|
|
f"-min{min_digit}" if min_digit is not None else "")
|
|
|
|
# Define the fractional part rule based on precision constraints
|
|
fractional_part_rule = "fractional-part"
|
|
fractional_rule_part = ''
|
|
if max_precision is not None or min_precision is not None:
|
|
fractional_part_rule += (f"-max{max_precision}" if max_precision is not None else "") + (
|
|
f"-min{min_precision}" if min_precision is not None else "")
|
|
# Minimum number of digits
|
|
fractional_rule_part = '[0-9]' * (min_precision if min_precision is not None else 1)
|
|
# Optional additional digits
|
|
fractional_rule_part += ''.join([' [0-9]?'] * (
|
|
(max_precision - (min_precision if min_precision is not None else 1)) if max_precision is not None else 0))
|
|
additional_rules.append(f'{fractional_part_rule} ::= {fractional_rule_part}')
|
|
|
|
# Define the float rule
|
|
float_rule = f"float-{max_digit if max_digit is not None else 'X'}-{min_digit if min_digit is not None else 'X'}-{max_precision if max_precision is not None else 'X'}-{min_precision if min_precision is not None else 'X'}"
|
|
additional_rules.append(f'{float_rule} ::= {integer_part_rule} "." {fractional_part_rule}')
|
|
|
|
# Generating the integer part rule definition, if necessary
|
|
if max_digit is not None or min_digit is not None:
|
|
integer_rule_part = '[0-9]'
|
|
if min_digit is not None and min_digit > 1:
|
|
integer_rule_part += ' [0-9]' * (min_digit - 1)
|
|
if max_digit is not None:
|
|
integer_rule_part += ''.join([' [0-9]?'] * (max_digit - (min_digit if min_digit is not None else 1)))
|
|
additional_rules.append(f'{integer_part_rule} ::= {integer_rule_part.strip()}')
|
|
|
|
return float_rule, additional_rules
|
|
|
|
|
|
def generate_gbnf_rule_for_type(model_name, field_name,
|
|
field_type, is_optional, processed_models, created_rules,
|
|
field_info=None) -> \
|
|
Tuple[str, list]:
|
|
"""
|
|
Generate GBNF rule for a given field type.
|
|
|
|
:param model_name: Name of the model.
|
|
|
|
:param field_name: Name of the field.
|
|
:param field_type: Type of the field.
|
|
:param is_optional: Whether the field is optional.
|
|
:param processed_models: List of processed models.
|
|
:param created_rules: List of created rules.
|
|
:param field_info: Additional information about the field (optional).
|
|
|
|
:return: Tuple containing the GBNF type and a list of additional rules.
|
|
:rtype: Tuple[str, list]
|
|
"""
|
|
rules = []
|
|
|
|
field_name = format_model_and_field_name(field_name)
|
|
gbnf_type = map_pydantic_type_to_gbnf(field_type)
|
|
|
|
if isclass(field_type) and issubclass(field_type, BaseModel):
|
|
nested_model_name = format_model_and_field_name(field_type.__name__)
|
|
nested_model_rules = generate_gbnf_grammar(field_type, processed_models, created_rules)
|
|
rules.extend(nested_model_rules)
|
|
gbnf_type, rules = nested_model_name, rules
|
|
elif isclass(field_type) and issubclass(field_type, Enum):
|
|
enum_values = [f'\"\\\"{e.value}\\\"\"' for e in field_type] # Adding escaped quotes
|
|
enum_rule = f"{model_name}-{field_name} ::= {' | '.join(enum_values)}"
|
|
rules.append(enum_rule)
|
|
gbnf_type, rules = model_name + "-" + field_name, rules
|
|
elif get_origin(field_type) == list or field_type == list: # Array
|
|
element_type = get_args(field_type)[0]
|
|
element_rule_name, additional_rules = generate_gbnf_rule_for_type(model_name,
|
|
f"{field_name}-element",
|
|
element_type, is_optional, processed_models,
|
|
created_rules)
|
|
rules.extend(additional_rules)
|
|
array_rule = f"""{model_name}-{field_name} ::= "[" ws {element_rule_name} ("," ws {element_rule_name})* "]" """
|
|
rules.append(array_rule)
|
|
gbnf_type, rules = model_name + "-" + field_name, rules
|
|
|
|
elif get_origin(field_type) == set or field_type == set: # Array
|
|
element_type = get_args(field_type)[0]
|
|
element_rule_name, additional_rules = generate_gbnf_rule_for_type(model_name,
|
|
f"{field_name}-element",
|
|
element_type, is_optional, processed_models,
|
|
created_rules)
|
|
rules.extend(additional_rules)
|
|
array_rule = f"""{model_name}-{field_name} ::= "[" ws {element_rule_name} ("," ws {element_rule_name})* "]" """
|
|
rules.append(array_rule)
|
|
gbnf_type, rules = model_name + "-" + field_name, rules
|
|
|
|
elif gbnf_type.startswith("custom-class-"):
|
|
nested_model_rules, field_types = get_members_structure(field_type, gbnf_type)
|
|
rules.append(nested_model_rules)
|
|
elif gbnf_type.startswith("custom-dict-"):
|
|
key_type, value_type = get_args(field_type)
|
|
|
|
additional_key_type, additional_key_rules = generate_gbnf_rule_for_type(model_name,
