mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-22 09:39:08 +01:00
5936 lines
221 KiB
Plaintext
5936 lines
221 KiB
Plaintext
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <limits>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <atomic>
|
|
#include <assert.h>
|
|
|
|
#include <cuda_runtime.h>
|
|
#include <cublas_v2.h>
|
|
#include <cuda_fp16.h>
|
|
|
|
#include "ggml-cuda.h"
|
|
#include "ggml.h"
|
|
|
|
#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
|
#endif
|
|
|
|
static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
|
|
|
|
#define CUDA_CHECK(err) \
|
|
do { \
|
|
cudaError_t err_ = (err); \
|
|
if (err_ != cudaSuccess) { \
|
|
fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
|
|
cudaGetErrorString(err_)); \
|
|
exit(1); \
|
|
} \
|
|
} while (0)
|
|
|
|
#if CUDART_VERSION >= 12000
|
|
#define CUBLAS_CHECK(err) \
|
|
do { \
|
|
cublasStatus_t err_ = (err); \
|
|
if (err_ != CUBLAS_STATUS_SUCCESS) { \
|
|
fprintf(stderr, "\ncuBLAS error %d at %s:%d: %s\n", \
|
|
err_, __FILE__, __LINE__, cublasGetStatusString(err_)); \
|
|
exit(1); \
|
|
} \
|
|
} while (0)
|
|
#else
|
|
#define CUBLAS_CHECK(err) \
|
|
do { \
|
|
cublasStatus_t err_ = (err); \
|
|
if (err_ != CUBLAS_STATUS_SUCCESS) { \
|
|
fprintf(stderr, "\ncuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
|
|
exit(1); \
|
|
} \
|
|
} while (0)
|
|
#endif // CUDART_VERSION >= 11
|
|
|
|
#ifdef GGML_CUDA_F16
|
|
typedef half dfloat; // dequantize float
|
|
typedef half2 dfloat2;
|
|
#else
|
|
typedef float dfloat; // dequantize float
|
|
typedef float2 dfloat2;
|
|
#endif //GGML_CUDA_F16
|
|
|
|
static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const int & i32) {
|
|
const uint16_t * x16 = (uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
|
|
|
|
int x32 = 0;
|
|
x32 |= x16[0] << 0;
|
|
x32 |= x16[1] << 16;
|
|
|
|
return x32;
|
|
}
|
|
|
|
static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, const int & i32) {
|
|
const uint16_t * x16 = (uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
|
|
|
|
int x32 = 0;
|
|
x32 |= x16[0] << 0;
|
|
x32 |= x16[1] << 16;
|
|
|
|
return x32;
|
|
}
|
|
|
|
static __device__ __forceinline__ int get_int_from_int8_aligned(const int8_t * x8, const int & i32) {
|
|
return *((int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
|
|
}
|
|
|
|
static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * x8, const int & i32) {
|
|
return *((int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
|
|
}
|
|
|
|
typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
|
|
typedef void (*to_fp32_cuda_t)(const void * __restrict__ x, float * __restrict__ y, int k, cudaStream_t stream);
|
|
typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v);
|
|
typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
|
|
typedef void (*ggml_cuda_func_t)(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
|
|
typedef void (*ggml_cuda_op_t)(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, float * src0_ddf_i,
|
|
float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t & cudaStream_main);
|
|
|
|
// QK = number of values after dequantization
|
|
// QR = QK / number of values before dequantization
|
|
// QI = number of 32 bit integers before dequantization
|
|
|
|
#define QK4_0 32
|
|
#define QR4_0 2
|
|
#define QI4_0 (QK4_0 / (4 * QR4_0))
|
|
typedef struct {
|
|
half d; // delta
|
|
uint8_t qs[QK4_0 / 2]; // nibbles / quants
|
|
} block_q4_0;
|
|
static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
|
|
|
|
#define QK4_1 32
|
|
#define QR4_1 2
|
|
#define QI4_1 (QK4_1 / (4 * QR4_1))
|
|
typedef struct {
|
|
half2 dm; // dm.x = delta, dm.y = min
|
|
uint8_t qs[QK4_1 / 2]; // nibbles / quants
|
|
} block_q4_1;
|
|
static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
|
|
|
|
#define QK5_0 32
|
|
#define QR5_0 2
|
|
#define QI5_0 (QK5_0 / (4 * QR5_0))
|
|
typedef struct {
|
|
half d; // delta
|
|
uint8_t qh[4]; // 5-th bit of quants
|
|
uint8_t qs[QK5_0 / 2]; // nibbles / quants
|
|
} block_q5_0;
|
|
static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
|
|
|
|
#define QK5_1 32
|
|
#define QR5_1 2
|
|
#define QI5_1 (QK5_1 / (4 * QR5_1))
|
|
typedef struct {
|
|
half2 dm; // dm.x = delta, dm.y = min
|
|
uint8_t qh[4]; // 5-th bit of quants
|
|
uint8_t qs[QK5_1 / 2]; // nibbles / quants
|
|
} block_q5_1;
|
|
static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
|
|
|
|
#define QK8_0 32
|
|
#define QR8_0 1
|
|
#define QI8_0 (QK8_0 / (4 * QR8_0))
|
|
typedef struct {
|
|
half d; // delta
|
|
int8_t qs[QK8_0]; // quants
|
|
} block_q8_0;
|
|
static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
|
|
|
|
#define QK8_1 32
|
|
#define QR8_1 1
|
|
#define QI8_1 (QK8_1 / (4 * QR8_1))
|
|
typedef struct {
|
|
half2 ds; // ds.x = delta, ds.y = sum
|
|
int8_t qs[QK8_0]; // quants
|
|
} block_q8_1;
|
|
static_assert(sizeof(block_q8_1) == 2*sizeof(ggml_fp16_t) + QK8_0, "wrong q8_1 block size/padding");
|
|
|
|
typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
|
|
typedef void (*allocate_tiles_cuda_t)(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc);
|
|
typedef void (*load_tiles_cuda_t)(
|
|
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
|
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row);
|
|
typedef float (*vec_dot_q_mul_mat_cuda_t)(
|
|
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
|
const int * __restrict__ y_qs, const half2 * __restrict__ y_ms, const int & i, const int & j, const int & k);
|
|
|
|
//================================= k-quants
|
|
|
|
#ifdef GGML_QKK_64
|
|
#define QK_K 64
|
|
#define K_SCALE_SIZE 4
|
|
#else
|
|
#define QK_K 256
|
|
#define K_SCALE_SIZE 12
|
|
#endif
|
|
|
|
#define QR2_K 4
|
|
#define QI2_K (QK_K / (4*QR2_K))
|
|
typedef struct {
|
|
uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
|
|
uint8_t qs[QK_K/4]; // quants
|
|
half2 dm; // super-block scale for quantized scales/mins
|
|
} block_q2_K;
|
|
static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
|
|
|
|
#define QR3_K 4
|
|
#define QI3_K (QK_K / (4*QR3_K))
|
|
typedef struct {
|
|
uint8_t hmask[QK_K/8]; // quants - high bit
|
|
uint8_t qs[QK_K/4]; // quants - low 2 bits
|
|
#ifdef GGML_QKK_64
|
|
uint8_t scales[2]; // scales, quantized with 8 bits
|
|
#else
|
|
uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits
|
|
#endif
|
|
half d; // super-block scale
|
|
} block_q3_K;
|
|
//static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + K_SCALE_SIZE, "wrong q3_K block size/padding");
|
|
|
|
#define QR4_K 2
|
|
#define QI4_K (QK_K / (4*QR4_K))
|
|
#ifdef GGML_QKK_64
|
|
typedef struct {
|
|
half d[2]; // super-block scales/mins
|
|
uint8_t scales[2]; // 4-bit block scales/mins
|
|
uint8_t qs[QK_K/2]; // 4--bit quants
|
|
} block_q4_K;
|
|
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + QK_K/2 + 2, "wrong q4_K block size/padding");
|
|
#else
|
|
typedef struct {
|
|
half2 dm; // super-block scale for quantized scales/mins
|
|
uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
|
|
uint8_t qs[QK_K/2]; // 4--bit quants
|
|
} block_q4_K;
|
|
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_K block size/padding");
|
|
#endif
|
|
|
|
#define QR5_K 2
|
|
#define QI5_K (QK_K / (4*QR5_K))
|
|
#ifdef GGML_QKK_64
|
|
typedef struct {
|
|
half d; // super-block scale
|
|
int8_t scales[QK_K/16]; // block scales
|
|
uint8_t qh[QK_K/8]; // quants, high bit
|
|
uint8_t qs[QK_K/2]; // quants, low 4 bits
|
|
} block_q5_K;
|
|
static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
|
|
#else
|
|
typedef struct {
|
|
half2 dm; // super-block scale for quantized scales/mins
|
|
uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
|
|
uint8_t qh[QK_K/8]; // quants, high bit
|
|
uint8_t qs[QK_K/2]; // quants, low 4 bits
|
|
} block_q5_K;
|
|
static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
|
|
#endif
|
|
|
|
#define QR6_K 2
|
|
#define QI6_K (QK_K / (4*QR6_K))
|
|
typedef struct {
|
|
uint8_t ql[QK_K/2]; // quants, lower 4 bits
|
|
uint8_t qh[QK_K/4]; // quants, upper 2 bits
|
|
int8_t scales[QK_K/16]; // scales
|
|
half d; // delta
|
|
} block_q6_K;
|
|
static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding");
|
|
|
|
#define WARP_SIZE 32
|
|
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
|
|
|
|
#define CUDA_ADD_BLOCK_SIZE 256
|
|
#define CUDA_MUL_BLOCK_SIZE 256
|
|
#define CUDA_GELU_BLOCK_SIZE 256
|
|
#define CUDA_SILU_BLOCK_SIZE 256
|
|
#define CUDA_CPY_BLOCK_SIZE 32
|
|
#define CUDA_SCALE_BLOCK_SIZE 256
|
|
#define CUDA_ROPE_BLOCK_SIZE 256
|
|
#define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
|
|
#define CUDA_QUANTIZE_BLOCK_SIZE 256
|
|
#define CUDA_DEQUANTIZE_BLOCK_SIZE 256
|
|
|
|
#ifndef GGML_CUDA_MMQ_Y
|
|
#define GGML_CUDA_MMQ_Y 64
|
|
#endif // GGML_CUDA_MMQ_Y
|
|
|
|
// dmmv = dequantize_mul_mat_vec
|
|
#ifndef GGML_CUDA_DMMV_X
|
|
#define GGML_CUDA_DMMV_X 32
|
|
#endif
|
|
#ifndef GGML_CUDA_MMV_Y
|
|
#define GGML_CUDA_MMV_Y 1
|
|
#endif
|
|
|
|
#ifndef K_QUANTS_PER_ITERATION
|
|
#define K_QUANTS_PER_ITERATION 2
|
|
#else
|
|
static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
|
|
#endif
|
|
|
|
struct ggml_tensor_extra_gpu {
|
|
void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
|
|
cudaEvent_t events[GGML_CUDA_MAX_DEVICES]; // events for synchronizing multiple GPUs
|
|
};
|
|
|
|
static __global__ void add_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (i >= kx) {
|
|
return;
|
|
}
|
|
dst[i] = x[i] + y[i%ky];
|
|
}
|
|
|
|
static __global__ void add_f16_f32_f16(const half * x, const float * y, half * dst, const int k) {
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
dst[i] = __hadd(x[i], __float2half(y[i]));
|
|
}
|
|
|
|
static __global__ void mul_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (i >= kx) {
|
|
return;
|
|
}
|
|
dst[i] = x[i] * y[i%ky];
|
|
}
|
|
|
|
static __global__ void gelu_f32(const float * x, float * dst, const int k) {
|
|
const float GELU_COEF_A = 0.044715f;
|
|
const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
|
|
float xi = x[i];
|
|
dst[i] = 0.5f*xi*(1.0f + tanhf(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi)));
|
|
}
|
|
|
|
static __global__ void silu_f32(const float * x, float * dst, const int k) {
