mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-10-31 23:28:51 +01:00
937 lines
34 KiB
C++
937 lines
34 KiB
C++
#include "ggml.h"
|
|
#include "llama.h"
|
|
#include "common.h"
|
|
#include "log.h"
|
|
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
#include <cassert>
|
|
#include <climits>
|
|
#include <cstring>
|
|
#include <cstdarg>
|
|
#include <ctime>
|
|
#include <random>
|
|
#include <stdexcept>
|
|
#include <sstream>
|
|
#include <algorithm>
|
|
#include <string>
|
|
|
|
// GGUF keys & tensor names.
|
|
|
|
#define KV_GENERAL_ARCHITECTURE "general.architecture"
|
|
#define KV_GENERAL_NAME "general.name"
|
|
|
|
#define KV_TOKENIZER_MODEL "tokenizer.ggml.model"
|
|
#define KV_TOKENIZER_LIST "tokenizer.ggml.tokens"
|
|
#define KV_TOKENIZER_TOKEN_TYPE "tokenizer.ggml.token_type"
|
|
#define KV_TOKENIZER_SCORES "tokenizer.ggml.scores"
|
|
#define KV_TOKENIZER_BOS_ID "tokenizer.ggml.bos_token_id"
|
|
#define KV_TOKENIZER_EOS_ID "tokenizer.ggml.eos_token_id"
|
|
#define KV_TOKENIZER_UNK_ID "tokenizer.ggml.unknown_token_id"
|
|
#define KV_TOKENIZER_SEP_ID "tokenizer.ggml.seperator_token_id"
|
|
#define KV_TOKENIZER_PAD_ID "tokenizer.ggml.padding_token_id"
|
|
#define KV_TOKENIZER_HF_JSON "tokenizer.huggingface.json"
|
|
|
|
#define KV_CONTEXT_LENGTH "llama.context_length"
|
|
#define KV_EMBEDDING_LENGTH "llama.embedding_length"
|
|
#define KV_BLOCK_COUNT "llama.block_count"
|
|
#define KV_FEED_FORWARD_LENGTH "llama.feed_forward_length"
|
|
#define KV_ATTENTION_HEAD_COUNT "llama.attention.head_count"
|
|
#define KV_ATTENTION_HEAD_COUNT_KV "llama.attention.head_count_kv"
|
|
#define KV_ATTENTION_LAYERNORM_RMS_EPS "llama.attention.layer_norm_rms_epsilon"
|
|
#define KV_ROPE_DIMENSION_COUNT "llama.rope.dimension_count"
|
|
|
|
#define TN_TOKEN_EMBD "token_embd.weight"
|
|
#define TN_OUTPUT_NORM "output_norm.weight"
|
|
#define TN_OUTPUT "output.weight"
|
|
#define TN_ATTN_NORM "blk.%d.attn_norm.weight"
|
|
#define TN_ATTN_Q "blk.%d.attn_q.weight"
|
|
#define TN_ATTN_K "blk.%d.attn_k.weight"
|
|
#define TN_ATTN_V "blk.%d.attn_v.weight"
|
|
#define TN_ATTN_OUTPUT "blk.%d.attn_output.weight"
|
|
#define TN_FFN_NORM "blk.%d.ffn_norm.weight"
|
|
#define TN_FFN_GATE "blk.%d.ffn_gate.weight"
|
|
#define TN_FFN_DOWN "blk.%d.ffn_down.weight"
|
|
#define TN_FFN_UP "blk.%d.ffn_up.weight"
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
|
#endif
|
|
|
|
#define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
|
|
#define LLAMA_FILE_VERSION_GGJT_V3 3
|
|
|
|
#define TOKENIZER_NAME "llama"
|
|
#define UNKNOWN_TOKEN_ID 0
|
|
#define BOS_TOKEN_ID 1
|
|
#define EOS_TOKEN_ID 2
|
|
|
|
//////////////////////////////////////// llama2.c model structs and functions to load models, alloc memory etc.