|
|
f"{field_name}-key-type",
|
|
key_type, is_optional, processed_models,
|
|
created_rules)
|
|
additional_value_type, additional_value_rules = generate_gbnf_rule_for_type(model_name,
|
|
f"{field_name}-value-type",
|
|
value_type, is_optional,
|
|
processed_models, created_rules)
|
|
gbnf_type = fr'{gbnf_type} ::= "{{" ( {additional_key_type} ":" {additional_value_type} ("," {additional_key_type} ":" {additional_value_type})* )? "}}" '
|
|
|
|
rules.extend(additional_key_rules)
|
|
rules.extend(additional_value_rules)
|
|
elif gbnf_type.startswith("union-"):
|
|
union_types = get_args(field_type)
|
|
union_rules = []
|
|
|
|
for union_type in union_types:
|
|
if isinstance(union_type, _GenericAlias):
|
|
union_gbnf_type, union_rules_list = generate_gbnf_rule_for_type(model_name,
|
|
field_name, union_type,
|
|
False,
|
|
processed_models, created_rules)
|
|
union_rules.append(union_gbnf_type)
|
|
rules.extend(union_rules_list)
|
|
|
|
|
|
elif not issubclass(union_type, NoneType):
|
|
union_gbnf_type, union_rules_list = generate_gbnf_rule_for_type(model_name,
|
|
field_name, union_type,
|
|
False,
|
|
processed_models, created_rules)
|
|
union_rules.append(union_gbnf_type)
|
|
rules.extend(union_rules_list)
|
|
|
|
# Defining the union grammar rule separately
|
|
if len(union_rules) == 1:
|
|
union_grammar_rule = f"{model_name}-{field_name}-optional ::= {' | '.join(union_rules)} | null"
|
|
else:
|
|
union_grammar_rule = f"{model_name}-{field_name}-union ::= {' | '.join(union_rules)}"
|
|
rules.append(union_grammar_rule)
|
|
if len(union_rules) == 1:
|
|
gbnf_type = f"{model_name}-{field_name}-optional"
|
|
else:
|
|
gbnf_type = f"{model_name}-{field_name}-union"
|
|
elif isclass(field_type) and issubclass(field_type, str):
|
|
if field_info and hasattr(field_info, 'json_schema_extra') and field_info.json_schema_extra is not None:
|
|
|
|
triple_quoted_string = field_info.json_schema_extra.get('triple_quoted_string', False)
|
|
markdown_string = field_info.json_schema_extra.get('markdown_string', False)
|
|
|
|
gbnf_type = PydanticDataType.TRIPLE_QUOTED_STRING.value if triple_quoted_string else PydanticDataType.STRING.value
|
|
gbnf_type = PydanticDataType.MARKDOWN_STRING.value if markdown_string else gbnf_type
|
|
|
|
elif field_info and hasattr(field_info, 'pattern'):
|
|
# Convert regex pattern to grammar rule
|
|
regex_pattern = field_info.regex.pattern
|
|
gbnf_type = f"pattern-{field_name} ::= {regex_to_gbnf(regex_pattern)}"
|
|
else:
|
|
gbnf_type = PydanticDataType.STRING.value
|
|
|
|
elif isclass(field_type) and issubclass(field_type, float) and field_info and hasattr(field_info,
|
|
'json_schema_extra') and field_info.json_schema_extra is not None:
|
|
# Retrieve precision attributes for floats
|
|
max_precision = field_info.json_schema_extra.get('max_precision') if field_info and hasattr(field_info,
|
|
'json_schema_extra') else None
|
|
min_precision = field_info.json_schema_extra.get('min_precision') if field_info and hasattr(field_info,
|
|
'json_schema_extra') else None
|
|
max_digits = field_info.json_schema_extra.get('max_digit') if field_info and hasattr(field_info,
|
|
'json_schema_extra') else None
|
|
min_digits = field_info.json_schema_extra.get('min_digit') if field_info and hasattr(field_info,
|
|
'json_schema_extra') else None
|
|
|
|
# Generate GBNF rule for float with given attributes
|
|
gbnf_type, rules = generate_gbnf_float_rules(max_digit=max_digits, min_digit=min_digits,
|
|
max_precision=max_precision,
|
|
min_precision=min_precision)
|
|
|
|
elif isclass(field_type) and issubclass(field_type, int) and field_info and hasattr(field_info,
|
|
'json_schema_extra') and field_info.json_schema_extra is not None:
|
|
# Retrieve digit attributes for integers
|
|
max_digits = field_info.json_schema_extra.get('max_digit') if field_info and hasattr(field_info,
|
|
'json_schema_extra') else None
|
|
min_digits = field_info.json_schema_extra.get('min_digit') if field_info and hasattr(field_info,
|
|
'json_schema_extra') else None
|
|
|
|
# Generate GBNF rule for integer with given attributes
|
|
gbnf_type, rules = generate_gbnf_integer_rules(max_digit=max_digits, min_digit=min_digits)
|
|
else:
|
|
gbnf_type, rules = gbnf_type, []
|
|
|
|
if gbnf_type not in created_rules:
|
|
return gbnf_type, rules
|
|
else:
|
|
if gbnf_type in created_rules:
|
|
return gbnf_type, rules
|
|
|
|
|
|
def generate_gbnf_grammar(model: Type[BaseModel], processed_models: set, created_rules: dict) -> (list, bool, bool):
|
|
"""
|
|
|
|
Generate GBnF Grammar
|
|
|
|
Generates a GBnF grammar for a given model.