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
dst[i] = x[i] / (1.0f + expf(-x[i]));
|
|
}
|
|
|
|
static __global__ void norm_f32(const float * x, float * dst, const int ncols) {
|
|
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
|
const int tid = threadIdx.x;
|
|
|
|
const float eps = 1e-5f;
|
|
|
|
float mean = 0.0f;
|
|
float var = 0.0f;
|
|
|
|
for (int col = tid; col < ncols; col += WARP_SIZE) {
|
|
const float xi = x[row*ncols + col];
|
|
mean += xi;
|
|
var += xi * xi;
|
|
}
|
|
|
|
// sum up partial sums
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
mean += __shfl_xor_sync(0xffffffff, mean, mask, 32);
|
|
var += __shfl_xor_sync(0xffffffff, var, mask, 32);
|
|
}
|
|
|
|
mean /= ncols;
|
|
var = var / ncols - mean * mean;
|
|
const float inv_var = rsqrtf(var + eps);
|
|
|
|
for (int col = tid; col < ncols; col += WARP_SIZE) {
|
|
dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_var;
|
|
}
|
|
}
|
|
|
|
static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
|
|
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
|
const int tid = threadIdx.x;
|
|
|
|
float tmp = 0.0f; // partial sum for thread in warp
|
|
|
|
for (int col = tid; col < ncols; col += WARP_SIZE) {
|
|
const float xi = x[row*ncols + col];
|
|
tmp += xi * xi;
|
|
}
|
|
|
|
// sum up partial sums
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
}
|
|
|
|
const float mean = tmp / ncols;
|
|
const float scale = rsqrtf(mean + eps);
|
|
|
|
for (int col = tid; col < ncols; col += WARP_SIZE) {
|
|
dst[row*ncols + col] = scale * x[row*ncols + col];
|
|
}
|
|
}
|
|
|
|
static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
|
const block_q4_0 * x = (const block_q4_0 *) vx;
|
|
|
|
const dfloat d = x[ib].d;
|
|
|
|
const int vui = x[ib].qs[iqs];
|
|
|
|
v.x = vui & 0xF;
|
|
v.y = vui >> 4;
|
|
|
|
#ifdef GGML_CUDA_F16
|
|
v = __hsub2(v, {8.0f, 8.0f});
|
|
v = __hmul2(v, {d, d});
|
|
#else
|
|
v.x = (v.x - 8.0f) * d;
|
|
v.y = (v.y - 8.0f) * d;
|
|
#endif // GGML_CUDA_F16
|
|
}
|
|
|
|
static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
|
const block_q4_1 * x = (const block_q4_1 *) vx;
|
|
|
|
const dfloat d = x[ib].dm.x;
|
|
const dfloat m = x[ib].dm.y;
|
|
|
|
const int vui = x[ib].qs[iqs];
|
|
|
|
v.x = vui & 0xF;
|
|
v.y = vui >> 4;
|
|
|
|
#ifdef GGML_CUDA_F16
|
|
v = __hmul2(v, {d, d});
|
|
v = __hadd2(v, {m, m});
|
|
#else
|
|
v.x = (v.x * d) + m;
|
|
v.y = (v.y * d) + m;
|
|
#endif // GGML_CUDA_F16
|
|
}
|
|
|
|
static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
|
const block_q5_0 * x = (const block_q5_0 *) vx;
|
|
|
|
const dfloat d = x[ib].d;
|
|
|
|
uint32_t qh;
|
|
memcpy(&qh, x[ib].qh, sizeof(qh));
|
|
|
|
const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
|
|
const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
|
|
|
|
v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
|
|
v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
|
|
|
|
#ifdef GGML_CUDA_F16
|
|
v = __hsub2(v, {16.0f, 16.0f});
|
|
v = __hmul2(v, {d, d});
|
|
#else
|
|
v.x = (v.x - 16.0f) * d;
|
|
v.y = (v.y - 16.0f) * d;
|
|
#endif // GGML_CUDA_F16
|
|
}
|
|
|
|
static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
|
const block_q5_1 * x = (const block_q5_1 *) vx;
|
|
|
|
const dfloat d = x[ib].dm.x;
|
|
const dfloat m = x[ib].dm.y;
|
|
|
|
uint32_t qh;
|
|
memcpy(&qh, x[ib].qh, sizeof(qh));
|
|
|
|
const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
|
|
const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
|
|
|
|
v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
|
|
v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
|
|
|
|
#ifdef GGML_CUDA_F16
|
|
v = __hmul2(v, {d, d});
|
|
v = __hadd2(v, {m, m});
|
|
#else
|
|
v.x = (v.x * d) + m;
|
|
v.y = (v.y * d) + m;
|
|
#endif // GGML_CUDA_F16
|
|
}
|
|
|
|
static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
|
const block_q8_0 * x = (const block_q8_0 *) vx;
|
|
|
|
const dfloat d = x[ib].d;
|
|
|
|
v.x = x[ib].qs[iqs + 0];
|
|
v.y = x[ib].qs[iqs + 1];
|
|
|
|
#ifdef GGML_CUDA_F16
|
|
v = __hmul2(v, {d, d});
|
|
#else
|
|
v.x *= d;
|
|
v.y *= d;
|
|
#endif // GGML_CUDA_F16
|
|
}
|
|
|
|
//================================== k-quants
|
|
|
|
static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, float * __restrict__ yy) {
|
|
|
|
const int i = blockIdx.x;
|
|
const block_q2_K * x = (const block_q2_K *) vx;
|
|
|
|
const int tid = threadIdx.x;
|
|
#if QK_K == 256
|
|
const int n = tid/32;
|
|
const int l = tid - 32*n;
|
|
const int is = 8*n + l/16;
|
|
|
|
const uint8_t q = x[i].qs[32*n + l];
|
|
float * y = yy + i*QK_K + 128*n;
|
|
|
|
float dall = x[i].dm.x;
|
|
float dmin = x[i].dm.y;
|
|
y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
|
|
y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
|
y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
|
|
y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
|
|
#else
|
|
const int is = tid/16; // 0 or 1
|
|
const int il = tid%16; // 0...15
|
|
const uint8_t q = x[i].qs[il] >> (2*is);
|
|
float * y = yy + i*QK_K + 16*is + il;
|
|
float dall = x[i].dm.x;
|
|
float dmin = x[i].dm.y;
|
|
y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
|
|
y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
|
#endif
|
|
|
|
}
|
|
|
|
static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, float * __restrict__ yy) {
|
|
|
|
const int i = blockIdx.x;
|
|
const block_q3_K * x = (const block_q3_K *) vx;
|
|
|
|
#if QK_K == 256
|
|
const int r = threadIdx.x/4;
|
|
const int tid = r/2;
|
|
const int is0 = r%2;
|
|
const int l0 = 16*is0 + 4*(threadIdx.x%4);
|
|
const int n = tid / 4;
|
|
const int j = tid - 4*n;
|
|
|
|
uint8_t m = 1 << (4*n + j);
|
|
int is = 8*n + 2*j + is0;
|
|
int shift = 2*j;
|
|
|
|
int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
|
|
is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
|
|
is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
|
|
(x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
|
|
float d_all = x[i].d;
|
|
float dl = d_all * (us - 32);
|
|
|
|
float * y = yy + i*QK_K + 128*n + 32*j;
|
|
const uint8_t * q = x[i].qs + 32*n;
|
|
const uint8_t * hm = x[i].hmask;
|
|
|
|
for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
|
|
#else
|
|
const int tid = threadIdx.x;
|
|
const int is = tid/16; // 0 or 1
|
|
const int il = tid%16; // 0...15
|
|
const int im = il/8; // 0...1
|
|
const int in = il%8; // 0...7
|
|
|
|
float * y = yy + i*QK_K + 16*is + il;
|
|
|
|
const uint8_t q = x[i].qs[il] >> (2*is);
|
|
const uint8_t h = x[i].hmask[in] >> (2*is + im);
|
|
const float d = (float)x[i].d;
|
|
|
|
if (is == 0) {
|
|
y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
|
|
y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
|
|
} else {
|
|
y[ 0] = d * ((x[i].scales[0] >> 4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
|
|
y[32] = d * ((x[i].scales[1] >> 4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
#if QK_K == 256
|
|
static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
|
|
if (j < 4) {
|
|
d = q[j] & 63; m = q[j + 4] & 63;
|
|
} else {
|
|
d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
|
|
m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, float * __restrict__ yy) {
|
|
const block_q4_K * x = (const block_q4_K *) vx;
|
|
|
|
const int i = blockIdx.x;
|
|
|
|
#if QK_K == 256
|
|
// assume 32 threads
|
|
const int tid = threadIdx.x;
|
|
const int il = tid/8;
|
|
const int ir = tid%8;
|
|
const int is = 2*il;
|
|
const int n = 4;
|
|
|
|
float * y = yy + i*QK_K + 64*il + n*ir;
|
|
|
|
const float dall = x[i].dm.x;
|
|
const float dmin = x[i].dm.y;
|
|
|
|
const uint8_t * q = x[i].qs + 32*il + n*ir;
|
|
|
|
uint8_t sc, m;
|
|
get_scale_min_k4(is + 0, x[i].scales, sc, m);
|
|
const float d1 = dall * sc; const float m1 = dmin * m;
|
|
get_scale_min_k4(is + 1, x[i].scales, sc, m);
|
|
const float d2 = dall * sc; const float m2 = dmin * m;
|
|
for (int l = 0; l < n; ++l) {
|
|
y[l + 0] = d1 * (q[l] & 0xF) - m1;
|
|
y[l +32] = d2 * (q[l] >> 4) - m2;
|
|
}
|
|
#else
|
|
const int tid = threadIdx.x;
|
|
const uint8_t * q = x[i].qs;
|
|
float * y = yy + i*QK_K;
|
|
const float d = (float)x[i].d[0];
|
|
const float m = (float)x[i].d[1];
|
|
y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
|
|
y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4);
|
|
#endif
|
|
}
|
|
|
|
static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, float * __restrict__ yy) {
|
|
const block_q5_K * x = (const block_q5_K *) vx;
|
|
|
|
const int i = blockIdx.x;
|
|
|
|
#if QK_K == 256
|
|
// assume 64 threads - this is very slightly better than the one below
|
|
const int tid = threadIdx.x;
|
|
const int il = tid/16; // il is in 0...3
|
|
const int ir = tid%16; // ir is in 0...15
|
|
const int is = 2*il; // is is in 0...6
|
|
|
|
float * y = yy + i*QK_K + 64*il + 2*ir;
|
|
|
|
const float dall = x[i].dm.x;
|
|
const float dmin = x[i].dm.y;
|
|
|
|
const uint8_t * ql = x[i].qs + 32*il + 2*ir;
|
|
const uint8_t * qh = x[i].qh + 2*ir;
|
|
|
|
uint8_t sc, m;
|
|
get_scale_min_k4(is + 0, x[i].scales, sc, m);
|
|
const float d1 = dall * sc; const float m1 = dmin * m;
|
|
get_scale_min_k4(is + 1, x[i].scales, sc, m);
|
|
const float d2 = dall * sc; const float m2 = dmin * m;
|
|
|
|
uint8_t hm = 1 << (2*il);
|
|
y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
|
|
y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
|
|
hm <<= 1;
|
|
y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
|
|
y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
|
|
#else
|
|
const int tid = threadIdx.x;
|
|
const uint8_t q = x[i].qs[tid];
|
|
const int im = tid/8; // 0...3
|
|
const int in = tid%8; // 0...7
|
|
const int is = tid/16; // 0 or 1
|
|
const uint8_t h = x[i].qh[in] >> im;
|
|
const float d = x[i].d;
|
|
float * y = yy + i*QK_K + tid;
|
|
y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
|
|
y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16));
|
|
#endif
|
|
}
|
|
|
|
static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, float * __restrict__ yy) {
|
|
const block_q6_K * x = (const block_q6_K *) vx;
|
|
|
|
const int i = blockIdx.x;
|
|