|
|
typedef struct {
|
|
int dim; // transformer dimension
|
|
int hidden_dim; // for ffn layers
|
|
int n_layers; // number of layers
|
|
int n_heads; // number of query heads
|
|
int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery)
|
|
int vocab_size; // vocabulary size, usually 256 (byte-level)
|
|
int seq_len; // max sequence length
|
|
} Config;
|
|
|
|
struct TransformerWeights {
|
|
// token embedding table
|
|
std::vector<float> token_embedding_table; // (vocab_size, dim)
|
|
// weights for rmsnorms
|
|
std::vector<float> rms_att_weight; // (layer, dim) rmsnorm weights
|
|
std::vector<float> rms_ffn_weight; // (layer, dim)
|
|
// weights for matmuls
|
|
std::vector<float> wq; // (layer, dim, dim)
|
|
std::vector<float> wk; // (layer, dim, dim)
|
|
std::vector<float> wv; // (layer, dim, dim)
|
|
std::vector<float> wo; // (layer, dim, dim)
|
|
// weights for ffn
|
|
std::vector<float> w1; // (layer, hidden_dim, dim)
|
|
std::vector<float> w2; // (layer, dim, hidden_dim)
|
|
std::vector<float> w3; // (layer, hidden_dim, dim)
|
|
// final rmsnorm
|
|
std::vector<float> rms_final_weight; // (dim,)
|
|
// freq_cis for RoPE relatively positional embeddings
|
|
// std::vector<float> freq_cis_real; // (seq_len, dim/2)
|
|
// std::vector<float> freq_cis_imag; // (seq_len, dim/2)
|
|
// (optional) classifier weights for the logits, on the last layer
|
|
std::vector<float> wcls;
|
|
};
|
|
|
|
static void alloc_weights(TransformerWeights * w, const Config * p, bool shared_weights) {
|
|
const int n_multiqueries = p->n_kv_heads <= 0 || p->n_kv_heads >= p->n_heads ? 1 : p->n_heads / p->n_kv_heads;
|
|
try {
|
|
w->token_embedding_table.resize(p->vocab_size * p->dim);
|
|
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
|
|
|
w->rms_att_weight.resize(p->n_layers * p->dim);
|
|
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
|
|
|
|
w->rms_ffn_weight.resize(p->n_layers * p->dim);
|
|
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
|
|
|
|
w->wq.resize(p->n_layers * p->dim * p->dim);
|
|
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
|
|
|
w->wk.resize(p->n_layers * p->dim * p->dim / n_multiqueries);
|
|
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries);
|
|
|
|
w->wv.resize(p->n_layers * p->dim * p->dim / n_multiqueries);
|
|
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries);
|
|
|
|
w->wo.resize(p->n_layers * p->dim * p->dim);
|
|
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
|
|
|
w->w1.resize(p->n_layers * p->hidden_dim * p->dim);
|
|
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
|
|
|
w->w2.resize(p->n_layers * p->hidden_dim * p->dim);
|
|
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
|
|
|
|
w->w3.resize(p->n_layers * p->hidden_dim * p->dim);
|
|
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
|
|
|
w->rms_final_weight.resize(p->dim);
|
|
LOG("%s: Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
|
|
|
|
if (shared_weights) {
|
|
w->wcls = {};
|
|
} else {
|
|
w->wcls.resize(p->vocab_size * p->dim);
|
|
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
|
}
|
|
}
|
|
catch (std::length_error &) {
|
|
die("Invalid configuration. Failed to allocate memory for weights");
|
|
}
|
|
}
|
|
|
|
static int checkpoint_init_weights(TransformerWeights * w, const Config * p, FILE * f, bool shared_weights) {
|
|
if (fread(w->token_embedding_table.data(), sizeof(float), w->token_embedding_table.size(), f) != w->token_embedding_table.size()) return 1;
|
|
if (fread(w->rms_att_weight.data(), sizeof(float), w->rms_att_weight.size(), f) != w->rms_att_weight.size()) return 1;
|
|
if (fread(w->wq.data(), sizeof(float), w->wq.size(), f) != w->wq.size()) return 1;
|
|
if (fread(w->wk.data(), sizeof(float), w->wk.size(), f) != w->wk.size()) return 1;
|
|
if (fread(w->wv.data(), sizeof(float), w->wv.size(), f) != w->wv.size()) return 1;
|
|
if (fread(w->wo.data(), sizeof(float), w->wo.size(), f) != w->wo.size()) return 1;
|
|
if (fread(w->rms_ffn_weight.data(), sizeof(float), w->rms_ffn_weight.size(), f) != w->rms_ffn_weight.size()) return 1;
|
|
if (fread(w->w1.data(), sizeof(float), w->w1.size(), f) != w->w1.size()) return 1;
|
|
if (fread(w->w2.data(), sizeof(float), w->w2.size(), f) != w->w2.size()) return 1;
|
|
if (fread(w->w3.data(), sizeof(float), w->w3.size(), f) != w->w3.size()) return 1;
|
|
if (fread(w->rms_final_weight.data(), sizeof(float), w->rms_final_weight.size(), f) != w->rms_final_weight.size()) return 1;
|
|
|
|
// Skip freq_cis_real & freq_cis_imag
|
|
int head_size = p->dim / p->n_heads;
|
|
fseek(f, p->seq_len * head_size * sizeof(float), SEEK_CUR);
|
|
|
|
if (!shared_weights && fread(w->wcls.data(), sizeof(float), w->wcls.size(), f) != w->wcls.size()) return 1;
|
|
|
|
// Check we didn't forget to read anything
|
|
auto curr = ftell(f);
|
|
fseek(f, 0, SEEK_END);
|
|
auto end = ftell(f);
|
|
if (curr != end) {
|
|
LOG("%s: Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", __func__, curr, end);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void print_sample_weights(TransformerWeights *w){
|
|
LOG("----- Quick print of first of the weight vales of all the variables\n");
|
|
LOG("%f\n", w->token_embedding_table[0]);
|
|
LOG("%f\n", w->rms_att_weight[0]);
|
|
LOG("%f\n", w->rms_ffn_weight[0]);
|
|
|
|
LOG("%f\n", w->wq[0]);
|
|
LOG("%f\n", w->wk[0]);
|
|
LOG("%f\n", w->wv[0]);
|
|
LOG("%f\n", w->wo[0]);
|
|
LOG("%f\n", w->w1[0]);
|
|
LOG("%f\n", w->w2[0]);
|
|
LOG("%f\n", w->w3[0]);
|
|
LOG("%f\n", w->rms_att_weight[0]);
|
|
if (!w->wcls.empty()) LOG("%f\n", w->wcls[0]);
|
|
}
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//////////////////////////////////////// ggml structs and functions required to load models, configs and save the model.