|
|
|
|
:param model: A Pydantic model class to generate the grammar for. Must be a subclass of BaseModel.
|
|
:param processed_models: A set of already processed models to prevent infinite recursion.
|
|
:param created_rules: A dict containing already created rules to prevent duplicates.
|
|
:return: A list of GBnF grammar rules in string format. And two booleans indicating if an extra markdown or triple quoted string is in the grammar.
|
|
Example Usage:
|
|
```
|
|
model = MyModel
|
|
processed_models = set()
|
|
created_rules = dict()
|
|
|
|
gbnf_grammar = generate_gbnf_grammar(model, processed_models, created_rules)
|
|
```
|
|
"""
|
|
if model in processed_models:
|
|
return []
|
|
|
|
processed_models.add(model)
|
|
model_name = format_model_and_field_name(model.__name__)
|
|
|
|
if not issubclass(model, BaseModel):
|
|
# For non-Pydantic classes, generate model_fields from __annotations__ or __init__
|
|
if hasattr(model, '__annotations__') and model.__annotations__:
|
|
model_fields = {name: (typ, ...) for name, typ in model.__annotations__.items()}
|
|
else:
|
|
init_signature = inspect.signature(model.__init__)
|
|
parameters = init_signature.parameters
|
|
model_fields = {name: (param.annotation, param.default) for name, param in parameters.items()
|
|
if name != 'self'}
|
|
else:
|
|
# For Pydantic models, use model_fields and check for ellipsis (required fields)
|
|
model_fields = model.__annotations__
|
|
|
|
model_rule_parts = []
|
|
nested_rules = []
|
|
has_markdown_code_block = False
|
|
has_triple_quoted_string = False
|
|
look_for_markdown_code_block = False
|
|
look_for_triple_quoted_string = False
|
|
for field_name, field_info in model_fields.items():
|
|
if not issubclass(model, BaseModel):
|
|
field_type, default_value = field_info
|
|
# Check if the field is optional (not required)
|
|
is_optional = (default_value is not inspect.Parameter.empty) and (default_value is not Ellipsis)
|
|
else:
|
|
field_type = field_info
|
|
field_info = model.model_fields[field_name]
|
|
is_optional = field_info.is_required is False and get_origin(field_type) is Optional
|
|
rule_name, additional_rules = generate_gbnf_rule_for_type(model_name,
|
|
format_model_and_field_name(field_name),
|
|
field_type, is_optional,
|
|
processed_models, created_rules, field_info)
|
|
look_for_markdown_code_block = True if rule_name == "markdown_string" else False
|
|
look_for_triple_quoted_string = True if rule_name == "triple_quoted_string" else False
|
|
if not look_for_markdown_code_block and not look_for_triple_quoted_string:
|
|
if rule_name not in created_rules:
|
|
created_rules[rule_name] = additional_rules
|
|
model_rule_parts.append(f' ws \"\\\"{field_name}\\\"\" ": " {rule_name}') # Adding escaped quotes
|
|
nested_rules.extend(additional_rules)
|
|
else:
|
|
has_triple_quoted_string = look_for_markdown_code_block
|
|
has_markdown_code_block = look_for_triple_quoted_string
|
|
|
|
fields_joined = r' "," "\n" '.join(model_rule_parts)
|
|
model_rule = fr'{model_name} ::= "{{" "\n" {fields_joined} "\n" ws "}}"'
|
|
|
|
if look_for_markdown_code_block or look_for_triple_quoted_string:
|
|
model_rule += ' ws "}"'
|
|
|
|
if has_triple_quoted_string:
|
|
model_rule += '"\\n" triple-quoted-string'
|
|
if has_markdown_code_block:
|
|
model_rule += '"\\n" markdown-code-block'
|
|
all_rules = [model_rule] + nested_rules
|
|
|
|
return all_rules, has_markdown_code_block, has_triple_quoted_string
|
|
|
|
|
|
def generate_gbnf_grammar_from_pydantic_models(models: List[Type[BaseModel]], outer_object_name: str = None,
|
|
outer_object_content: str = None, list_of_outputs: bool = False) -> str:
|
|
"""
|
|
Generate GBNF Grammar from Pydantic Models.
|
|
|
|
This method takes a list of Pydantic models and uses them to generate a GBNF grammar string. The generated grammar string can be used for parsing and validating data using the generated
|
|
* grammar.
|
|
|
|
Parameters:
|
|
models (List[Type[BaseModel]]): A list of Pydantic models to generate the grammar from.
|
|
outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling.
|
|
outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling.
|
|
list_of_outputs (str, optional): Allows a list of output objects
|
|
Returns:
|
|
str: The generated GBNF grammar string.