#if QK_K == 256
|
|
|
|
// assume 64 threads - this is very slightly better than the one below
|
|
const int tid = threadIdx.x;
|
|
const int ip = tid/32; // ip is 0 or 1
|
|
const int il = tid - 32*ip; // 0...32
|
|
const int is = 8*ip + il/16;
|
|
|
|
float * y = yy + i*QK_K + 128*ip + il;
|
|
|
|
const float d = x[i].d;
|
|
|
|
const uint8_t * ql = x[i].ql + 64*ip + il;
|
|
const uint8_t qh = x[i].qh[32*ip + il];
|
|
const int8_t * sc = x[i].scales + is;
|
|
|
|
y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
|
|
y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
|
|
y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
|
|
y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
|
|
#else
|
|
|
|
// assume 32 threads
|
|
const int tid = threadIdx.x;
|
|
const int ip = tid/16; // 0 or 1
|
|
const int il = tid - 16*ip; // 0...15
|
|
|
|
float * y = yy + i*QK_K + 16*ip + il;
|
|
|
|
const float d = x[i].d;
|
|
|
|
const uint8_t ql = x[i].ql[16*ip + il];
|
|
const uint8_t qh = x[i].qh[il] >> (2*ip);
|
|
const int8_t * sc = x[i].scales;
|
|
|
|
y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
|
|
y[32] = d * sc[ip+2] * ((int8_t)((ql >> 4) | (((qh >> 4) & 3) << 4)) - 32);
|
|
#endif
|
|
}
|
|
|
|
static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
|
|
|
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
|
|
|
const int row = blockIdx.y*blockDim.y + threadIdx.y;
|
|
if (row > nrows) return;
|
|
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row;
|
|
|
|
const block_q2_K * x = (const block_q2_K *)vx + ib0;
|
|
|
|
float tmp = 0; // partial sum for thread in warp
|
|
|
|
#if QK_K == 256
|
|
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
|
|
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
|
|
|
const int step = 16/K_QUANTS_PER_ITERATION;
|
|
|
|
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
|
const int in = tid - step*im; // 0...15 or 0...7
|
|
|
|
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
|
|
const int q_offset = 32*im + l0;
|
|
const int s_offset = 8*im;
|
|
const int y_offset = 128*im + l0;
|
|
|
|
uint32_t aux[4];
|
|
const uint8_t * d = (const uint8_t *)aux;
|
|
const uint8_t * m = (const uint8_t *)(aux + 2);
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
|
const float * y = yy + i * QK_K + y_offset;
|
|
const uint8_t * q = x[i].qs + q_offset;
|
|
|
|
const float dall = x[i].dm.x;
|
|
const float dmin = x[i].dm.y;
|
|
|
|
const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
|
|
aux[0] = a[0] & 0x0f0f0f0f;
|
|
aux[1] = a[1] & 0x0f0f0f0f;
|
|
aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
|
|
aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
|
|
|
|
float sum1 = 0, sum2 = 0;
|
|
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
|
sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
|
|
+ y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
|
|
+ y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
|
|
+ y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
|
|
+ y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
|
|
+ y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
|
|
+ y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
|
|
+y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
|
|
sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
|
|
+ y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
|
|
|
|
}
|
|
tmp += dall * sum1 - dmin * sum2;
|
|
|
|
}
|
|
#else
|
|
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
|
|
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
|
|
const int offset = tid * K_QUANTS_PER_ITERATION;
|
|
|
|
uint32_t uaux[2];
|
|
const uint8_t * d = (const uint8_t *)uaux;
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
|
|
|
const float * y = yy + i * QK_K + offset;
|
|
const uint8_t * q = x[i].qs + offset;
|
|
const uint32_t * s = (const uint32_t *)x[i].scales;
|
|
|
|
uaux[0] = s[0] & 0x0f0f0f0f;
|
|
uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
|
|
|
|
const float2 dall = __half22float2(x[i].dm);
|
|
|
|
float sum1 = 0, sum2 = 0;
|
|
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
|
const uint8_t ql = q[l];
|
|
sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
|
|
+ y[l+16] * d[1] * ((ql >> 2) & 3)
|
|
+ y[l+32] * d[2] * ((ql >> 4) & 3)
|
|
+ y[l+48] * d[3] * ((ql >> 6) & 3);
|
|
sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
|
|
}
|
|
tmp += dall.x * sum1 - dall.y * sum2;
|
|
}
|
|
#endif
|
|
|
|
// sum up partial sums and write back result
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
}
|
|
|
|
if (threadIdx.x == 0) {
|
|
dst[row] = tmp;
|
|
}
|
|
}
|
|
|
|
static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
|
|
|
const int row = blockIdx.y*blockDim.y + threadIdx.y;
|
|
if (row > nrows) return;
|
|
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row;
|
|
|
|
const block_q3_K * x = (const block_q3_K *)vx + ib0;
|
|
|
|
float tmp = 0; // partial sum for thread in warp
|
|
|
|
#if QK_K == 256
|
|
|
|
const uint16_t kmask1 = 0x0303;
|
|
const uint16_t kmask2 = 0x0f0f;
|
|
|
|
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
|
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
|
|
|
const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
|
|
const int step = 16/K_QUANTS_PER_ITERATION;
|
|
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
|
const int in = tid - step*im; // 0....15 or 0...7
|
|
|
|
const uint8_t m = 1 << (4*im);
|
|
|
|
const int l0 = n*in; // 0...15 or 0...14 in steps of 2
|
|
const int q_offset = 32*im + l0;
|
|
const int y_offset = 128*im + l0;
|
|
|
|
uint16_t utmp[4];
|
|
const int8_t * s = (const int8_t *)utmp;
|
|
|
|
const uint16_t s_shift = 4*im;
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
|
const float * y = yy + i * QK_K + y_offset;
|
|
const uint8_t * q = x[i].qs + q_offset;
|
|
const uint8_t * h = x[i].hmask + l0;
|
|
|
|
const uint16_t * a = (const uint16_t *)x[i].scales;
|
|
utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
|
|
utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
|
|
utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
|
|
utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
|
|
|
|
const float d = x[i].d;
|
|
|
|
float sum = 0;
|
|
for (int l = 0; l < n; ++l) {
|
|
sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
|
|
+ y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
|
|
+ y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
|
|
+ y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
|
|
sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
|
|
+ y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
|
|
+ y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
|
|
+ y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
|
|
}
|
|
tmp += d * sum;
|
|
|
|
}
|
|
#else
|
|
|
|
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
|
|
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
|
|
const int offset = tid * K_QUANTS_PER_ITERATION; // 0...15 or 0...14
|
|
const int in = offset/8; // 0 or 1
|
|
const int im = offset%8; // 0...7
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
|
|
|
const float * y = yy + i * QK_K + offset;
|
|
const uint8_t * q = x[i].qs + offset;
|
|
const uint8_t * s = x[i].scales;
|
|
|
|
const float dall = (float)x[i].d;
|
|
|
|
float sum = 0;
|
|
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
|
const uint8_t hl = x[i].hmask[im+l] >> in;
|
|
const uint8_t ql = q[l];
|
|
sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
|
|
+ y[l+16] * dall * ((s[0] >> 4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
|
|
+ y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
|
|
+ y[l+48] * dall * ((s[1] >> 4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
|
|
}
|
|
tmp += sum;
|
|
}
|
|
#endif
|
|
|
|
// sum up partial sums and write back result
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
}
|
|
|
|
if (threadIdx.x == 0) {
|
|
dst[row] = tmp;
|
|
}
|
|
}
|
|
|
|
static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
|
|
|
const int row = blockIdx.y*blockDim.y + threadIdx.y;
|
|
if (row > nrows) return;
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row;
|
|
|
|
const block_q4_K * x = (const block_q4_K *)vx + ib0;
|
|
|
|
#if QK_K == 256
|
|
const uint16_t kmask1 = 0x3f3f;
|
|
const uint16_t kmask2 = 0x0f0f;
|
|
const uint16_t kmask3 = 0xc0c0;
|
|
|
|
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
|
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
|
|
|
const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
|
|
|
|
const int il = tid/step; // 0...3
|
|
const int ir = tid - step*il; // 0...7 or 0...3
|
|
const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
|
|
|
|
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
|
const int in = il%2;
|
|
|
|
const int l0 = n*(2*ir + in);
|
|
const int q_offset = 32*im + l0;
|
|
const int y_offset = 64*im + l0;
|
|
|
|
uint16_t aux[4];
|
|
const uint8_t * sc = (const uint8_t *)aux;
|
|
|
|
#if K_QUANTS_PER_ITERATION == 2
|
|
uint32_t q32[4];
|
|
const uint8_t * q4 = (const uint8_t *)q32;
|
|
#else
|
|
uint16_t q16[4];
|
|
const uint8_t * q4 = (const uint8_t *)q16;
|
|
#endif
|
|
|
|
float tmp = 0; // partial sum for thread in warp
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
|
const float * y1 = yy + i*QK_K + y_offset;
|
|
const float * y2 = y1 + 128;
|
|
|
|
const float dall = x[i].dm.x;
|
|
const float dmin = x[i].dm.y;
|
|
|
|
const uint16_t * a = (const uint16_t *)x[i].scales;
|
|
aux[0] = a[im+0] & kmask1;
|
|
aux[1] = a[im+2] & kmask1;
|
|
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
|
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
|
|
|
#if K_QUANTS_PER_ITERATION == 2
|
|
const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
|
|
const uint32_t * q2 = q1 + 16;
|
|
|
|
q32[0] = q1[0] & 0x0f0f0f0f;
|
|
q32[1] = q1[0] & 0xf0f0f0f0;
|
|
q32[2] = q2[0] & 0x0f0f0f0f;
|
|
q32[3] = q2[0] & 0xf0f0f0f0;
|
|
|
|
float4 s = {0.f, 0.f, 0.f, 0.f};
|
|
float smin = 0;
|
|
for (int l = 0; l < 4; ++l) {
|
|
s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4];
|
|
s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12];
|
|
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