|
|
|
|
struct llama_vocab {
|
|
using id = int32_t;
|
|
using token = std::string;
|
|
using ttype = llama_token_type;
|
|
|
|
struct token_data {
|
|
token text;
|
|
float score;
|
|
ttype type;
|
|
};
|
|
|
|
std::unordered_map<token, id> token_to_id;
|
|
std::vector<token_data> id_to_token;
|
|
};
|
|
|
|
struct my_llama_hparams {
|
|
uint32_t n_vocab = 32000;
|
|
uint32_t n_ctx = 512; // this is provided as user input?
|
|
uint32_t n_embd = 4096;
|
|
uint32_t n_ff = 11008;
|
|
uint32_t n_mult = 4;
|
|
uint32_t n_head = 32;
|
|
uint32_t n_head_kv = 32;
|
|
uint32_t n_layer = 32;
|
|
uint32_t n_rot = 64;
|
|
|
|
bool operator!=(const my_llama_hparams& other) const {
|
|
return memcmp(this, &other, sizeof(my_llama_hparams));
|
|
}
|
|
};
|
|
|
|
struct my_llama_layer {
|
|
// normalization
|
|
struct ggml_tensor * attention_norm;
|
|
|
|
// attention
|
|
struct ggml_tensor * wq;
|
|
struct ggml_tensor * wk;
|
|
struct ggml_tensor * wv;
|
|
struct ggml_tensor * wo;
|
|
|
|
// normalization
|
|
struct ggml_tensor * ffn_norm;
|
|
|
|
// ff
|
|
struct ggml_tensor * w1;
|
|
struct ggml_tensor * w2;
|
|
struct ggml_tensor * w3;
|
|
};
|
|
|
|
struct my_llama_model {
|
|
struct ggml_context * ctx = NULL;
|
|
|
|
std::string name;
|
|
|
|
my_llama_hparams hparams;
|
|
|
|
struct ggml_tensor * tok_embeddings;
|
|
|
|
struct ggml_tensor * norm;
|
|
struct ggml_tensor * output;
|
|
|
|
std::vector<my_llama_layer> layers;
|
|
|
|
uint32_t train_its = 0;
|
|
uint32_t train_samples = 0;
|
|
uint32_t train_tokens = 0;
|
|
};
|
|
|
|
struct train_params {
|
|
const char * fn_vocab_model;
|
|
const char * fn_llama2c_model;
|
|
const char * fn_llama2c_output_model;
|
|
const char * fn_train_data;
|
|
const char * fn_checkpoint_in;
|
|
const char * fn_checkpoint_out;
|
|
const char * fn_model_out;
|
|
|
|
uint32_t seed;
|
|
|
|
int n_ctx;
|
|
int n_embd;
|
|
int n_mult;
|
|
int n_head;
|
|
int n_layer;
|
|
int n_rotmax;
|
|
|
|
int n_threads;
|
|
int n_batch;
|
|
int n_examples;
|
|
int n_predict;
|
|
|
|
int print_info_interval;
|
|
int print_details_interval;
|
|
|
|
bool samples_start_after_nl;
|
|
bool use_adam;
|
|
bool use_flash;
|
|
bool use_scratch;
|
|
|
|
// only adam
|
|
int warmup;
|
|
int cos_decay_steps;
|
|
float cos_decay_restart;
|
|
float cos_decay_alpha;
|
|
|
|
int lbfgs_n_iter;
|
|
int adam_n_iter;
|
|
float adam_alpha;
|
|
float adam_decay;
|
|
|
|
int mem_model_gb;
|
|
int mem_compute_gb;
|
|
int mem_compute0_gb;
|
|
int mem_compute1_gb;
|
|
};
|
|
|
|
static void print_params(struct my_llama_hparams * params) {
|
|
LOG("%s: n_vocab: %u\n", __func__, params->n_vocab);
|
|
LOG("%s: n_ctx: %u\n", __func__, params->n_ctx);
|
|
LOG("%s: n_embd: %u\n", __func__, params->n_embd);
|
|
LOG("%s: n_mult: %u\n", __func__, params->n_mult);
|
|
LOG("%s: n_head: %u\n", __func__, params->n_head);
|
|
LOG("%s: n_head_kv: %u\n", __func__, params->n_head_kv);
|
|
LOG("%s: n_ff: %u\n", __func__, params->n_ff);
|
|
LOG("%s: n_layer: %u\n", __func__, params->n_layer);
|
|
LOG("%s: n_rot: %u\n", __func__, params->n_rot);
|
|
}
|
|
|
|
static void print_tensor_info(const struct ggml_context * ctx) {
|
|
for (auto t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
|
LOG("%s: Allocating ", __func__);
|
|
int64_t total = 1;
|
|
int i = 0;
|
|
for (; i < ggml_n_dims(t); ++i) {
|
|
if (i > 0) LOG("x ");
|
|
LOG("[%" PRId64 "] ", t->ne[i]);
|
|
total *= t->ne[i];
|
|
}
|
|
if (i > 1) LOG("= [%" PRId64 "] ", total);
|
|
LOG("float space for %s\n", ggml_get_name(t));
|
|
}
|
|
}
|
|
|
|
static void init_model(struct my_llama_model * model) {
|
|
const auto & hparams = model->hparams;
|
|
|
|
const uint32_t n_embd = hparams.n_embd;
|
|
const uint32_t n_layer = hparams.n_layer;
|
|
const uint32_t n_vocab = hparams.n_vocab;
|
|
|
|
const uint32_t n_multiqueries = hparams.n_head_kv <= 0 || hparams.n_head_kv >= hparams.n_head ? 1 : hparams.n_head / hparams.n_head_kv;