|
|
|
|
Examples:
|
|
models = [UserModel, PostModel]
|
|
grammar = generate_gbnf_grammar_from_pydantic(models)
|
|
print(grammar)
|
|
# Output:
|
|
# root ::= UserModel | PostModel
|
|
# ...
|
|
"""
|
|
processed_models = set()
|
|
all_rules = []
|
|
created_rules = {}
|
|
if outer_object_name is None:
|
|
|
|
for model in models:
|
|
model_rules, _, _ = generate_gbnf_grammar(model,
|
|
processed_models, created_rules)
|
|
all_rules.extend(model_rules)
|
|
|
|
if list_of_outputs:
|
|
root_rule = r'root ::= ws "[" grammar-models ("," grammar-models)* "]"' + "\n"
|
|
else:
|
|
root_rule = r'root ::= ws grammar-models' + "\n"
|
|
root_rule += "grammar-models ::= " + " | ".join(
|
|
[format_model_and_field_name(model.__name__) for model in models])
|
|
all_rules.insert(0, root_rule)
|
|
return "\n".join(all_rules)
|
|
elif outer_object_name is not None:
|
|
if list_of_outputs:
|
|
root_rule = fr'root ::= ws "[" {format_model_and_field_name(outer_object_name)} ("," {format_model_and_field_name(outer_object_name)})* "]"' + "\n"
|
|
else:
|
|
root_rule = f"root ::= {format_model_and_field_name(outer_object_name)}\n"
|
|
|
|
model_rule = fr'{format_model_and_field_name(outer_object_name)} ::= ws "{{" ws "\"{outer_object_name}\"" ": " grammar-models'
|
|
|
|
fields_joined = " | ".join(
|
|
[fr'{format_model_and_field_name(model.__name__)}-grammar-model' for model in models])
|
|
|
|
grammar_model_rules = f'\ngrammar-models ::= {fields_joined}'
|
|
mod_rules = []
|
|
for model in models:
|
|
mod_rule = fr'{format_model_and_field_name(model.__name__)}-grammar-model ::= ws'
|
|
mod_rule += fr'"\"{format_model_and_field_name(model.__name__)}\"" "," ws "\"{outer_object_content}\"" ws ":" ws {format_model_and_field_name(model.__name__)}' + '\n'
|
|
mod_rules.append(mod_rule)
|
|
grammar_model_rules += "\n" + "\n".join(mod_rules)
|
|
look_for_markdown_code_block = False
|
|
look_for_triple_quoted_string = False
|
|
for model in models:
|
|
model_rules, markdown_block, triple_quoted_string = generate_gbnf_grammar(model,
|
|
processed_models, created_rules)
|
|
all_rules.extend(model_rules)
|
|
if markdown_block:
|
|
look_for_markdown_code_block = True
|
|
|
|
if triple_quoted_string:
|
|
look_for_triple_quoted_string = True
|
|
|
|
if not look_for_markdown_code_block and not look_for_triple_quoted_string:
|
|
model_rule += ' ws "}"'
|
|
all_rules.insert(0, root_rule + model_rule + grammar_model_rules)
|
|
return "\n".join(all_rules)
|
|
|
|
|
|
def get_primitive_grammar(grammar):
|
|
"""
|
|
Returns the needed GBNF primitive grammar for a given GBNF grammar string.
|
|
|
|
Args:
|
|
grammar (str): The string containing the GBNF grammar.
|
|
|
|
Returns:
|
|
str: GBNF primitive grammar string.
|
|
"""
|
|
type_list = []
|
|
if "string-list" in grammar:
|
|
type_list.append(str)
|
|
if "boolean-list" in grammar:
|
|
type_list.append(bool)
|
|
if "integer-list" in grammar:
|
|
type_list.append(int)
|
|
if "float-list" in grammar:
|
|
type_list.append(float)
|
|
additional_grammar = [generate_list_rule(t) for t in type_list]
|
|
primitive_grammar = r"""
|
|
boolean ::= "true" | "false"
|
|
null ::= "null"
|
|
string ::= "\"" (
|
|
[^"\\] |
|
|
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])
|
|
)* "\"" ws
|
|
ws ::= ([ \t\n] ws)?
|
|
float ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws
|
|
|
|
integer ::= [0-9]+"""
|
|
|
|
any_block = ""
|
|
if "custom-class-any" in grammar:
|
|
any_block = '''
|
|
value ::= object | array | string | number | boolean | null
|
|
|
|
object ::=
|
|
"{" ws (
|
|
string ":" ws value
|
|
("," ws string ":" ws value)*
|
|
)? "}" ws
|
|
|
|
array ::=
|
|
"[" ws (
|
|
value
|
|
("," ws value)*
|
|
)? "]" ws
|
|
|
|
number ::= integer | float'''
|
|
|
|
markdown_code_block_grammar = ""
|
|
if "markdown-code-block" in grammar:
|
|
markdown_code_block_grammar = r'''
|
|
markdown-code-block ::= opening-triple-ticks markdown-code-block-content closing-triple-ticks
|
|
markdown-code-block-content ::= ( [^`] | "`" [^`] | "`" "`" [^`] )*
|
|
opening-triple-ticks ::= "```" "python" "\n" | "```" "c" "\n" | "```" "cpp" "\n" | "```" "txt" "\n" | "```" "text" "\n" | "```" "json" "\n" | "```" "javascript" "\n" | "```" "css" "\n" | "```" "html" "\n" | "```" "markdown" "\n"
|
|
closing-triple-ticks ::= "```" "\n"'''
|
|
|
|
if "triple-quoted-string" in grammar:
|
|
markdown_code_block_grammar = r"""
|
|
triple-quoted-string ::= triple-quotes triple-quoted-string-content triple-quotes
|
|
triple-quoted-string-content ::= ( [^'] | "'" [^'] | "'" "'" [^'] )*
|
|
triple-quotes ::= "'''" """
|
|
return "\n" + '\n'.join(additional_grammar) + any_block + primitive_grammar + markdown_code_block_grammar
|
|
|
|
|
|
def generate_field_markdown(field_name: str, field_type: Type[Any], model: Type[BaseModel], depth=1) -> str:
|
|
indent = ' ' * depth
|
|
field_markdown = f"{indent}- **{field_name}** (`{field_type.__name__}`): "
|
|
|
|
# Extracting field description from Pydantic Field using __model_fields__
|
|
field_info = model.model_fields.get(field_name)
|
|
field_description = field_info.description if field_info and field_info.description else "No description available."
