mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 21:37:19 +01:00
96ea727f47
* Initial work on interactive mode. * Improve interactive mode. Make rev. prompt optional. * Update README to explain interactive mode. * Fix OS X build
105 lines
3.1 KiB
C++
105 lines
3.1 KiB
C++
// Various helper functions and utilities
|
|
|
|
#pragma once
|
|
|
|
#include <string>
|
|
#include <map>
|
|
#include <vector>
|
|
#include <random>
|
|
#include <thread>
|
|
|
|
//
|
|
// CLI argument parsing
|
|
//
|
|
|
|
struct gpt_params {
|
|
int32_t seed = -1; // RNG seed
|
|
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
|
int32_t n_predict = 128; // new tokens to predict
|
|
int32_t repeat_last_n = 64; // last n tokens to penalize
|
|
|
|
// sampling parameters
|
|
int32_t top_k = 40;
|
|
float top_p = 0.95f;
|
|
float temp = 0.80f;
|
|
float repeat_penalty = 1.30f;
|
|
|
|
int32_t n_batch = 8; // batch size for prompt processing
|
|
|
|
std::string model = "models/lamma-7B/ggml-model.bin"; // model path
|
|
std::string prompt;
|
|
|
|
bool use_color = false; // use color to distinguish generations and inputs
|
|
|
|
bool interactive = false; // interactive mode
|
|
bool interactive_start = false; // reverse prompt immediately
|
|
std::string antiprompt = ""; // string upon seeing which more user input is prompted
|
|
};
|
|
|
|
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
|
|
|
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
|
|
|
|
std::string gpt_random_prompt(std::mt19937 & rng);
|
|
|
|
//
|
|
// Vocab utils
|
|
//
|
|
|
|
struct gpt_vocab {
|
|
using id = int32_t;
|
|
using token = std::string;
|
|
|
|
std::map<token, id> token_to_id;
|
|
std::map<id, token> id_to_token;
|
|
};
|
|
|
|
void replace(std::string & str, const std::string & needle, const std::string & replacement);
|
|
|
|
// poor-man's JSON parsing
|
|
std::map<std::string, int32_t> json_parse(const std::string & fname);
|
|
|
|
// split text into tokens
|
|
//
|
|
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
|
|
//
|
|
// Regex (Python):
|
|
// r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
|
|
//
|
|
// Regex (C++):
|
|
// R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
|
|
//
|
|
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
|
|
|
|
// TODO: this is probably wrong, but I cannot figure out how this tokenizer works ..
|
|
// ref: https://github.com/google/sentencepiece
|
|
std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, const std::string & text, bool bos);
|
|
|
|
// load the tokens from encoder.json
|
|
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
|
|
|
|
// sample next token given probabilities for each embedding
|
|
//
|
|
// - consider only the top K tokens
|
|
// - from them, consider only the top tokens with cumulative probability > P
|
|
//
|
|
gpt_vocab::id llama_sample_top_p_top_k(
|
|
const gpt_vocab & vocab,
|
|
const float * logits,
|
|
std::vector<gpt_vocab::id> & last_n_tokens,
|
|
double repeat_penalty,
|
|
int top_k,
|
|
double top_p,
|
|
double temp,
|
|
std::mt19937 & rng);
|
|
|
|
// filer to top K tokens from list of logits
|
|
void sample_top_k(std::vector<std::pair<double, gpt_vocab::id>> & logits_id, int top_k);
|
|
|
|
//
|
|
// Quantization
|
|
//
|
|
|
|
size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist);
|
|
size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist);
|