|
|
|
|
const uint32_t n_ff = hparams.n_ff;
|
|
struct ggml_context * ctx = model->ctx;
|
|
|
|
model->train_its = 0;
|
|
model->train_samples = 0;
|
|
model->train_tokens = 0;
|
|
|
|
model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
|
|
model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
|
model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
|
|
|
|
ggml_set_name(model->tok_embeddings, "tok_embeddings.weight");
|
|
ggml_set_name(model->norm, "norm.weight");
|
|
ggml_set_name(model->output, "output.weight");
|
|
|
|
model->layers.resize(n_layer);
|
|
for (uint32_t i = 0; i < n_layer; ++i) {
|
|
auto & layer = model->layers[i];
|
|
|
|
std::string layers_i = "layers." + std::to_string(i);
|
|
|
|
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
|
|
|
layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
|
layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries);
|
|
layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries);
|
|
layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
|
|
|
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
|
|
|
layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
|
|
layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
|
|
layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
|
|
|
|
ggml_set_name(layer.attention_norm, (layers_i + ".attention_norm.weight").c_str());
|
|
|
|
ggml_set_name(layer.wq, (layers_i + ".attention.wq.weight").c_str());
|
|
ggml_set_name(layer.wk, (layers_i + ".attention.wk.weight").c_str());
|
|
ggml_set_name(layer.wv, (layers_i + ".attention.wv.weight").c_str());
|
|
ggml_set_name(layer.wo, (layers_i + ".attention.wo.weight").c_str());
|
|
|
|
ggml_set_name(layer.ffn_norm, (layers_i + ".ffn_norm.weight").c_str());
|
|
|
|
ggml_format_name(layer.w1, "%s.feed_forward.w1.weight", layers_i.c_str());
|
|
ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str());
|
|
ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str());
|
|
}
|
|
|
|
print_tensor_info(ctx);
|
|
}
|
|
|
|
static float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
|
|
float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
|
|
return *ptr;
|
|
}
|
|
|
|
static int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
|
|
int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
|
|
return *ptr;
|
|
}
|
|
|
|
static void print_row(struct ggml_tensor * probs, int i) {
|
|
for (int k = 0; k < probs->ne[0]; ++k) {
|
|
float p = get_f32_2d(probs, k, i);
|
|
LOG(" %f", p);
|
|
}
|
|
LOG("\n");
|
|
}
|
|
|
|
static void print_matrix(struct ggml_tensor * probs) {
|
|
assert(ggml_is_matrix(probs));
|
|
for (int i = 0; i < probs->ne[1]; ++i) {
|
|
for (int k = 0; k < probs->ne[0]; ++k) {
|
|
float p = get_f32_2d(probs, k, i);
|
|
LOG(" %.2f", p);
|
|
}
|
|
LOG("\n");
|
|
}
|
|
}
|
|
|
|
struct llama_file {
|
|
// use FILE * so we don't have to re-open the file to mmap
|
|
FILE * fp;
|
|
size_t size;
|
|
|
|
llama_file(const char * fname, const char * mode) {
|
|
fp = std::fopen(fname, mode);
|
|
if (fp == NULL) {
|
|
size = 0;
|
|
} else {
|
|
seek(0, SEEK_END);
|
|
size = tell();
|
|
seek(0, SEEK_SET);
|
|
}
|
|
}
|
|
|
|
size_t tell() const {
|
|
#ifdef _WIN32
|
|
__int64 ret = _ftelli64(fp);
|
|
#else
|
|
long ret = std::ftell(fp);
|
|
#endif
|
|
GGML_ASSERT(ret != -1); // this really shouldn't fail
|
|
return (size_t) ret;
|
|
}
|
|
|
|
void seek(size_t offset, int whence) {
|
|
#ifdef _WIN32
|
|
int ret = _fseeki64(fp, (__int64) offset, whence);
|
|
#else
|
|
int ret = std::fseek(fp, (long) offset, whence);
|
|
#endif
|
|
GGML_ASSERT(ret == 0); // same
|
|
}
|
|
|
|
void read_raw(void * ptr, size_t size) {
|
|
if (size == 0) {
|
|
return;
|
|
}
|
|
errno = 0;
|
|
std::size_t ret = std::fread(ptr, size, 1, fp);
|
|
if (ferror(fp)) {
|
|
die_fmt("fread failed: %s", strerror(errno));
|
|
}
|
|
if (ret != 1) {
|
|