|
|
|
|
field_markdown += field_description + '\n'
|
|
|
|
# Handling nested BaseModel fields
|
|
if isclass(field_type) and issubclass(field_type, BaseModel):
|
|
field_markdown += f"{indent} - Details:\n"
|
|
for name, type_ in field_type.__annotations__.items():
|
|
field_markdown += generate_field_markdown(name, type_, field_type, depth + 2)
|
|
|
|
return field_markdown
|
|
|
|
|
|
def generate_markdown_report(pydantic_models: List[Type[BaseModel]]) -> str:
|
|
markdown = ""
|
|
for model in pydantic_models:
|
|
markdown += f"### {format_model_and_field_name(model.__name__)}\n"
|
|
|
|
# Check if the model's docstring is different from BaseModel's docstring
|
|
class_doc = getdoc(model)
|
|
base_class_doc = getdoc(BaseModel)
|
|
class_description = class_doc if class_doc and class_doc != base_class_doc else "No specific description available."
|
|
|
|
markdown += f"{class_description}\n\n"
|
|
markdown += "#### Fields\n"
|
|
|
|
if isclass(model) and issubclass(model, BaseModel):
|
|
for name, field_type in model.__annotations__.items():
|
|
markdown += generate_field_markdown(format_model_and_field_name(name), field_type, model)
|
|
markdown += "\n"
|
|
|
|
return markdown
|
|
|
|
|
|
def format_json_example(example: dict, depth: int) -> str:
|
|
"""
|
|
Format a JSON example into a readable string with indentation.
|
|
|
|
Args:
|
|
example (dict): JSON example to be formatted.
|
|
depth (int): Indentation depth.
|
|
|
|
Returns:
|
|
str: Formatted JSON example string.
|
|
"""
|
|
indent = ' ' * depth
|
|
formatted_example = '{\n'
|
|
for key, value in example.items():
|
|
value_text = f"'{value}'" if isinstance(value, str) else value
|
|
formatted_example += f"{indent}{key}: {value_text},\n"
|
|
formatted_example = formatted_example.rstrip(',\n') + '\n' + indent + '}'
|
|
return formatted_example
|
|
|
|
|
|
def generate_text_documentation(pydantic_models: List[Type[BaseModel]], model_prefix="Model",
|
|
fields_prefix="Fields", documentation_with_field_description=True) -> str:
|
|
"""
|
|
Generate text documentation for a list of Pydantic models.
|
|
|
|
Args:
|
|
pydantic_models (List[Type[BaseModel]]): List of Pydantic model classes.
|
|
model_prefix (str): Prefix for the model section.
|
|
fields_prefix (str): Prefix for the fields section.
|
|
documentation_with_field_description (bool): Include field descriptions in the documentation.
|
|
|
|
Returns:
|
|
str: Generated text documentation.
|
|
"""
|
|
documentation = ""
|
|
pyd_models = [(model, True) for model in pydantic_models]
|
|
for model, add_prefix in pyd_models:
|
|
if add_prefix:
|
|
documentation += f"{model_prefix}: {format_model_and_field_name(model.__name__)}\n"
|
|
else:
|
|
documentation += f"Model: {format_model_and_field_name(model.__name__)}\n"
|
|
|
|
# Handling multi-line model description with proper indentation
|
|
|
|
class_doc = getdoc(model)
|
|
base_class_doc = getdoc(BaseModel)
|
|
class_description = class_doc if class_doc and class_doc != base_class_doc else ""
|
|
if class_description != "":
|
|
documentation += " Description: "
|
|
documentation += "\n" + format_multiline_description(class_description, 2) + "\n"
|
|
|
|
if add_prefix:
|
|
# Indenting the fields section
|
|
documentation += f" {fields_prefix}:\n"
|
|
else:
|
|
documentation += f" Fields:\n"
|
|
if isclass(model) and issubclass(model, BaseModel):
|
|
for name, field_type in model.__annotations__.items():
|
|
# if name == "markdown_code_block":
|
|
# continue
|
|
if get_origin(field_type) == list:
|
|
element_type = get_args(field_type)[0]
|
|
if isclass(element_type) and issubclass(element_type, BaseModel):
|
|
pyd_models.append((element_type, False))
|
|
if get_origin(field_type) == Union:
|
|
element_types = get_args(field_type)
|
|
for element_type in element_types:
|
|
if isclass(element_type) and issubclass(element_type, BaseModel):
|
|
pyd_models.append((element_type, False))
|
|
documentation += generate_field_text(name, field_type, model,
|
|
documentation_with_field_description=documentation_with_field_description)
|
|
documentation += "\n"
|
|
|
|
if hasattr(model, 'Config') and hasattr(model.Config,
|
|
'json_schema_extra') and 'example' in model.Config.json_schema_extra:
|
|
documentation += f" Expected Example Output for {format_model_and_field_name(model.__name__)}:\n"
|
|
json_example = json.dumps(model.Config.json_schema_extra['example'])
|
|
documentation += format_multiline_description(json_example, 2) + "\n"
|
|
|
|
return documentation
|
|
|
|
|
|
def generate_field_text(field_name: str, field_type: Type[Any], model: Type[BaseModel], depth=1,
|
|
documentation_with_field_description=True) -> str:
|
|
"""
|
|
Generate text documentation for a Pydantic model field.
