mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-16 07:08:28 +01:00
9c67c2773d
* ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (#6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (#6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
310 lines
13 KiB
Python
310 lines
13 KiB
Python
import argparse
|
|
import json
|
|
import os
|
|
import re
|
|
import signal
|
|
import socket
|
|
import subprocess
|
|
import sys
|
|
import threading
|
|
import time
|
|
import traceback
|
|
from contextlib import closing
|
|
from datetime import datetime
|
|
|
|
import matplotlib
|
|
import matplotlib.dates
|
|
import matplotlib.pyplot as plt
|
|
import requests
|
|
from statistics import mean
|
|
|
|
|
|
def main(args_in: list[str] | None = None) -> None:
|
|
parser = argparse.ArgumentParser(description="Start server benchmark scenario")
|
|
parser.add_argument("--name", type=str, help="Bench name", required=True)
|
|
parser.add_argument("--runner-label", type=str, help="Runner label", required=True)
|
|
parser.add_argument("--branch", type=str, help="Branch name", default="detached")
|
|
parser.add_argument("--commit", type=str, help="Commit name", default="dirty")
|
|
parser.add_argument("--host", type=str, help="Server listen host", default="0.0.0.0")
|
|
parser.add_argument("--port", type=int, help="Server listen host", default="8080")
|
|
parser.add_argument("--model-path-prefix", type=str, help="Prefix where to store the model files", default="models")
|
|
parser.add_argument("--n-prompts", type=int,
|
|
help="SERVER_BENCH_N_PROMPTS: total prompts to randomly select in the benchmark", required=True)
|
|
parser.add_argument("--max-prompt-tokens", type=int,
|
|
help="SERVER_BENCH_MAX_PROMPT_TOKENS: maximum prompt tokens to filter out in the dataset",
|
|
required=True)
|
|
parser.add_argument("--max-tokens", type=int,
|
|
help="SERVER_BENCH_MAX_CONTEXT: maximum context size of the completions request to filter out in the dataset: prompt + predicted tokens",
|
|
required=True)
|
|
parser.add_argument("--hf-repo", type=str, help="Hugging Face model repository", required=True)
|
|
parser.add_argument("--hf-file", type=str, help="Hugging Face model file", required=True)
|
|
parser.add_argument("-ngl", "--n-gpu-layers", type=int, help="layers to the GPU for computation", required=True)
|
|
parser.add_argument("--ctx-size", type=int, help="Set the size of the prompt context", required=True)
|
|
parser.add_argument("--parallel", type=int, help="Set the number of slots for process requests", required=True)
|
|
parser.add_argument("--batch-size", type=int, help="Set the batch size for prompt processing", required=True)
|
|
parser.add_argument("--ubatch-size", type=int, help="physical maximum batch size", required=True)
|
|
parser.add_argument("--scenario", type=str, help="Scenario to run", required=True)
|
|
parser.add_argument("--duration", type=str, help="Bench scenario", required=True)
|
|
|
|
args = parser.parse_args(args_in)
|
|
|
|
start_time = time.time()
|
|
|
|
# Start the server and performance scenario
|
|
try:
|
|
server_process = start_server(args)
|
|
except Exception:
|
|
print("bench: server start error :")
|
|
traceback.print_exc(file=sys.stdout)
|
|
sys.exit(1)
|
|
|
|
# start the benchmark
|
|
try:
|
|
start_benchmark(args)
|
|
|
|
iterations = 0
|
|
with open("results.github.env", 'w') as github_env:
|
|
# parse output
|
|
with open('k6-results.json', 'r') as bench_results:
|
|
# Load JSON data from file
|
|
data = json.load(bench_results)
|
|
for metric_name in data['metrics']:
|
|
for metric_metric in data['metrics'][metric_name]:
|
|
value = data['metrics'][metric_name][metric_metric]
|
|
if isinstance(value, float) or isinstance(value, int):
|
|
value = round(value, 2)
|
|
data['metrics'][metric_name][metric_metric]=value
|
|
github_env.write(
|
|
f"{escape_metric_name(metric_name)}_{escape_metric_name(metric_metric)}={value}\n")
|
|
iterations = data['root_group']['checks']['success completion']['passes']
|
|
|
|
except Exception:
|
|
print("bench: error :")
|
|
traceback.print_exc(file=sys.stdout)
|
|
|
|
# Stop the server
|
|
if server_process:
|
|
try:
|
|
print(f"bench: shutting down server pid={server_process.pid} ...")
|
|
if os.name == 'nt':
|
|
interrupt = signal.CTRL_C_EVENT
|
|
else:
|
|
interrupt = signal.SIGINT
|
|
server_process.send_signal(interrupt)
|
|
server_process.wait(0.5)
|
|
|
|
except subprocess.TimeoutExpired:
|
|
print(f"server still alive after 500ms, force-killing pid={server_process.pid} ...")