die("unexpectedly reached end of file");
|
|
}
|
|
}
|
|
|
|
std::uint32_t read_u32() {
|
|
std::uint32_t ret;
|
|
read_raw(&ret, sizeof(ret));
|
|
return ret;
|
|
}
|
|
std::float_t read_f32() {
|
|
std::float_t ret;
|
|
read_raw(&ret, sizeof(ret));
|
|
return ret;
|
|
}
|
|
|
|
std::string read_string(std::uint32_t len) {
|
|
std::vector<char> chars(len);
|
|
read_raw(chars.data(), len);
|
|
return std::string(chars.data(), len);
|
|
}
|
|
|
|
~llama_file() {
|
|
if (fp) {
|
|
std::fclose(fp);
|
|
}
|
|
}
|
|
};
|
|
|
|
static bool is_ggml_file(const char * filename) {
|
|
llama_file file(filename, "rb");
|
|
if (file.size < 4) {
|
|
return false;
|
|
}
|
|
std::string magic = file.read_string(4);
|
|
return magic == GGUF_MAGIC;
|
|
}
|
|
|
|
static std::string llama_escape_whitespaces(const std::string & text) {
|
|
std::ostringstream out;
|
|
for (char c : text) {
|
|
if (c == ' ') out << "\xe2\x96\x81";
|
|
else out << c;
|
|
}
|
|
return out.str();
|
|
}
|
|
|
|
static void load_vocab(const char * filename, const Config * config, struct llama_vocab * vocab) {
|
|
if (is_ggml_file(filename)) {
|
|
LOG("%s: Loading vocabulary from gguf file %s\n", __func__, filename);
|
|
struct ggml_context * ctx_data = NULL;
|
|
|
|
struct gguf_init_params params = {
|
|
/*.no_alloc = */ false,
|
|
/*.ctx = */ &ctx_data,
|
|
};
|
|
|
|
struct gguf_context * ctx = gguf_init_from_file(filename, params);
|
|
GGML_ASSERT(ctx != NULL);
|
|
|
|
const int model_idx = gguf_find_key(ctx, KV_TOKENIZER_MODEL);
|
|
GGML_ASSERT(model_idx >= 0);
|
|
std::string tokenizer_name = gguf_get_val_str(ctx, model_idx);
|
|
GGML_ASSERT(tokenizer_name == TOKENIZER_NAME);
|
|
|
|
const int token_idx = gguf_find_key(ctx, KV_TOKENIZER_LIST);
|
|
GGML_ASSERT(token_idx >= 0);
|
|
|
|
const int score_idx = gguf_find_key(ctx, KV_TOKENIZER_SCORES);
|
|
GGML_ASSERT(score_idx >= 0);
|
|
const float * scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
|
|
|
|
const int toktype_idx = gguf_find_key(ctx, KV_TOKENIZER_TOKEN_TYPE);
|
|
GGML_ASSERT(toktype_idx >= 0);
|
|
const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
|
|
|
|
const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
|
|
if (n_vocab != static_cast<uint32_t>(config->vocab_size)) {
|
|
die_fmt("vocab size mismatch: (gguf) %u != (llama2c) %d", n_vocab, config->vocab_size);
|
|
}
|
|
|
|
vocab->id_to_token.resize(n_vocab);
|
|
|
|
for (uint32_t i = 0; i < n_vocab; i++) {
|
|
std::string word = gguf_get_arr_str(ctx, token_idx, i);
|
|
|
|
vocab->token_to_id[word] = i;
|
|
|
|
auto & token_data = vocab->id_to_token[i];
|
|
token_data.text = std::move(word);
|
|
token_data.score = scores[i];
|
|
token_data.type = (llama_token_type) toktypes[i];
|
|
}
|
|
ggml_free(ctx_data);
|
|
gguf_free(ctx);
|
|
} else {
|
|
// assume llama2.c vocabulary
|
|
LOG("%s: Assuming llama2.c vocabulary since %s is not a gguf file\n", __func__, filename);
|
|
llama_file file(filename, "rb");
|
|
if (!file.fp) {
|
|
die_fmt("%s: %s", strerror(errno), filename);
|
|
}
|
|
const int n_vocab = config->vocab_size;
|
|
/* uint32_t max_token_length = */ file.read_u32(); // unused
|
|
vocab->id_to_token.resize(n_vocab);
|
|
for (llama_vocab::id id=0; id<n_vocab; ++id) {
|
|
float_t score = file.read_f32();
|
|
uint32_t len = file.read_u32();
|
|
std::string text = file.read_string(len);
|
|
|
|
unsigned char byte_val;
|
|
llama_vocab::ttype type = LLAMA_TOKEN_TYPE_NORMAL;
|
|
if (id == UNKNOWN_TOKEN_ID) {
|
|
text = "<unk>";
|
|
type = LLAMA_TOKEN_TYPE_UNKNOWN;
|
|
} else if (id == BOS_TOKEN_ID) {
|
|
text = "<s>";
|
|
type = LLAMA_TOKEN_TYPE_CONTROL;
|
|
} else if (id == EOS_TOKEN_ID) {
|
|
text = "</s>";
|
|
type = LLAMA_TOKEN_TYPE_CONTROL;
|
|
} else if (text.empty()) {
|
|
type = LLAMA_TOKEN_TYPE_CONTROL;
|
|
} else if (sscanf(text.c_str(), "<0x%02hhX>", &byte_val) == 1) {
|
|
// Text of byte tokens is already in the expected format.