|
|
|
|
Args:
|
|
field_name (str): Name of the field.
|
|
field_type (Type[Any]): Type of the field.
|
|
model (Type[BaseModel]): Pydantic model class.
|
|
depth (int): Indentation depth in the documentation.
|
|
documentation_with_field_description (bool): Include field descriptions in the documentation.
|
|
|
|
Returns:
|
|
str: Generated text documentation for the field.
|
|
"""
|
|
indent = ' ' * depth
|
|
|
|
field_info = model.model_fields.get(field_name)
|
|
field_description = field_info.description if field_info and field_info.description else ""
|
|
|
|
if get_origin(field_type) == list:
|
|
element_type = get_args(field_type)[0]
|
|
field_text = f"{indent}{field_name} ({format_model_and_field_name(field_type.__name__)} of {format_model_and_field_name(element_type.__name__)})"
|
|
if field_description != "":
|
|
field_text += ":\n"
|
|
else:
|
|
field_text += "\n"
|
|
elif get_origin(field_type) == Union:
|
|
element_types = get_args(field_type)
|
|
types = []
|
|
for element_type in element_types:
|
|
types.append(format_model_and_field_name(element_type.__name__))
|
|
field_text = f"{indent}{field_name} ({' or '.join(types)})"
|
|
if field_description != "":
|
|
field_text += ":\n"
|
|
else:
|
|
field_text += "\n"
|
|
else:
|
|
field_text = f"{indent}{field_name} ({format_model_and_field_name(field_type.__name__)})"
|
|
if field_description != "":
|
|
field_text += ":\n"
|
|
else:
|
|
field_text += "\n"
|
|
|
|
if not documentation_with_field_description:
|
|
return field_text
|
|
|
|
if field_description != "":
|
|
field_text += f"{indent} Description: " + field_description + "\n"
|
|
|
|
# Check for and include field-specific examples if available
|
|
if hasattr(model, 'Config') and hasattr(model.Config,
|
|
'json_schema_extra') and 'example' in model.Config.json_schema_extra:
|
|
field_example = model.Config.json_schema_extra['example'].get(field_name)
|
|
if field_example is not None:
|
|
example_text = f"'{field_example}'" if isinstance(field_example, str) else field_example
|
|
field_text += f"{indent} Example: {example_text}\n"
|
|
|
|
if isclass(field_type) and issubclass(field_type, BaseModel):
|
|
field_text += f"{indent} Details:\n"
|
|
for name, type_ in field_type.__annotations__.items():
|
|
field_text += generate_field_text(name, type_, field_type, depth + 2)
|
|
|
|
return field_text
|
|
|
|
|
|
def format_multiline_description(description: str, indent_level: int) -> str:
|
|
"""
|
|
Format a multiline description with proper indentation.
|
|
|
|
Args:
|
|
description (str): Multiline description.
|
|
indent_level (int): Indentation level.
|
|
|
|
Returns:
|
|
str: Formatted multiline description.
|
|
"""
|
|
indent = ' ' * indent_level
|
|
return indent + description.replace('\n', '\n' + indent)
|
|
|
|
|
|
def save_gbnf_grammar_and_documentation(grammar, documentation, grammar_file_path="./grammar.gbnf",
|
|
documentation_file_path="./grammar_documentation.md"):
|
|
"""
|
|
Save GBNF grammar and documentation to specified files.
|
|
|
|
Args:
|
|
grammar (str): GBNF grammar string.
|
|
documentation (str): Documentation string.
|
|
grammar_file_path (str): File path to save the GBNF grammar.
|
|
documentation_file_path (str): File path to save the documentation.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
try:
|
|
with open(grammar_file_path, 'w') as file:
|
|
file.write(grammar + get_primitive_grammar(grammar))
|
|
print(f"Grammar successfully saved to {grammar_file_path}")
|
|
except IOError as e:
|
|
print(f"An error occurred while saving the grammar file: {e}")
|
|
|
|
try:
|
|
with open(documentation_file_path, 'w') as file:
|
|
file.write(documentation)
|
|
print(f"Documentation successfully saved to {documentation_file_path}")
|
|
except IOError as e:
|
|
print(f"An error occurred while saving the documentation file: {e}")
|
|
|
|
|
|
def remove_empty_lines(string):
|
|
"""
|
|
Remove empty lines from a string.
|
|
|
|
Args:
|
|
string (str): Input string.
|
|
|
|
Returns:
|
|
str: String with empty lines removed.
|
|
"""
|
|
lines = string.splitlines()
|
|
non_empty_lines = [line for line in lines if line.strip() != ""]
|
|
string_no_empty_lines = "\n".join(non_empty_lines)
|
|
return string_no_empty_lines
|
|
|
|
|
|
def generate_and_save_gbnf_grammar_and_documentation(pydantic_model_list,
|
|
grammar_file_path="./generated_grammar.gbnf",
|
|
documentation_file_path="./generated_grammar_documentation.md",
|
|
outer_object_name: str = None,
|
|
outer_object_content: str = None,
|
|
model_prefix: str = "Output Model",
|
|
fields_prefix: str = "Output Fields",
|
|
list_of_outputs: bool = False,
|
|
documentation_with_field_description=True):
|
|
"""
|
|
Generate GBNF grammar and documentation, and save them to specified files.