|
|
}
|
|
tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
|
|
#else
|
|
const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
|
|
const uint16_t * q2 = q1 + 32;
|
|
|
|
q16[0] = q1[0] & 0x0f0f;
|
|
q16[1] = q1[0] & 0xf0f0;
|
|
q16[2] = q2[0] & 0x0f0f;
|
|
q16[3] = q2[0] & 0xf0f0;
|
|
|
|
float4 s = {0.f, 0.f, 0.f, 0.f};
|
|
float smin = 0;
|
|
for (int l = 0; l < 2; ++l) {
|
|
s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
|
|
s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
|
|
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
|
|
}
|
|
tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
|
|
#endif
|
|
|
|
}
|
|
#else
|
|
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
|
|
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
|
|
|
|
const int step = tid * K_QUANTS_PER_ITERATION;
|
|
|
|
uint16_t aux16[2];
|
|
const uint8_t * s = (const uint8_t *)aux16;
|
|
|
|
float tmp = 0;
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
|
const uint8_t * q = x[i].qs + step;
|
|
const float * y = yy + i*QK_K + step;
|
|
const uint16_t * a = (const uint16_t *)x[i].scales;
|
|
aux16[0] = a[0] & 0x0f0f;
|
|
aux16[1] = (a[0] >> 4) & 0x0f0f;
|
|
const float d = (float)x[i].d[0];
|
|
const float m = (float)x[i].d[1];
|
|
float sum = 0.f;
|
|
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
|
sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
|
|
+ y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
|
|
+ y[j+32] * (d * s[1] * (q[j+ 0] >> 4) - m * s[3])
|
|
+ y[j+48] * (d * s[1] * (q[j+16] >> 4) - m * s[3]);
|
|
}
|
|
tmp += sum;
|
|
}
|
|
|
|
#endif
|
|
|
|
// sum up partial sums and write back result
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
}
|
|
|
|
if (tid == 0) {
|
|
dst[row] = tmp;
|
|
}
|
|
}
|
|
|
|
static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols) {
|
|
|
|
const int row = blockIdx.x;
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row;
|
|
|
|
const block_q5_K * x = (const block_q5_K *)vx + ib0;
|
|
|
|
float tmp = 0; // partial sum for thread in warp
|
|
|
|
#if QK_K == 256
|
|
const uint16_t kmask1 = 0x3f3f;
|
|
const uint16_t kmask2 = 0x0f0f;
|
|
const uint16_t kmask3 = 0xc0c0;
|
|
|
|
const int tid = threadIdx.x/2; // 0...15
|
|
const int ix = threadIdx.x%2;
|
|
|
|
const int il = tid/4; // 0...3
|
|
const int ir = tid - 4*il;// 0...3
|
|
const int n = 2;
|
|
|
|
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
|
const int in = il%2;
|
|
|
|
const int l0 = n*(2*ir + in);
|
|
const int q_offset = 32*im + l0;
|
|
const int y_offset = 64*im + l0;
|
|
|
|
const uint8_t hm1 = 1 << (2*im);
|
|
const uint8_t hm2 = hm1 << 4;
|
|
|
|
uint16_t aux[4];
|
|
const uint8_t * sc = (const uint8_t *)aux;
|
|
|
|
uint16_t q16[8];
|
|
const uint8_t * q4 = (const uint8_t *)q16;
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += 2) {
|
|
|
|
const uint8_t * ql1 = x[i].qs + q_offset;
|
|
const uint8_t * qh = x[i].qh + l0;
|
|
const float * y1 = yy + i*QK_K + y_offset;
|
|
const float * y2 = y1 + 128;
|
|
|
|
const float dall = x[i].dm.x;
|
|
const float dmin = x[i].dm.y;
|
|
|
|
const uint16_t * a = (const uint16_t *)x[i].scales;
|
|
aux[0] = a[im+0] & kmask1;
|
|
aux[1] = a[im+2] & kmask1;
|
|
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
|
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
|
|
|
float4 sum = {0.f, 0.f, 0.f, 0.f};
|
|
float smin = 0;
|
|
const uint16_t * q1 = (const uint16_t *)ql1;
|
|
const uint16_t * q2 = q1 + 32;
|
|
q16[0] = q1[0] & 0x0f0f;
|
|
q16[1] = q1[8] & 0x0f0f;
|
|
q16[2] = (q1[0] >> 4) & 0x0f0f;
|
|
q16[3] = (q1[8] >> 4) & 0x0f0f;
|
|
q16[4] = q2[0] & 0x0f0f;
|
|
q16[5] = q2[8] & 0x0f0f;
|
|
q16[6] = (q2[0] >> 4) & 0x0f0f;
|
|
q16[7] = (q2[8] >> 4) & 0x0f0f;
|
|
for (int l = 0; l < n; ++l) {
|
|
sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
|
|
+ y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0));
|
|
sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
|
|
+ y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0));
|
|
sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
|
|
+ y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0));
|
|
sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
|
|
+ y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0));
|
|
smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
|
|
+ (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
|
|
}
|
|
tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
|
|
}
|
|
|
|
#else
|
|
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
|
|
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
|
|
const int step = tid * K_QUANTS_PER_ITERATION;
|
|
const int im = step/8;
|
|
const int in = step%8;
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
|
const uint8_t * q = x[i].qs + step;
|
|
const int8_t * s = x[i].scales;
|
|
const float * y = yy + i*QK_K + step;
|
|
const float d = x[i].d;
|
|
float sum = 0.f;
|
|
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
|
const uint8_t h = x[i].qh[in+j] >> im;
|
|
sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
|
|
+ y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
|
|
+ y[j+32] * d * s[2] * ((q[j+ 0] >> 4) - ((h >> 4) & 1 ? 0 : 16))
|
|
+ y[j+48] * d * s[3] * ((q[j+16] >> 4) - ((h >> 6) & 1 ? 0 : 16));
|
|
}
|
|
tmp += sum;
|
|
}
|
|
#endif
|
|
|
|
// sum up partial sums and write back result
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
}
|
|
|
|
if (threadIdx.x == 0) {
|
|
dst[row] = tmp;
|
|
}
|
|
}
|
|
|
|
static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
|
|
|
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
|
|
|
const int row = blockIdx.y*blockDim.y + threadIdx.y;
|
|
if (row > nrows) return;
|
|
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row;
|
|
|
|
const block_q6_K * x = (const block_q6_K *)vx + ib0;
|
|
|
|
#if QK_K == 256
|
|
|
|
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
|
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
|
|
|
|
const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
|
|
|
|
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
|
const int in = tid - step*im; // 0...15 or 0...7
|
|
|
|
#if K_QUANTS_PER_ITERATION == 1
|
|
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
|
|
const int is = 0;
|
|
#else
|
|
const int l0 = 4 * in; // 0, 4, 8, ..., 28
|
|
const int is = in / 4;
|
|
#endif
|
|
const int ql_offset = 64*im + l0;
|
|
const int qh_offset = 32*im + l0;
|
|
const int s_offset = 8*im + is;
|
|
const int y_offset = 128*im + l0;
|
|
|
|
float tmp = 0; // partial sum for thread in warp
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
|
const float * y = yy + i * QK_K + y_offset;
|
|
const uint8_t * ql = x[i].ql + ql_offset;
|
|
const uint8_t * qh = x[i].qh + qh_offset;
|
|
const int8_t * s = x[i].scales + s_offset;
|
|
|
|
const float d = x[i].d;
|
|
|
|
#if K_QUANTS_PER_ITERATION == 1
|
|
float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
|
|
+ y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
|
|
+ y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
|
|
+ y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
|
|
+ y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
|
|
+ y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
|
|
+ y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
|
|
+y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
|
|
tmp += sum;
|
|
#else
|
|
float sum = 0;
|
|
for (int l = 0; l < 4; ++l) {
|
|
sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
|
|
+ y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
|
|
+ y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
|
|
+ y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
|
|
}
|
|
tmp += sum;
|
|
#endif
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...7
|
|
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0...3
|
|
|
|
const int step = tid * K_QUANTS_PER_ITERATION;
|
|
|
|
float tmp = 0; // partial sum for thread in warp
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
|
|
|
const float * y = yy + i * QK_K + step;
|
|
const uint8_t * ql = x[i].ql + step;
|
|
const uint8_t * qh = x[i].qh + step;
|
|
const int8_t * s = x[i].scales;
|
|
|
|
const float d = x[i+0].d;
|
|
|
|
float sum = 0;
|
|
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
|
sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
|
|
+ y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
|
|
+ y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >> 4) | ((qh[j] & 0x30) >> 0)) - 32)
|
|
+ y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >> 4) | ((qh[j] & 0xc0) >> 2)) - 32);
|
|
}
|
|
tmp += sum;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
// sum up partial sums and write back result
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
}
|
|
|
|
if (tid == 0) {
|
|
dst[row] = tmp;
|
|
}
|
|
}
|
|
|
|
static __device__ void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
|
const half * x = (const half *) vx;
|
|
|
|
// automatic half -> float type cast if dfloat == float
|
|
v.x = x[ib + iqs + 0];
|
|
v.y = x[ib + iqs + 1];
|
|
}
|
|
|
|
static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded) {
|
|
const int ix = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (ix >= kx_padded) {
|
|
return;
|
|
}
|
|
|
|
const int iy = blockDim.y*blockIdx.y + threadIdx.y;
|
|
|
|
const int i_padded = iy*kx_padded + ix;
|
|
|
|
block_q8_1 * y = (block_q8_1 *) vy;
|
|
|
|
const int ib = i_padded / QK8_1; // block index
|
|
const int iqs = i_padded % QK8_1; // quant index
|
|
|
|
const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
|
|
float amax = fabsf(xi);
|
|
float sum = xi;
|
|
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
amax = fmaxf(amax, __shfl_xor_sync(0xffffffff, amax, mask, 32));
|
|
sum += __shfl_xor_sync(0xffffffff, sum, mask, 32);
|
|
}
|
|
|
|
const float d = amax / 127;
|
|
const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);
|
|
|
|
y[ib].qs[iqs] = q;
|
|
|
|
if (iqs > 0) {
|
|
return;
|
|
}
|
|
|
|
y[ib].ds.x = d;
|
|
y[ib].ds.y = sum;
|
|
}
|
|
|
|
template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
|
|
static __global__ void dequantize_block(const void * __restrict__ vx, float * __restrict__ y, const int k) {