|
|
type = LLAMA_TOKEN_TYPE_BYTE;
|
|
} else {
|
|
type = LLAMA_TOKEN_TYPE_NORMAL;
|
|
}
|
|
text = llama_escape_whitespaces(text);
|
|
|
|
vocab->id_to_token[id].text = text;
|
|
vocab->id_to_token[id].score = score;
|
|
vocab->id_to_token[id].type = type;
|
|
vocab->token_to_id.emplace(text, id);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) {
|
|
int size = 1;
|
|
for (int dim = 0; dim < ggml_n_dims(gg_weights); ++dim) {
|
|
size *= gg_weights->ne[dim];
|
|
}
|
|
for (int ct = 0; ct < size; ++ct) {
|
|
int64_t i0 = 0; int64_t i1 = 0;
|
|
int64_t i2 = 0; int64_t i3 = 0;
|
|
ggml_unravel_index(gg_weights, ct, &i0, &i1, &i2, &i3);
|
|
ggml_set_f32_nd(gg_weights, i0, i1, i2, i3, karpathy_weights[ct]);
|
|
}
|
|
}
|
|
|
|
static void save_as_llama_model(
|
|
struct llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename
|
|
) {
|
|
// convert AK weights into GG weights one by one.
|
|
// w->token_embedding_table -> model->tok_embeddings
|
|
// float* -> struct ggml_tensor
|
|
convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table.data());
|
|
convert_weights_ak_to_gg(model->output, !w->wcls.empty() ? w->wcls.data() : w->token_embedding_table.data());
|
|
|
|
convert_weights_ak_to_gg(model->norm, w->rms_final_weight.data());
|
|
//print_row(model->norm, 0);
|
|
|
|
// for rms-att-weight
|
|
int row_length = model->hparams.n_embd;
|
|
int n_ff = model->hparams.n_ff;
|
|
|
|
const uint32_t n_multiqueries = model->hparams.n_head_kv <= 0 || model->hparams.n_head_kv >= model->hparams.n_head ? 1 : model->hparams.n_head / model->hparams.n_head_kv;
|
|
|
|
for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
|
|
auto & layer = model->layers[i];
|
|
// 1d
|
|
convert_weights_ak_to_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
|
|
convert_weights_ak_to_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]);
|
|
|
|
// from 3d matrix layer x dim x dim to 2d matrix dim x dim
|
|
convert_weights_ak_to_gg(layer.wq , &w->wq[i*row_length*row_length]);
|
|
convert_weights_ak_to_gg(layer.wo , &w->wo[i*row_length*row_length]);
|
|
// from 3d matrix layer x dim x dim to 2d matrix dim x dim / n_multiqueries
|
|
convert_weights_ak_to_gg(layer.wk , &w->wk[i*row_length*row_length/n_multiqueries]);
|
|
convert_weights_ak_to_gg(layer.wv , &w->wv[i*row_length*row_length/n_multiqueries]);
|
|
|
|
convert_weights_ak_to_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
|
|
convert_weights_ak_to_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
|
|
convert_weights_ak_to_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
|
|
}
|
|
|
|
struct gguf_context * ctx = gguf_init_empty();
|
|
|
|
std::vector<const char*> tokens;
|
|
std::vector<float> scores;
|
|
std::vector<llama_token_type> token_types;
|
|
for (const llama_vocab::token_data & token_data : vocab->id_to_token) {
|
|
tokens.push_back(token_data.text.c_str());
|
|
scores.push_back(token_data.score);
|
|
token_types.push_back(token_data.type);
|
|
}
|
|
gguf_set_arr_str(ctx, KV_TOKENIZER_LIST, tokens.data(), tokens.size());
|
|
gguf_set_arr_data(ctx, KV_TOKENIZER_SCORES, GGUF_TYPE_FLOAT32, scores.data(), scores.size());
|
|
gguf_set_arr_data(ctx, KV_TOKENIZER_TOKEN_TYPE, GGUF_TYPE_INT32, token_types.data(), token_types.size());
|
|
|
|
gguf_set_val_str(ctx, KV_TOKENIZER_MODEL, TOKENIZER_NAME);
|
|
|
|
gguf_set_val_str(ctx, KV_GENERAL_ARCHITECTURE, "llama");
|
|
gguf_set_val_str(ctx, KV_GENERAL_NAME, "llama");
|
|
|
|
// special tokens
|
|
gguf_set_val_u32(ctx, KV_TOKENIZER_UNK_ID, UNKNOWN_TOKEN_ID);
|
|
gguf_set_val_u32(ctx, KV_TOKENIZER_BOS_ID, BOS_TOKEN_ID);
|
|
gguf_set_val_u32(ctx, KV_TOKENIZER_EOS_ID, EOS_TOKEN_ID);
|
|
gguf_set_val_u32(ctx, KV_TOKENIZER_SEP_ID, -1);
|
|
gguf_set_val_u32(ctx, KV_TOKENIZER_PAD_ID, -1);
|
|
|
|
gguf_set_val_u32(ctx, KV_CONTEXT_LENGTH, model->hparams.n_ctx);
|
|
gguf_set_val_u32(ctx, KV_EMBEDDING_LENGTH, model->hparams.n_embd);
|
|