|
|
server_process.kill() # SIGKILL
|
|
server_process.wait()
|
|
|
|
while is_server_listening(args.host, args.port):
|
|
time.sleep(0.1)
|
|
|
|
title = (f"llama.cpp {args.name} on {args.runner_label}\n "
|
|
f"duration={args.duration} {iterations} iterations")
|
|
xlabel = (f"{args.hf_repo}/{args.hf_file}\n"
|
|
f"parallel={args.parallel} ctx-size={args.ctx_size} ngl={args.n_gpu_layers} batch-size={args.batch_size} ubatch-size={args.ubatch_size} pp={args.max_prompt_tokens} pp+tg={args.max_tokens}\n"
|
|
f"branch={args.branch} commit={args.commit}")
|
|
|
|
# Prometheus
|
|
end_time = time.time()
|
|
prometheus_metrics = {}
|
|
if is_server_listening("0.0.0.0", 9090):
|
|
metrics = ['prompt_tokens_seconds', 'predicted_tokens_seconds',
|
|
'kv_cache_usage_ratio', 'requests_processing', 'requests_deferred']
|
|
|
|
for metric in metrics:
|
|
resp = requests.get(f"http://localhost:9090/api/v1/query_range",
|
|
params={'query': 'llamacpp:' + metric, 'start': start_time, 'end': end_time, 'step': 2})
|
|
|
|
with open(f"{metric}.json", 'w') as metric_json:
|
|
metric_json.write(resp.text)
|
|
|
|
if resp.status_code != 200:
|
|
print(f"bench: unable to extract prometheus metric {metric}: {resp.text}")
|
|
else:
|
|
metric_data = resp.json()
|
|
values = metric_data['data']['result'][0]['values']
|
|
timestamps, metric_values = zip(*values)
|
|
metric_values = [float(value) for value in metric_values]
|
|
prometheus_metrics[metric] = metric_values
|
|
timestamps_dt = [datetime.fromtimestamp(int(ts)) for ts in timestamps]
|
|
plt.figure(figsize=(16, 10), dpi=80)
|
|
plt.plot(timestamps_dt, metric_values, label=metric)
|
|
plt.xticks(rotation=0, fontsize=14, horizontalalignment='center', alpha=.7)
|
|
plt.yticks(fontsize=12, alpha=.7)
|
|
|
|
ylabel = f"llamacpp:{metric}"
|
|
plt.title(title,
|
|
fontsize=14, wrap=True)
|
|
plt.grid(axis='both', alpha=.3)
|
|
plt.ylabel(ylabel, fontsize=22)
|
|
plt.xlabel(xlabel, fontsize=14, wrap=True)
|
|
plt.gca().xaxis.set_major_locator(matplotlib.dates.MinuteLocator())
|
|
plt.gca().xaxis.set_major_formatter(matplotlib.dates.DateFormatter("%Y-%m-%d %H:%M:%S"))
|
|
plt.gcf().autofmt_xdate()
|
|
|
|
# Remove borders
|
|
plt.gca().spines["top"].set_alpha(0.0)
|
|
plt.gca().spines["bottom"].set_alpha(0.3)
|
|
plt.gca().spines["right"].set_alpha(0.0)
|
|
plt.gca().spines["left"].set_alpha(0.3)
|
|
|
|
# Save the plot as a jpg image
|
|
plt.savefig(f'{metric}.jpg', dpi=60)
|
|
plt.close()
|
|
|
|
# Mermaid format in case images upload failed
|
|
with (open(f"{metric}.mermaid", 'w') as mermaid_f):
|
|
mermaid = (
|
|
f"""---
|
|
config:
|
|
xyChart:
|
|
titleFontSize: 12
|
|
width: 900
|
|
height: 600
|
|
themeVariables:
|
|
xyChart:
|
|
titleColor: "#000000"
|
|
---
|
|
xychart-beta
|
|
title "{title}"
|
|
y-axis "llamacpp:{metric}"
|
|
x-axis "llamacpp:{metric}" {int(min(timestamps))} --> {int(max(timestamps))}
|
|
line [{', '.join([str(round(float(value), 2)) for value in metric_values])}]
|
|
""")
|
|
mermaid_f.write(mermaid)
|
|
|
|
# 140 chars max for commit status description
|
|
bench_results = {
|
|
"i": iterations,
|
|
"req": {
|
|
"p95": round(data['metrics']["http_req_duration"]["p(95)"], 2),
|
|
"avg": round(data['metrics']["http_req_duration"]["avg"], 2),
|
|
},
|
|
"pp": {
|
|
"p95": round(data['metrics']["llamacpp_prompt_processing_second"]["p(95)"], 2),
|
|
"avg": round(data['metrics']["llamacpp_prompt_processing_second"]["avg"], 2),
|
|
"0": round(mean(prometheus_metrics['prompt_tokens_seconds']), 2),
|
|
},
|
|
"tg": {
|
|
"p95": round(data['metrics']["llamacpp_tokens_second"]["p(95)"], 2),
|
|
"avg": round(data['metrics']["llamacpp_tokens_second"]["avg"], 2),
|
|
"0": round(mean(prometheus_metrics['predicted_tokens_seconds']), 2),
|
|
},
|
|
}
|
|
with open("results.github.env", 'a') as github_env:
|
|
github_env.write(f"BENCH_RESULTS={json.dumps(bench_results, indent=None, separators=(',', ':') )}\n")
|
|
github_env.write(f"BENCH_ITERATIONS={iterations}\n")