|
|
const int i = blockDim.x*blockIdx.x + 2*threadIdx.x;
|
|
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
|
|
const int ib = i/qk; // block index
|
|
const int iqs = (i%qk)/qr; // quant index
|
|
const int iybs = i - i%qk; // y block start index
|
|
const int y_offset = qr == 1 ? 1 : qk/2;
|
|
|
|
// dequantize
|
|
dfloat2 v;
|
|
dequantize_kernel(vx, ib, iqs, v);
|
|
|
|
y[iybs + iqs + 0] = v.x;
|
|
y[iybs + iqs + y_offset] = v.y;
|
|
}
|
|
|
|
// VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
|
|
// MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
|
|
|
|
#define VDR_Q4_0_Q8_1_MMVQ 2
|
|
#define VDR_Q4_0_Q8_1_MMQ 4
|
|
|
|
template <int vdr> static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl(
|
|
const int * v, const int * u, const float & d4, const half2 & ds8) {
|
|
|
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
|
int sumi = 0;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < vdr; ++i) {
|
|
const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
|
|
const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
|
|
|
|
// SIMD dot product of quantized values
|
|
sumi = __dp4a(vi0, u[2*i+0], sumi);
|
|
sumi = __dp4a(vi1, u[2*i+1], sumi);
|
|
}
|
|
|
|
const float2 ds8f = __half22float2(ds8);
|
|
|
|
// second part effectively subtracts 8 from each quant value
|
|
return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y);
|
|
#else
|
|
return 0.0f; // only to satisfy the compiler
|
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
|
}
|
|
|
|
#define VDR_Q4_1_Q8_1_MMVQ 2
|
|
#define VDR_Q4_1_Q8_1_MMQ 4
|
|
|
|
template <int vdr> static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl(
|
|
const int * v, const int * u, const half2 & dm4, const half2 & ds8) {
|
|
|
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
|
int sumi = 0;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < vdr; ++i) {
|
|
const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
|
|
const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
|
|
|
|
// SIMD dot product of quantized values
|
|
sumi = __dp4a(vi0, u[2*i+0], sumi);
|
|
sumi = __dp4a(vi1, u[2*i+1], sumi);
|
|
}
|
|
|
|
#ifdef GGML_CUDA_F16
|
|
const float2 tmp = __half22float2(__hmul2(dm4, ds8));
|
|
const float d4d8 = tmp.x;
|
|
const float m4s8 = tmp.y;
|
|
#else
|
|
const float2 dm4f = __half22float2(dm4);
|
|
const float2 ds8f = __half22float2(ds8);
|
|
const float d4d8 = dm4f.x * ds8f.x;
|
|
const float m4s8 = dm4f.y * ds8f.y;
|
|
#endif // GGML_CUDA_F16
|
|
|
|
// scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
|
|
return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
|
|
#else
|
|
return 0.0f; // only to satisfy the compiler
|
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
|
}
|
|
|
|
#define VDR_Q5_0_Q8_1_MMVQ 2
|
|
#define VDR_Q5_0_Q8_1_MMQ 4
|
|
|
|
template <int vdr> static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl(
|
|
const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) {
|
|
|
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
|
int sumi = 0;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < vdr; ++i) {
|
|
int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
|
|
vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
|
|
vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
|
|
vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
|
|
vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
|
|
sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
|
|
|
|
int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
|
|
vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
|
|
vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
|
|
vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
|
|
vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
|
|
sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
|
|
}
|
|
|
|
const float2 ds8f = __half22float2(ds8);
|
|
|
|
// second part effectively subtracts 16 from each quant value
|
|
return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y);
|
|
#else
|
|
return 0.0f; // only to satisfy the compiler
|
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
|
}
|
|
|
|
#define VDR_Q5_1_Q8_1_MMVQ 2
|
|
#define VDR_Q5_1_Q8_1_MMQ 4
|
|
|
|
template <int vdr> static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl(
|
|
const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) {
|
|
|
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
|
int sumi = 0;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < vdr; ++i) {
|
|
int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
|
|
vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
|
|
vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
|
|
vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
|
|
vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
|
|
sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
|
|
|
|
int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
|
|
vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
|
|
vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
|
|
vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
|
|
vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
|
|
sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
|
|
}
|
|
|
|
#ifdef GGML_CUDA_F16
|
|
const float2 tmp = __half22float2(__hmul2(dm5, ds8));
|
|
const float d5d8 = tmp.x;
|
|
const float m5s8 = tmp.y;
|
|
#else
|
|
const float2 dm5f = __half22float2(dm5);
|
|
const float2 ds8f = __half22float2(ds8);
|
|
const float d5d8 = dm5f.x * ds8f.x;
|
|
const float m5s8 = dm5f.y * ds8f.y;
|
|
#endif // GGML_CUDA_F16
|
|
|
|
// scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it
|
|
return sumi*d5d8 + m5s8 / (QI5_1 / vdr);
|
|
|
|
#else
|
|
return 0.0f; // only to satisfy the compiler
|
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
|
}
|
|
|
|
#define VDR_Q8_0_Q8_1_MMVQ 2
|
|
#define VDR_Q8_0_Q8_1_MMQ 8
|
|
|
|
template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_q8_1_impl(
|
|
const int * v, const int * u, const float & d8_0, const float & d8_1) {
|
|
|
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
|
int sumi = 0;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < vdr; ++i) {
|
|
// SIMD dot product of quantized values
|
|
sumi = __dp4a(v[i], u[i], sumi);
|
|
}
|
|
|
|
return d8_0*d8_1 * sumi;
|
|
#else
|
|
return 0.0f; // only to satisfy the compiler
|
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
|
}
|
|
|
|
template <int vdr> static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl(
|
|
const int * v, const int * u, const half2 & dm8, const half2 & ds8) {
|
|
|
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
|
int sumi = 0;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < vdr; ++i) {
|
|
// SIMD dot product of quantized values
|
|
sumi = __dp4a(v[i], u[i], sumi);
|
|
}
|
|
|
|
#ifdef GGML_CUDA_F16
|
|
const float2 tmp = __half22float2(__hmul2(dm8, ds8));
|
|
const float d8d8 = tmp.x;
|
|
const float m8s8 = tmp.y;
|
|
#else
|
|
const float2 dm8f = __half22float2(dm8);
|
|
const float2 ds8f = __half22float2(ds8);
|
|
const float d8d8 = dm8.x * ds8.x;
|
|
const float m8s8 = dm8.y * ds8.y;
|
|
#endif // GGML_CUDA_F16
|
|
|
|
// scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
|
|
return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
|
|
#else
|
|
return 0.0f; // only to satisfy the compiler
|
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
|
}
|
|
|
|
#define VDR_Q2_K_Q8_1_MMVQ 1
|
|
#define VDR_Q2_K_Q8_1_MMQ 2
|
|
|
|
// contiguous v/x values
|
|
static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq(
|
|
const int & v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
|
|
const half2 & dm2, const float * __restrict__ d8) {
|
|
|
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
|
float sumf_d = 0.0f;
|
|
float sumf_m = 0.0f;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR2_K; ++i) {
|
|
const int sc = scales[2*i];
|
|
|
|
const int vi = (v >> (2*i)) & 0x03030303;
|
|
|
|
sumf_d += d8[i] * (__dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product
|
|
|
|
// fill int with 4x m
|
|
int m = sc >> 4;
|
|
m |= m << 8;
|
|
m |= m << 16;
|
|
sumf_m += d8[i] * __dp4a(m, u[i], 0); // multiply constant q2_K part with sum of q8_1 values
|
|
}
|
|
|
|
const float2 dm2f = __half22float2(dm2);
|
|
|
|
return dm2f.x*sumf_d - dm2f.y*sumf_m;
|
|
#else
|
|
return 0.0f; // only to satisfy the compiler
|
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
|
}
|
|
|
|
// contiguous u/y values
|
|
static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq(
|
|
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
|
|
const half2 & dm2, const float & d8) {
|
|
|
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
|
int sumi_d = 0;
|
|
int sumi_m = 0;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
|
|
int sumi_d_sc = 0;
|
|
|
|
const int sc = scales[i0 / (QI8_1/2)];
|
|
|
|
// fill int with 4x m
|
|
int m = sc >> 4;
|
|
m |= m << 8;
|
|
m |= m << 16;
|
|
|
|
#pragma unroll
|
|
for (int i = i0; i < i0 + QI8_1/2; ++i) {
|
|
sumi_d_sc = __dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product
|
|
sumi_m = __dp4a(m, u[i], sumi_m); // multiply sum of q8_1 values with m
|
|
}
|
|
|
|
sumi_d += sumi_d_sc * (sc & 0xF);
|
|
}
|
|
|
|
const float2 dm2f = __half22float2(dm2);
|
|
|
|
return d8 * (dm2f.x*sumi_d - dm2f.y*sumi_m);
|
|
#else
|
|
return 0.0f; // only to satisfy the compiler
|
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
|
}
|
|
|
|
#define VDR_Q3_K_Q8_1_MMVQ 1
|
|
#define VDR_Q3_K_Q8_1_MMQ 2
|
|
|
|
// contiguous v/x values
|
|
static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq(
|
|
const int & vl, const int & vh, const int * __restrict__ u, const uint8_t * __restrict__ scales,
|
|
const int & scale_offset, const float & d3, const float * __restrict__ d8) {
|
|
|
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
|
float sumf = 0.0f;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR3_K; ++i) {
|
|
const int isc = scale_offset + 2*i;
|
|
|
|
const int isc_low = isc % (QK_K/32);
|
|
const int sc_shift_low = 4 * (isc / (QK_K/32));
|
|
const int sc_low = (scales[isc_low] >> sc_shift_low) & 0xF;