gguf_set_val_u32(ctx, KV_FEED_FORWARD_LENGTH, model->hparams.n_ff);
|
|
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
|
|
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
|
|
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, model->hparams.n_head_kv);
|
|
gguf_set_val_u32(ctx, KV_BLOCK_COUNT, model->hparams.n_layer);
|
|
gguf_set_val_u32(ctx, KV_ROPE_DIMENSION_COUNT, model->hparams.n_rot);
|
|
gguf_set_val_f32(ctx, KV_ATTENTION_LAYERNORM_RMS_EPS, 1e-5f);
|
|
|
|
// write tensors
|
|
ggml_set_name(model->tok_embeddings, TN_TOKEN_EMBD);
|
|
gguf_add_tensor(ctx, model->tok_embeddings);
|
|
|
|
ggml_set_name(model->norm, TN_OUTPUT_NORM);
|
|
gguf_add_tensor(ctx, model->norm);
|
|
|
|
ggml_set_name(model->output, TN_OUTPUT);
|
|
gguf_add_tensor(ctx, model->output);
|
|
|
|
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
|
|
auto & layer = model->layers[i];
|
|
|
|
ggml_format_name(layer.wq, TN_ATTN_Q, i);
|
|
gguf_add_tensor(ctx, layer.wq);
|
|
|
|
ggml_format_name(layer.wk, TN_ATTN_K, i);
|
|
gguf_add_tensor(ctx, layer.wk);
|
|
|
|
ggml_format_name(layer.wv, TN_ATTN_V, i);
|
|
gguf_add_tensor(ctx, layer.wv);
|
|
|
|
ggml_format_name(layer.wo, TN_ATTN_OUTPUT, i);
|
|
gguf_add_tensor(ctx, layer.wo);
|
|
|
|
ggml_format_name(layer.attention_norm, TN_ATTN_NORM, i);
|
|
gguf_add_tensor(ctx, layer.attention_norm);
|
|
|
|
ggml_format_name(layer.w1, TN_FFN_GATE, i);
|
|
gguf_add_tensor(ctx, layer.w1);
|
|
|
|
ggml_format_name(layer.w2, TN_FFN_DOWN, i);
|
|
gguf_add_tensor(ctx, layer.w2);
|
|
|
|
ggml_format_name(layer.w3, TN_FFN_UP, i);
|
|
gguf_add_tensor(ctx, layer.w3);
|
|
|
|
ggml_format_name(layer.ffn_norm, TN_FFN_NORM, i);
|
|
gguf_add_tensor(ctx, layer.ffn_norm);
|
|
}
|
|
|
|
gguf_write_to_file(ctx, filename, false);
|
|
gguf_free(ctx);
|
|
}
|
|
|
|
static struct train_params get_default_train_params() {
|
|
struct train_params params;
|
|
params.fn_vocab_model = "models/7B/ggml-model-f16.gguf";
|
|
params.fn_llama2c_output_model = "ak_llama_model.bin";
|
|
params.fn_train_data = "shakespeare.txt";
|
|
params.fn_checkpoint_in = "checkpoint.bin";
|
|
params.fn_checkpoint_out = "checkpoint.bin";
|
|
params.fn_model_out = "ggml-checkpoint-f32.bin";
|
|
|
|
params.seed = -1;
|
|
|
|
params.n_ctx = 128;
|
|
params.n_embd = 256;
|
|
params.n_mult = 256;
|
|
params.n_head = 8;
|
|
params.n_layer = 16;
|
|
params.n_rotmax = 64;
|
|
|
|
params.n_threads = 6;
|
|
params.n_batch = 8;
|
|
params.n_examples = 8;
|
|
params.n_predict = 1024;
|
|
|
|
params.print_info_interval = 1;
|
|
params.print_details_interval = 2;
|
|
|
|
params.samples_start_after_nl = false;
|
|
params.use_adam = true;
|
|
params.use_flash = true;
|
|
params.use_scratch = true;
|
|
|
|
// only adam
|
|
params.warmup = 100;
|
|
params.cos_decay_steps = 1000;
|
|
params.cos_decay_restart = 1.1f;
|
|
params.cos_decay_alpha = 0.0f;
|
|
|
|
params.lbfgs_n_iter = 16;
|
|
params.adam_n_iter = 16;
|
|
params.adam_alpha = 1e-3f;
|
|
params.adam_decay = 1e-3f;
|
|
|
|
params.mem_model_gb = 2;
|
|
params.mem_compute_gb = 24;
|
|
params.mem_compute0_gb = 8;
|
|
params.mem_compute1_gb = 2;
|
|
|
|
return params;
|
|
}
|
|
|
|
static void print_usage(int /*argc*/, char ** argv, const struct train_params * params) {
|
|
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "options:\n");
|
|
fprintf(stderr, " -h, --help show this help message and exit\n");
|
|
fprintf(stderr, " --copy-vocab-from-model FNAME path of gguf llama model or llama2.c vocabulary from which to copy vocab (default '%s')\n", params->fn_vocab_model);
|
|
fprintf(stderr, " --llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model\n");
|
|
fprintf(stderr, " --llama2c-output-model FNAME model path to save the converted llama2.c model (default %s')\n", params->fn_llama2c_output_model);
|
|
fprintf(stderr, "\n");
|
|
}
|
|
|
|
static bool params_parse(int argc, char ** argv, struct train_params * params) {
|
|
bool invalid_param = false;
|
|