|
|
|
|
Args:
|
|
pydantic_model_list: List of Pydantic model classes.
|
|
grammar_file_path (str): File path to save the generated GBNF grammar.
|
|
documentation_file_path (str): File path to save the generated documentation.
|
|
outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling.
|
|
outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling.
|
|
model_prefix (str): Prefix for the model section in the documentation.
|
|
fields_prefix (str): Prefix for the fields section in the documentation.
|
|
list_of_outputs (bool): Whether the output is a list of items.
|
|
documentation_with_field_description (bool): Include field descriptions in the documentation.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
documentation = generate_text_documentation(pydantic_model_list, model_prefix, fields_prefix,
|
|
documentation_with_field_description=documentation_with_field_description)
|
|
grammar = generate_gbnf_grammar_from_pydantic_models(pydantic_model_list, outer_object_name,
|
|
outer_object_content, list_of_outputs)
|
|
grammar = remove_empty_lines(grammar)
|
|
save_gbnf_grammar_and_documentation(grammar, documentation, grammar_file_path, documentation_file_path)
|
|
|
|
|
|
def generate_gbnf_grammar_and_documentation(pydantic_model_list, outer_object_name: str = None,
|
|
outer_object_content: str = None,
|
|
model_prefix: str = "Output Model",
|
|
fields_prefix: str = "Output Fields", list_of_outputs: bool = False,
|
|
documentation_with_field_description=True):
|
|
"""
|
|
Generate GBNF grammar and documentation for a list of Pydantic models.
|
|
|
|
Args:
|
|
pydantic_model_list: List of Pydantic model classes.
|
|
outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling.
|
|
outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling.
|
|
model_prefix (str): Prefix for the model section in the documentation.
|
|
fields_prefix (str): Prefix for the fields section in the documentation.
|
|
list_of_outputs (bool): Whether the output is a list of items.
|
|
documentation_with_field_description (bool): Include field descriptions in the documentation.
|
|
|
|
Returns:
|
|
tuple: GBNF grammar string, documentation string.
|
|
"""
|
|
documentation = generate_text_documentation(copy(pydantic_model_list), model_prefix, fields_prefix,
|
|
documentation_with_field_description=documentation_with_field_description)
|
|
grammar = generate_gbnf_grammar_from_pydantic_models(pydantic_model_list, outer_object_name,
|
|
outer_object_content, list_of_outputs)
|
|
grammar = remove_empty_lines(grammar + get_primitive_grammar(grammar))
|
|
return grammar, documentation
|
|
|
|
|
|
def generate_gbnf_grammar_and_documentation_from_dictionaries(dictionaries: List[dict],
|
|
outer_object_name: str = None,
|
|
outer_object_content: str = None,
|
|
model_prefix: str = "Output Model",
|
|
fields_prefix: str = "Output Fields",
|
|
list_of_outputs: bool = False,
|
|
documentation_with_field_description=True):
|
|
"""
|
|
Generate GBNF grammar and documentation from a list of dictionaries.
|
|
|
|
Args:
|
|
dictionaries (List[dict]): List of dictionaries representing Pydantic models.
|
|
outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling.
|
|
outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling.
|
|
model_prefix (str): Prefix for the model section in the documentation.
|
|
fields_prefix (str): Prefix for the fields section in the documentation.
|
|
list_of_outputs (bool): Whether the output is a list of items.
|
|
documentation_with_field_description (bool): Include field descriptions in the documentation.
|
|
|
|
Returns:
|
|
tuple: GBNF grammar string, documentation string.
|
|
"""
|
|
pydantic_model_list = create_dynamic_models_from_dictionaries(dictionaries)
|
|
documentation = generate_text_documentation(copy(pydantic_model_list), model_prefix, fields_prefix,
|
|
documentation_with_field_description=documentation_with_field_description)
|
|
grammar = generate_gbnf_grammar_from_pydantic_models(pydantic_model_list, outer_object_name,
|
|
outer_object_content, list_of_outputs)
|
|
grammar = remove_empty_lines(grammar + get_primitive_grammar(grammar))
|
|
return grammar, documentation
|
|
|
|
|
|
def create_dynamic_model_from_function(func: Callable):
|
|
"""
|
|
Creates a dynamic Pydantic model from a given function's type hints and adds the function as a 'run' method.
|
|
|
|
Args:
|
|
func (Callable): A function with type hints from which to create the model.
|
|
|
|
Returns:
|
|
A dynamic Pydantic model class with the provided function as a 'run' method.
|
|
"""
|
|
# Extracting type hints from the provided function
|
|
type_hints = get_type_hints(func)
|
|
type_hints.pop('return', None)
|
|
|
|
# Handling default values and annotations
|
|
dynamic_fields = {}
|
|
defaults = getattr(func, '__defaults__', ()) or ()
|
|
defaults_index = len(type_hints) - len(defaults)
|
|
|
|
for index, (name, typ) in enumerate(type_hints.items()):
|
|
if index >= defaults_index:
|
|
default_value = defaults[index - defaults_index]
|
|
dynamic_fields[name] = (typ, default_value)
|
|
else:
|
|
dynamic_fields[name] = (typ, ...)