|
|
|
|
const int isc_high = isc % (QK_K/64);
|
|
const int sc_shift_high = 2 * (isc / (QK_K/64));
|
|
const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
|
|
|
|
const int sc = (sc_low | sc_high) - 32;
|
|
|
|
const int vil = (vl >> (2*i)) & 0x03030303;
|
|
|
|
const int vih = ((vh >> i) << 2) & 0x04040404;
|
|
|
|
const int vi = __vsubss4(vil, vih);
|
|
|
|
sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
|
|
}
|
|
|
|
return d3 * sumf;
|
|
#else
|
|
return 0.0f; // only to satisfy the compiler
|
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
|
}
|
|
|
|
// contiguous u/y values
|
|
static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq(
|
|
const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales,
|
|
const float & d3, const float & d8) {
|
|
|
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
|
int sumi = 0;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
|
|
int sumi_sc = 0;
|
|
|
|
for (int i = i0; i < i0 + QI8_1/2; ++i) {
|
|
sumi_sc = __dp4a(v[i], u[i], sumi_sc); // SIMD dot product
|
|
}
|
|
|
|
sumi += sumi_sc * scales[i0 / (QI8_1/2)];
|
|
}
|
|
|
|
return d3*d8 * sumi;
|
|
#else
|
|
return 0.0f; // only to satisfy the compiler
|
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
|
}
|
|
|
|
#define VDR_Q4_K_Q8_1_MMVQ 2
|
|
#define VDR_Q4_K_Q8_1_MMQ 8
|
|
|
|
// contiguous v/x values
|
|
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq(
|
|
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
|
|
const uint8_t * __restrict__ m, const half2 & dm4, const float * __restrict__ d8) {
|
|
|
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
|
float sumf_d = 0.0f;
|
|
float sumf_m = 0.0f;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR4_K; ++i) {
|
|
const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F;
|
|
const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F;
|
|
|
|
const int dot1 = __dp4a(v1i, u[2*i+1], __dp4a(v0i, u[2*i+0], 0)); // SIMD dot product
|
|
const int dot2 = __dp4a(0x01010101, u[2*i+1], __dp4a(0x01010101, u[2*i+0], 0)); // sum of u
|
|
|
|
sumf_d += d8[i] * (dot1 * sc[i]);
|
|
sumf_m += d8[i] * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values
|
|
}
|
|
|
|
const float2 dm4f = __half22float2(dm4);
|
|
|
|
return dm4f.x*sumf_d - dm4f.y*sumf_m;
|
|
|
|
#else
|
|
return 0.0f; // only to satisfy the compiler
|
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
|
}
|
|
|
|
// contiguous u/y values
|
|
// also used for q5_K
|
|
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
|
|
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
|
|
const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
|
|
|
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
|
float sumf_d = 0.0f;
|
|
float sumf_m = 0.0f;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < VDR_Q4_K_Q8_1_MMQ; i0 += (QI8_1/QR4_K)) {
|
|
int sumi_d = 0;
|
|
|
|
#pragma unroll
|
|
for (int i = i0; i < i0 + (QI8_1/QR4_K); ++i) {
|
|
sumi_d = __dp4a(v[2*i+0], u[2*i+0], sumi_d); // SIMD dot product
|
|
sumi_d = __dp4a(v[2*i+1], u[2*i+1], sumi_d); // SIMD dot product
|
|
}
|
|
|
|
const float2 ds8f = __half22float2(ds8[i0 / 4]);
|
|
|
|
sumf_d += ds8f.x * (sc[i0/4] * sumi_d);
|
|
sumf_m += ds8f.y * m[i0/4]; // sum of q8_1 block * q4_K min val
|
|
}
|
|
|
|
const float2 dm4f = __half22float2(dm4);
|
|
|
|
return dm4f.x*sumf_d - dm4f.y*sumf_m;
|
|
|
|
#else
|
|
return 0.0f; // only to satisfy the compiler
|
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
|
}
|
|
|
|
#define VDR_Q5_K_Q8_1_MMVQ 2
|
|
#define VDR_Q5_K_Q8_1_MMQ 8
|
|
|
|
// contiguous v/x values
|
|
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl(
|
|
const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc,
|
|
const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) {
|
|
|
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
|
float sumf_d = 0.0f;
|
|
float sumf_m = 0.0f;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR5_K; ++i) {
|
|
const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F;
|
|
const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F;
|
|
|
|
const int vh0i = ((vh[0] >> i) << 4) & 0x10101010;
|
|
const int vh1i = ((vh[1] >> i) << 4) & 0x10101010;
|
|
|
|
const int v0i = vl0i | vh0i;
|
|
const int v1i = vl1i | vh1i;
|
|
|
|
const int dot1 = __dp4a(v0i, u[2*i+0], __dp4a(v1i, u[2*i+1], 0)); // SIMD dot product
|
|
const int dot2 = __dp4a(0x01010101, u[2*i+0], __dp4a(0x01010101, u[2*i+1], 0)); // sum of u
|
|
|
|
sumf_d += d8[i] * (dot1 * sc[i]);
|
|
sumf_m += d8[i] * (dot2 * m[i]);
|
|
|
|
}
|
|
|
|
const float2 dm5f = __half22float2(dm5);
|
|
|
|
return dm5f.x*sumf_d - dm5f.y*sumf_m;
|
|
|
|
#else
|
|
return 0.0f; // only to satisfy the compiler
|
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
|
}
|
|
|
|
#define VDR_Q6_K_Q8_1_MMVQ 1
|
|
#define VDR_Q6_K_Q8_1_MMQ 8
|
|
|
|
// contiguous v/x values
|
|
static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq(
|
|
const int & vl, const int & vh, const int * __restrict__ u, const int8_t * __restrict__ scales,
|
|
const float & d, const float * __restrict__ d8) {
|
|
|
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
|
float sumf = 0.0f;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR6_K; ++i) {
|
|
const int sc = scales[4*i];
|
|
|
|
const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
|
|
|
|
const int vih = ((vh >> (4*i)) << 4) & 0x30303030;
|
|
|
|
const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32
|
|
|
|
sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
|
|
}
|
|
|
|
return d*sumf;
|
|
#else
|
|
return 0.0f; // only to satisfy the compiler
|
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
|
}
|
|
|
|
// contiguous u/y values
|
|
static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq(
|
|
const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc,
|
|
const float & d6, const float * __restrict__ d8) {
|
|
|
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
|
float sumf_d = 0.0f;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
|
|
int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
|
|
|
|
#pragma unroll
|
|
for (int i = i0; i < i0 + 2; ++i) {
|
|
sumi_d.x = __dp4a(v[2*i+0], u[2*i+0], sumi_d.x); // SIMD dot product
|
|
sumi_d.x = __dp4a(v[2*i+1], u[2*i+1], sumi_d.x); // SIMD dot product
|
|
|
|
sumi_d.y = __dp4a(v[2*i+4], u[2*i+4], sumi_d.y); // SIMD dot product
|
|
sumi_d.y = __dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product
|
|
}
|
|
|
|
sumf_d += d8[i0/4] * (sc[i0/2+0]*sumi_d.x + sc[i0/2+1]*sumi_d.y);
|
|
}
|
|
|
|
return d6 * sumf_d;
|
|
|
|
#else
|
|
return 0.0f; // only to satisfy the compiler
|
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q4_0_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
|
|
|
const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;
|
|
|
|
int v[VDR_Q4_0_Q8_1_MMVQ];
|
|
int u[2*VDR_Q4_0_Q8_1_MMVQ];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) {
|
|
v[i] = get_int_from_uint8(bq4_0->qs, iqs + i);
|
|
u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
|
|
u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0);
|
|
}
|
|
|
|
return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds);
|
|
}
|
|
|
|
static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
|
|
|
__shared__ int tile_x_qs[GGML_CUDA_MMQ_Y * (WARP_SIZE) + GGML_CUDA_MMQ_Y];
|
|
__shared__ float tile_x_d[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI4_0) + GGML_CUDA_MMQ_Y/QI4_0];
|
|
|
|
*x_ql = tile_x_qs;
|
|
*x_dm = (half2 *) tile_x_d;
|
|
}
|
|
|
|
template <bool need_check> static __device__ __forceinline__ void load_tiles_q4_0(
|
|
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
|
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
|
|
|
__builtin_assume(i_offset >= 0);
|
|
__builtin_assume(i_offset < 8);
|
|
__builtin_assume(k >= 0);
|
|
__builtin_assume(k < WARP_SIZE);
|
|
|
|
const int kbx = k / QI4_0;
|
|
const int kqsx = k % QI4_0;
|
|
|
|
const block_q4_0 * bx0 = (block_q4_0 *) vx;
|
|
|
|
float * x_dmf = (float *) x_dm;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8) {
|
|
int i = i0 + i_offset;
|
|
|
|
if (need_check) {
|
|
i = min(i, i_max);
|
|
}
|
|
|
|
const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx;
|
|
|
|
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
|
|
x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d;
|
|
}
|
|
|
|
// const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
|
|
// const int kbxd = k % blocks_per_tile_x_row;
|
|
|
|
// #pragma unroll
|
|
// for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * QI4_0) {
|
|
// FIXME out-of-bounds
|
|
// const int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row;
|
|
|
|
// if (i >= GGML_CUDA_MMQ_Y) {
|
|
// return;
|
|
// }
|
|
|
|
// const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
|
// x_dm[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd].x = bxi->d;
|
|
// }
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q4_0_q8_1_mul_mat(
|
|
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
|
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
|
|
|
__builtin_assume(i >= 0);
|
|
__builtin_assume(i < GGML_CUDA_MMQ_Y);
|
|
__builtin_assume(j >= 0);
|
|
__builtin_assume(j < WARP_SIZE);
|
|
__builtin_assume(k >= 0);
|
|
__builtin_assume(k < WARP_SIZE);
|
|
__builtin_assume(k % VDR_Q4_0_Q8_1_MMQ == 0);
|
|
|
|
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
|
const float * x_dmf = (float *) x_dm;
|
|
|
|
int u[2*VDR_Q4_0_Q8_1_MMQ];
|
|
|
|
#pragma unroll
|
|
for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
|
|
u[2*l+0] = y_qs[j * (2*WARP_SIZE) + kyqs + l];
|
|
u[2*l+1] = y_qs[j * (2*WARP_SIZE) + kyqs + l + QI4_0];
|
|
}
|
|
|
|
return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
|
|
(&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0],
|
|
y_ds[j * (2*WARP_SIZE/QI8_1) + 2*k/QI8_1]);
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q4_1_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
|
|
|
const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;
|
|
|
|
int v[VDR_Q4_1_Q8_1_MMVQ];
|
|
int u[2*VDR_Q4_1_Q8_1_MMVQ];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) {
|
|