bool reqd_param_found = false;
|
|
std::string arg;
|
|
struct train_params default_params = get_default_train_params();
|
|
const std::string arg_prefix = "--";
|
|
|
|
for (int i = 1; i < argc; i++) {
|
|
arg = argv[i];
|
|
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
|
|
std::replace(arg.begin(), arg.end(), '_', '-');
|
|
}
|
|
|
|
if (arg == "--copy-vocab-from-model") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params->fn_vocab_model = argv[i];
|
|
} else if (arg == "--llama2c-model") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
reqd_param_found = true;
|
|
params->fn_llama2c_model = argv[i];
|
|
} else if (arg == "--llama2c-output-model") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params->fn_llama2c_output_model = argv[i];
|
|
} else if (arg == "-h" || arg == "--help") {
|
|
print_usage(argc, argv, &default_params);
|
|
exit(0);
|
|
} else {
|
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
|
print_usage(argc, argv, &default_params);
|
|
exit(1);
|
|
}
|
|
}
|
|
if (invalid_param) {
|
|
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
|
print_usage(argc, argv, &default_params);
|
|
exit(1);
|
|
}
|
|
if (!reqd_param_found){
|
|
fprintf(stderr, "error: please specify a llama2.c .bin file to be converted with argument --llama2c-model\n");
|
|
print_usage(argc, argv, &default_params);
|
|
exit(1);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static std::string basename(const std::string &path) {
|
|
size_t pos = path.find_last_of("/\\");
|
|
if (pos == std::string::npos) {
|
|
return path;
|
|
}
|
|
return path.substr(pos + 1);
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
struct train_params params = get_default_train_params();
|
|
if (!params_parse(argc, argv, ¶ms)) {
|
|
return 1;
|
|
}
|
|
log_set_target(stdout);
|
|
Config config;
|
|
TransformerWeights weights = {};
|
|
{
|
|
LOG("%s: Loading llama2c model from %s\n", __func__, params.fn_llama2c_model);
|
|
FILE * file = fopen(params.fn_llama2c_model, "rb");
|
|
if (!file) {
|
|
LOG("%s: Unable to open the checkpoint file %s!\n", __func__, params.fn_llama2c_model);
|
|
return 1;
|
|
}
|
|
// read in the config header
|
|
if (fread(&config, sizeof(Config), 1, file) != 1) {
|
|
LOG("%s: Unable to read llama2c config from %s!\n",__func__,params.fn_llama2c_model);
|
|
return 1;
|
|
}
|
|
auto shared_weights = config.vocab_size > 0;
|
|
config.vocab_size = abs(config.vocab_size);
|
|
|
|
// read in the Transformer weights
|
|
alloc_weights(&weights, &config, shared_weights);
|
|
if (checkpoint_init_weights(&weights, &config, file, shared_weights)) {
|
|
LOG("%s: Unable to initialize transformer weights from %s!",__func__,params.fn_llama2c_model);
|
|
return 1;
|
|
}
|
|
fclose(file);
|
|
}
|
|
|
|
struct llama_vocab vocab;
|
|
load_vocab(params.fn_vocab_model, &config, &vocab);
|
|
|
|
struct my_llama_model model;
|
|
model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
|
|
model.hparams.n_ctx = params.n_ctx;
|
|
model.hparams.n_embd = config.dim; //params.n_embd;
|
|
model.hparams.n_ff = config.hidden_dim;
|
|
model.hparams.n_mult = 32;//params.n_mult;
|
|
model.hparams.n_head = config.n_heads; //params.n_head;
|
|
model.hparams.n_head_kv = config.n_kv_heads;
|
|
model.hparams.n_layer = config.n_layers; //params.n_layer;
|
|
model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);
|
|
|
|
print_params(&model.hparams);
|
|
|
|
struct ggml_init_params lcparams;
|
|
lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb);
|
|
lcparams.mem_buffer = NULL;
|
|
lcparams.no_alloc = false;
|
|
|
|
model.ctx = ggml_init(lcparams);
|
|
|
|
init_model(&model);
|
|
model.name = basename(params.fn_llama2c_model);
|
|
save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);
|
|
|
|
LOG("%s: Saving llama.c model file %s in ggml format at %s\n", __func__, params.fn_llama2c_model, params.fn_llama2c_output_model);
|
|
|
|
ggml_free(model.ctx);
|
|
return 0;
|
|
}
|