|
|
|
|
# Creating the dynamic model
|
|
dynamicModel = create_model(f'{func.__name__}', **dynamic_fields)
|
|
|
|
dynamicModel.__doc__ = getdoc(func)
|
|
|
|
# Wrapping the original function to handle instance 'self'
|
|
def run_method_wrapper(self):
|
|
func_args = {name: getattr(self, name) for name in type_hints}
|
|
return func(**func_args)
|
|
|
|
# Adding the wrapped function as a 'run' method
|
|
setattr(dynamicModel, 'run', run_method_wrapper)
|
|
|
|
return dynamicModel
|
|
|
|
|
|
def add_run_method_to_dynamic_model(model: Type[BaseModel], func: Callable):
|
|
"""
|
|
Add a 'run' method to a dynamic Pydantic model, using the provided function.
|
|
|
|
Args:
|
|
- model (Type[BaseModel]): Dynamic Pydantic model class.
|
|
- func (Callable): Function to be added as a 'run' method to the model.
|
|
|
|
Returns:
|
|
- Type[BaseModel]: Pydantic model class with the added 'run' method.
|
|
"""
|
|
|
|
def run_method_wrapper(self):
|
|
func_args = {name: getattr(self, name) for name in model.model_fields}
|
|
return func(**func_args)
|
|
|
|
# Adding the wrapped function as a 'run' method
|
|
setattr(model, 'run', run_method_wrapper)
|
|
|
|
return model
|
|
|
|
|
|
def create_dynamic_models_from_dictionaries(dictionaries: List[dict]):
|
|
"""
|
|
Create a list of dynamic Pydantic model classes from a list of dictionaries.
|
|
|
|
Args:
|
|
- dictionaries (List[dict]): List of dictionaries representing model structures.
|
|
|
|
Returns:
|
|
- List[Type[BaseModel]]: List of generated dynamic Pydantic model classes.
|
|
"""
|
|
dynamic_models = []
|
|
for func in dictionaries:
|
|
model_name = format_model_and_field_name(func.get("name", ""))
|
|
dyn_model = convert_dictionary_to_to_pydantic_model(func, model_name)
|
|
dynamic_models.append(dyn_model)
|
|
return dynamic_models
|
|
|
|
|
|
def map_grammar_names_to_pydantic_model_class(pydantic_model_list):
|
|
output = {}
|
|
for model in pydantic_model_list:
|
|
output[format_model_and_field_name(model.__name__)] = model
|
|
|
|
return output
|
|
|
|
|
|
from enum import Enum
|
|
|
|
|
|
def json_schema_to_python_types(schema):
|
|
type_map = {
|
|
'any': Any,
|
|
'string': str,
|
|
'number': float,
|
|
'integer': int,
|
|
'boolean': bool,
|
|
'array': list,
|
|
}
|
|
return type_map[schema]
|
|
|
|
|
|
def list_to_enum(enum_name, values):
|
|
return Enum(enum_name, {value: value for value in values})
|
|
|
|
|
|
def convert_dictionary_to_to_pydantic_model(dictionary: dict, model_name: str = 'CustomModel') -> Type[BaseModel]:
|
|
"""
|
|
Convert a dictionary to a Pydantic model class.
|
|
|
|
Args:
|
|
- dictionary (dict): Dictionary representing the model structure.
|
|
- model_name (str): Name of the generated Pydantic model.
|
|
|
|
Returns:
|
|
- Type[BaseModel]: Generated Pydantic model class.
|
|
"""
|
|
fields = {}
|
|
|
|
if "properties" in dictionary:
|
|
for field_name, field_data in dictionary.get("properties", {}).items():
|
|
if field_data == 'object':
|
|
submodel = convert_dictionary_to_to_pydantic_model(dictionary, f'{model_name}_{field_name}')
|
|
fields[field_name] = (submodel, ...)
|
|
else:
|
|
field_type = field_data.get('type', 'str')
|
|
|
|
if field_data.get("enum", []):
|
|
fields[field_name] = (list_to_enum(field_name, field_data.get("enum", [])), ...)
|
|
if field_type == "array":
|
|
items = field_data.get("items", {})
|
|
if items != {}:
|
|
array = {"properties": items}
|
|
array_type = convert_dictionary_to_to_pydantic_model(array, f'{model_name}_{field_name}_items')
|
|
fields[field_name] = (List[array_type], ...)
|
|
else:
|
|
fields[field_name] = (list, ...)
|
|
elif field_type == 'object':
|
|
submodel = convert_dictionary_to_to_pydantic_model(field_data, f'{model_name}_{field_name}')
|
|
fields[field_name] = (submodel, ...)
|
|
else:
|
|
field_type = json_schema_to_python_types(field_type)
|
|
fields[field_name] = (field_type, ...)
|
|
if "function" in dictionary:
|
|
|
|
for field_name, field_data in dictionary.get("function", {}).items():
|
|
if field_name == "name":
|
|
model_name = field_data
|
|
elif field_name == "description":
|
|
fields["__doc__"] = field_data
|
|
elif field_name == "parameters":
|
|
return convert_dictionary_to_to_pydantic_model(field_data, f'{model_name}')
|
|
if "parameters" in dictionary:
|
|
field_data = {"function": dictionary}
|
|
return convert_dictionary_to_to_pydantic_model(field_data, f'{model_name}')
|
|
|
|
custom_model = create_model(model_name, **fields)
|
|
return custom_model
|
|
|
|
|
|
|