v[i] = get_int_from_uint8_aligned(bq4_1->qs, iqs + i);
|
|
u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
|
|
u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1);
|
|
}
|
|
|
|
return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds);
|
|
}
|
|
|
|
static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
|
|
|
__shared__ int tile_x_qs[GGML_CUDA_MMQ_Y * (WARP_SIZE) + + GGML_CUDA_MMQ_Y];
|
|
__shared__ half2 tile_x_dm[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI4_1) + GGML_CUDA_MMQ_Y/QI4_1];
|
|
|
|
*x_ql = tile_x_qs;
|
|
*x_dm = tile_x_dm;
|
|
}
|
|
|
|
template <bool need_check> static __device__ __forceinline__ void load_tiles_q4_1(
|
|
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
|
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
|
|
|
__builtin_assume(i_offset >= 0);
|
|
__builtin_assume(i_offset < 8);
|
|
__builtin_assume(k >= 0);
|
|
__builtin_assume(k < WARP_SIZE);
|
|
|
|
const int kbx = k / QI4_1;
|
|
const int kqsx = k % QI4_1;
|
|
|
|
const block_q4_1 * bx0 = (block_q4_1 *) vx;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8) {
|
|
int i = i0 + i_offset;
|
|
|
|
if (need_check) {
|
|
i = min(i, i_max);
|
|
}
|
|
|
|
const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx;
|
|
|
|
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
|
}
|
|
|
|
const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
|
|
const int kbxd = k % blocks_per_tile_x_row;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * QI4_1) {
|
|
int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row;
|
|
|
|
if (need_check) {
|
|
i = min(i, i_max);
|
|
}
|
|
|
|
const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
|
x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm;
|
|
}
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q4_1_q8_1_mul_mat(
|
|
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
|
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
|
|
|
__builtin_assume(i >= 0);
|
|
__builtin_assume(i < GGML_CUDA_MMQ_Y);
|
|
__builtin_assume(j >= 0);
|
|
__builtin_assume(j < WARP_SIZE);
|
|
__builtin_assume(k >= 0);
|
|
__builtin_assume(k < WARP_SIZE);
|
|
__builtin_assume(k % VDR_Q4_1_Q8_1_MMQ == 0);
|
|
|
|
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
|
|
|
int u[2*VDR_Q4_1_Q8_1_MMQ];
|
|
|
|
#pragma unroll
|
|
for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
|
|
u[2*l+0] = y_qs[j * (2*WARP_SIZE) + kyqs + l];
|
|
u[2*l+1] = y_qs[j * (2*WARP_SIZE) + kyqs + l + QI4_1];
|
|
}
|
|
|
|
return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
|
|
(&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1],
|
|
y_ds[j * (2*WARP_SIZE/QI8_1) + 2*k/QI8_1]);
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q5_0_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
|
|
|
const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;
|
|
|
|
int vl[VDR_Q5_0_Q8_1_MMVQ];
|
|
int vh[VDR_Q5_0_Q8_1_MMVQ];
|
|
int u[2*VDR_Q5_0_Q8_1_MMVQ];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) {
|
|
vl[i] = get_int_from_uint8(bq5_0->qs, iqs + i);
|
|
vh[i] = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i));
|
|
u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
|
|
u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0);
|
|
}
|
|
|
|
return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds);
|
|
}
|
|
|
|
static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
|
|
|
__shared__ int tile_x_ql[GGML_CUDA_MMQ_Y * (2*WARP_SIZE) + GGML_CUDA_MMQ_Y];
|
|
__shared__ float tile_x_d[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI5_0) + GGML_CUDA_MMQ_Y/QI5_0];
|
|
|
|
*x_ql = tile_x_ql;
|
|
*x_dm = (half2 *) tile_x_d;
|
|
}
|
|
|
|
template <bool need_check> static __device__ __forceinline__ void load_tiles_q5_0(
|
|
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
|
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
|
|
|
__builtin_assume(i_offset >= 0);
|
|
__builtin_assume(i_offset < 8);
|
|
__builtin_assume(k >= 0);
|
|
__builtin_assume(k < WARP_SIZE);
|
|
|
|
const int kbx = k / QI5_0;
|
|
const int kqsx = k % QI5_0;
|
|
|
|
const block_q5_0 * bx0 = (block_q5_0 *) vx;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8) {
|
|
int i = i0 + i_offset;
|
|
|
|
if (need_check) {
|
|
i = min(i, i_max);
|
|
}
|
|
|
|
const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx;
|
|
|
|
const int ql = get_int_from_uint8(bxi->qs, kqsx);
|
|
const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0));
|
|
|
|
int qs0 = (ql >> 0) & 0x0F0F0F0F;
|
|
qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
|
|
qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
|
|
qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
|
|
qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
|
|
qs0 = __vsubss4(qs0, 0x10101010); // subtract 16
|
|
|
|
x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
|
|
|
|
int qs1 = (ql >> 4) & 0x0F0F0F0F;
|
|
qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
|
|
qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
|
|
qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
|
|
qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
|
|
qs1 = __vsubss4(qs1, 0x10101010); // subtract 16
|
|
|
|
x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
|
|
}
|
|
|
|
const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
|
|
const int kbxd = k % blocks_per_tile_x_row;
|
|
float * x_dmf = (float *) x_dm;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * QI5_0) {
|
|
int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row;
|
|
|
|
if (need_check) {
|
|
i = min(i, i_max);
|
|
}
|
|
|
|
const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
|
x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d;
|
|
}
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat(
|
|
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
|
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
|
|
|
__builtin_assume(i >= 0);
|
|
__builtin_assume(i < GGML_CUDA_MMQ_Y);
|
|
__builtin_assume(j >= 0);
|
|
__builtin_assume(j < WARP_SIZE);
|
|
__builtin_assume(k >= 0);
|
|
__builtin_assume(k < WARP_SIZE);
|
|
__builtin_assume(k % VDR_Q5_0_Q8_1_MMQ == 0);
|
|
|
|
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
|
const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
|
|
const float * x_dmf = (const float *) x_dm;
|
|
const float * y_df = (const float *) y_ds;
|
|
|
|
int u[2*VDR_Q5_0_Q8_1_MMQ];
|
|
|
|
#pragma unroll
|
|
for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) {
|
|
u[2*l+0] = y_qs[j * (2*WARP_SIZE) + kyqs + l];
|
|
u[2*l+1] = y_qs[j * (2*WARP_SIZE) + kyqs + l + QI5_0];
|
|
}
|
|
|
|
return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ>
|
|
(&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (2*WARP_SIZE/QI8_1) + 2*k/QI8_1]);
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q5_1_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
|
|
|
const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
|
|
|
|
int vl[VDR_Q5_1_Q8_1_MMVQ];
|
|
int vh[VDR_Q5_1_Q8_1_MMVQ];
|
|
int u[2*VDR_Q5_1_Q8_1_MMVQ];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) {
|
|
vl[i] = get_int_from_uint8_aligned(bq5_1->qs, iqs + i);
|
|
vh[i] = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i));
|
|
u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
|
|
u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1);
|
|
}
|
|
|
|
return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds);
|
|
}
|
|
|
|
static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
|
|
|
__shared__ int tile_x_ql[GGML_CUDA_MMQ_Y * (2*WARP_SIZE) + GGML_CUDA_MMQ_Y];
|
|
__shared__ half2 tile_x_dm[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI5_1) + GGML_CUDA_MMQ_Y/QI5_1];
|
|
|
|
*x_ql = tile_x_ql;
|
|
*x_dm = tile_x_dm;
|
|
}
|
|
|
|
template <bool need_check> static __device__ __forceinline__ void load_tiles_q5_1(
|
|
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
|
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
|
|
|
__builtin_assume(i_offset >= 0);
|
|
__builtin_assume(i_offset < 8);
|
|
__builtin_assume(k >= 0);
|
|
__builtin_assume(k < WARP_SIZE);
|
|
|
|
const int kbx = k / QI5_1;
|
|
const int kqsx = k % QI5_1;
|
|
|
|
const block_q5_1 * bx0 = (block_q5_1 *) vx;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8) {
|
|
int i = i0 + i_offset;
|
|
|
|
if (need_check) {
|
|
i = min(i, i_max);
|
|
}
|
|
|
|
const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx;
|
|
|
|
const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
|
const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1));
|
|
|
|
int qs0 = (ql >> 0) & 0x0F0F0F0F;
|
|
qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
|
|
qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
|
|
qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
|
|
qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
|
|
|
|
x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
|
|
|
|
int qs1 = (ql >> 4) & 0x0F0F0F0F;
|
|
qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
|
|
qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
|
|
qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
|
|
qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
|
|
|
|
x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
|
|
}
|
|
|
|
const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
|
|
const int kbxd = k % blocks_per_tile_x_row;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * QI5_1) {
|
|
int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row;
|
|
|
|
if (need_check) {
|
|
i = min(i, i_max);
|
|
}
|
|
|
|
const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
|
x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm;
|
|
}
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q5_1_q8_1_mul_mat(
|
|
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
|
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
|
|
|
__builtin_assume(i >= 0);
|
|
__builtin_assume(i < GGML_CUDA_MMQ_Y);
|
|
__builtin_assume(j >= 0);
|
|
__builtin_assume(j < WARP_SIZE);
|
|
__builtin_assume(k >= 0);
|
|
__builtin_assume(k < WARP_SIZE);
|
|
__builtin_assume(k % VDR_Q5_1_Q8_1_MMQ == 0);
|
|
|
|
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
|