|
|
|
|
title = title.replace('\n', ' ')
|
|
xlabel = xlabel.replace('\n', ' ')
|
|
github_env.write(f"BENCH_GRAPH_TITLE={title}\n")
|
|
github_env.write(f"BENCH_GRAPH_XLABEL={xlabel}\n")
|
|
|
|
|
|
def start_benchmark(args):
|
|
k6_path = './k6'
|
|
if 'BENCH_K6_BIN_PATH' in os.environ:
|
|
k6_path = os.environ['BENCH_K6_BIN_PATH']
|
|
k6_args = [
|
|
'run', args.scenario,
|
|
'--no-color',
|
|
]
|
|
k6_args.extend(['--duration', args.duration])
|
|
k6_args.extend(['--iterations', args.n_prompts])
|
|
k6_args.extend(['--vus', args.parallel])
|
|
k6_args.extend(['--summary-export', 'k6-results.json'])
|
|
args = f"SERVER_BENCH_N_PROMPTS={args.n_prompts} SERVER_BENCH_MAX_PROMPT_TOKENS={args.max_prompt_tokens} SERVER_BENCH_MAX_CONTEXT={args.max_tokens} "
|
|
args = args + ' '.join([str(arg) for arg in [k6_path, *k6_args]])
|
|
print(f"bench: starting k6 with: {args}")
|
|
k6_completed = subprocess.run(args, shell=True, stdout=sys.stdout, stderr=sys.stderr)
|
|
if k6_completed.returncode != 0:
|
|
raise Exception("bench: unable to run k6")
|
|
|
|
|
|
def start_server(args):
|
|
server_process = start_server_background(args)
|
|
|
|
attempts = 0
|
|
max_attempts = 20
|
|
if 'GITHUB_ACTIONS' in os.environ:
|
|
max_attempts *= 2
|
|
|
|
while not is_server_listening(args.host, args.port):
|
|
attempts += 1
|
|
if attempts > max_attempts:
|
|
assert False, "server not started"
|
|
print(f"bench: waiting for server to start ...")
|
|
time.sleep(0.5)
|
|
|
|
print("bench: server started.")
|
|
return server_process
|
|
|
|
|
|
def start_server_background(args):
|
|
# Start the server
|
|
server_path = '../../../build/bin/server'
|
|
if 'LLAMA_SERVER_BIN_PATH' in os.environ:
|
|
server_path = os.environ['LLAMA_SERVER_BIN_PATH']
|
|
server_args = [
|
|
'--host', args.host,
|
|
'--port', args.port,
|
|
]
|
|
model_file = args.model_path_prefix + os.path.sep + args.hf_file
|
|
model_dir = os.path.dirname(model_file)
|
|
if not os.path.exists(model_dir):
|
|
os.makedirs(model_dir)
|
|
server_args.extend(['--model', model_file])
|
|
server_args.extend(['--hf-repo', args.hf_repo])
|
|
server_args.extend(['--hf-file', args.hf_file])
|
|
server_args.extend(['--n-gpu-layers', args.n_gpu_layers])
|
|
server_args.extend(['--ctx-size', args.ctx_size])
|
|
server_args.extend(['--parallel', args.parallel])
|
|
server_args.extend(['--batch-size', args.batch_size])
|
|
server_args.extend(['--ubatch-size', args.ubatch_size])
|
|
server_args.extend(['--n-predict', args.max_tokens * 2])
|
|
server_args.extend(['--defrag-thold', "0.1"])
|
|
server_args.append('--cont-batching')
|
|
server_args.append('--metrics')
|
|
server_args.append('--flash-attn')
|
|
server_args.extend(['--log-format', "text"])
|
|
args = [str(arg) for arg in [server_path, *server_args]]
|
|
print(f"bench: starting server with: {' '.join(args)}")
|
|
pkwargs = {
|
|
'stdout': subprocess.PIPE,
|
|
'stderr': subprocess.PIPE
|
|
}
|
|
server_process = subprocess.Popen(
|
|
args,
|
|
**pkwargs)
|
|
|
|
def server_log(in_stream, out_stream):
|
|
for line in iter(in_stream.readline, b''):
|
|
print(line.decode('utf-8'), end='', file=out_stream)
|
|
|
|
thread_stdout = threading.Thread(target=server_log, args=(server_process.stdout, sys.stdout))
|
|
thread_stdout.start()
|
|
thread_stderr = threading.Thread(target=server_log, args=(server_process.stderr, sys.stderr))
|
|
thread_stderr.start()
|
|
|
|
return server_process
|
|
|
|
|
|
def is_server_listening(server_fqdn, server_port):
|
|
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
|
|
result = sock.connect_ex((server_fqdn, server_port))
|
|
_is_server_listening = result == 0
|
|
if _is_server_listening:
|
|
print(f"server is listening on {server_fqdn}:{server_port}...")
|
|
return _is_server_listening
|
|
|
|
|
|
def escape_metric_name(metric_name):
|
|
return re.sub('[^A-Z0-9]', '_', metric_name.upper())
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|