const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
|
|
|
|
int u[2*VDR_Q5_1_Q8_1_MMQ];
|
|
|
|
#pragma unroll
|
|
for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) {
|
|
u[2*l+0] = y_qs[j * (2*WARP_SIZE) + kyqs + l];
|
|
u[2*l+1] = y_qs[j * (2*WARP_SIZE) + kyqs + l + QI5_1];
|
|
}
|
|
|
|
return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
|
|
(&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (2*WARP_SIZE/QI8_1) + 2*k/QI8_1]);
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
|
|
|
const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;
|
|
|
|
int v[VDR_Q8_0_Q8_1_MMVQ];
|
|
int u[VDR_Q8_0_Q8_1_MMVQ];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) {
|
|
v[i] = get_int_from_int8(bq8_0->qs, iqs + i);
|
|
u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
|
|
}
|
|
|
|
return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, bq8_1->ds.x);
|
|
}
|
|
|
|
static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
|
|
|
__shared__ int tile_x_qs[GGML_CUDA_MMQ_Y * (WARP_SIZE) + GGML_CUDA_MMQ_Y];
|
|
__shared__ float tile_x_d[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI8_0) + GGML_CUDA_MMQ_Y/QI8_0];
|
|
|
|
*x_ql = tile_x_qs;
|
|
*x_dm = (half2 *) tile_x_d;
|
|
}
|
|
|
|
template <bool need_check> static __device__ __forceinline__ void load_tiles_q8_0(
|
|
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
|
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
|
|
|
__builtin_assume(i_offset >= 0);
|
|
__builtin_assume(i_offset < 8);
|
|
__builtin_assume(k >= 0);
|
|
__builtin_assume(k < WARP_SIZE);
|
|
|
|
const int kbx = k / QI8_0;
|
|
const int kqsx = k % QI8_0;
|
|
float * x_dmf = (float *) x_dm;
|
|
|
|
const block_q8_0 * bx0 = (block_q8_0 *) vx;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8) {
|
|
int i = i0 + i_offset;
|
|
|
|
if (need_check) {
|
|
i = min(i, i_max);
|
|
}
|
|
|
|
const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx;
|
|
|
|
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx);
|
|
x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbx] = bxi->d;
|
|
}
|
|
|
|
// const int blocks_per_tile_x_row = WARP_SIZE / QI8_0;
|
|
// const int kbxd = k % blocks_per_tile_x_row;
|
|
|
|
// #pragma unroll
|
|
// for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * QI8_0) {
|
|
// FIXME out-of-bounds
|
|
// const int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row;
|
|
|
|
// #if GGML_CUDA_MMQ_Y < 64
|
|
// if (i >= GGML_CUDA_MMQ_Y) {
|
|
// return;
|
|
// }
|
|
// #endif // GGML_CUDA_MMQ_Y < 64
|
|
|
|
// const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
|
// x_dm[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd].x = bxi->d;
|
|
// }
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat(
|
|
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
|
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
|
|
|
__builtin_assume(i >= 0);
|
|
__builtin_assume(i < GGML_CUDA_MMQ_Y);
|
|
__builtin_assume(j >= 0);
|
|
__builtin_assume(j < WARP_SIZE);
|
|
__builtin_assume(k >= 0);
|
|
__builtin_assume(k < WARP_SIZE);
|
|
__builtin_assume(k % VDR_Q8_0_Q8_1_MMQ == 0);
|
|
|
|
const float * x_dmf = (const float *) x_dm;
|
|
const float * y_df = (const float *) y_ds;
|
|
|
|
return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ>
|
|
(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
|
|
y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
|
|
|
const block_q2_K * bq2_K = (const block_q2_K *) vbq;
|
|
|
|
const int bq8_offset = QR2_K * (iqs / QI8_1);
|
|
const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
|
|
|
|
const uint8_t * scales = bq2_K->scales + scale_offset;
|
|
|
|
const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs);
|
|
int u[QR2_K];
|
|
float d8[QR2_K];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR2_K; ++ i) {
|
|
u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
|
|
d8[i] = bq8_1[bq8_offset + i].ds.x;
|
|
}
|
|
|
|
return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
|
|
}
|
|
|
|
static __device__ __forceinline__ void allocate_tiles_q2_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
|
|
|
__shared__ int tile_x_ql[GGML_CUDA_MMQ_Y * (WARP_SIZE) + GGML_CUDA_MMQ_Y];
|
|
__shared__ half2 tile_x_dm[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI2_K) + GGML_CUDA_MMQ_Y/QI2_K];
|
|
__shared__ int tile_x_sc[GGML_CUDA_MMQ_Y * (WARP_SIZE/4) + GGML_CUDA_MMQ_Y/4];
|
|
|
|
*x_ql = tile_x_ql;
|
|
*x_dm = tile_x_dm;
|
|
*x_sc = tile_x_sc;
|
|
}
|
|
|
|
template <bool need_check> static __device__ __forceinline__ void load_tiles_q2_K(
|
|
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
|
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
|
|
|
__builtin_assume(i_offset >= 0);
|
|
__builtin_assume(i_offset < 8);
|
|
__builtin_assume(k >= 0);
|
|
__builtin_assume(k < WARP_SIZE);
|
|
|
|
const int kbx = k / QI2_K;
|
|
const int kqsx = k % QI2_K;
|
|
|
|
const block_q2_K * bx0 = (block_q2_K *) vx;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8) {
|
|
int i = i0 + i_offset;
|
|
|
|
if (need_check) {
|
|
i = min(i, i_max);
|
|
}
|
|
|
|
const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx;
|
|
|
|
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
|
}
|
|
|
|
const int blocks_per_tile_x_row = WARP_SIZE / QI2_K;
|
|
const int kbxd = k % blocks_per_tile_x_row;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * QI2_K) {
|
|
int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % GGML_CUDA_MMQ_Y;
|
|
|
|
if (need_check) {
|
|
i = min(i, i_max);
|
|
}
|
|
|
|
const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
|
x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm;
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * 4) {
|
|
int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
|
|
|
|
if (need_check) {
|
|
i = min(i, i_max);
|
|
}
|
|
|
|
const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4);
|
|
|
|
x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4));
|
|
}
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat(
|
|
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
|
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
|
|
|
__builtin_assume(i >= 0);
|
|
__builtin_assume(i < GGML_CUDA_MMQ_Y);
|
|
__builtin_assume(j >= 0);
|
|
__builtin_assume(j < WARP_SIZE);
|
|
__builtin_assume(k >= 0);
|
|
__builtin_assume(k < WARP_SIZE);
|
|
__builtin_assume(k % VDR_Q2_K_Q8_1_MMQ == 0);
|
|
|
|
const int kbx = k / QI2_K;
|
|
const int ky = (k % QI2_K) * QR2_K;
|
|
const float * y_df = (const float *) y_ds;
|
|
|
|
int v[QR2_K*VDR_Q2_K_Q8_1_MMQ];
|
|
|
|
const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2);
|
|
const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2));
|
|
|
|
#pragma unroll
|
|
for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) {
|
|
v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303;
|
|
}
|
|
|
|
const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4;
|
|
|
|
const int index_y = j * (QR2_K*WARP_SIZE) + QR2_K*k;
|
|
return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]);
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
|
|
|
const block_q3_K * bq3_K = (const block_q3_K *) vbq;
|
|
|
|
const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
|
|
const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
|
|
|
|
const float d = bq3_K->d;
|
|
|
|
const int vl = get_int_from_uint8(bq3_K->qs, iqs);
|
|
|
|
// invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
|
|
const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset;
|
|
|
|
int u[QR3_K];
|
|
float d8[QR3_K];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR3_K; ++i) {
|
|
u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
|
|
d8[i] = bq8_1[bq8_offset + i].ds.x;
|
|
}
|
|
|
|
return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
|
|
}
|
|
|
|
static __device__ __forceinline__ void allocate_tiles_q3_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
|
|
|
__shared__ int tile_x_ql[GGML_CUDA_MMQ_Y * (WARP_SIZE) + GGML_CUDA_MMQ_Y];
|
|
__shared__ half2 tile_x_dm[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI3_K) + GGML_CUDA_MMQ_Y/QI3_K];
|
|
__shared__ int tile_x_qh[GGML_CUDA_MMQ_Y * (WARP_SIZE/2) + GGML_CUDA_MMQ_Y/2];
|
|
__shared__ int tile_x_sc[GGML_CUDA_MMQ_Y * (WARP_SIZE/4) + GGML_CUDA_MMQ_Y/4];
|
|
|
|
*x_ql = tile_x_ql;
|
|
*x_dm = tile_x_dm;
|
|
*x_qh = tile_x_qh;
|
|
*x_sc = tile_x_sc;
|
|
}
|
|
|
|
template <bool need_check> static __device__ __forceinline__ void load_tiles_q3_K(
|
|
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
|
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
|
|
|
__builtin_assume(i_offset >= 0);
|
|
__builtin_assume(i_offset < 8);
|
|
__builtin_assume(k >= 0);
|
|
__builtin_assume(k < WARP_SIZE);
|
|
|
|
const int kbx = k / QI3_K;
|
|
const int kqsx = k % QI3_K;
|
|
|
|
const block_q3_K * bx0 = (block_q3_K *) vx;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8) {
|
|
int i = i0 + i_offset;
|
|
|
|
if (need_check) {
|
|
i = min(i, i_max);
|
|
}
|
|
|
|
const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx;
|
|
|
|
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
|
|
}
|
|
|
|
const int blocks_per_tile_x_row = WARP_SIZE / QI3_K;
|
|
const int kbxd = k % blocks_per_tile_x_row;
|
|
float * x_dmf = (float *) x_dm;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * QI3_K) {
|
|
int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % GGML_CUDA_MMQ_Y;
|
|
|
|
if (need_check) {
|
|
i = min(i, i_max);
|
|
}
|
|
|
|
const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
|
x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d;
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * 2) {
|
|
int i = i0 + i_offset * 2 + k / (WARP_SIZE/2);
|
|
|
|
if (need_check) {
|
|
i = min(i, i_max);
|
|
}
|
|
|
|
const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2);
|
|
|
|
// invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
|
|
x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2));
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * 4) {
|
|
int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
|
|
|
|
if (need_check) {
|
|
i = min(i, i_max);
|
|
}
|
|
|
|
const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4);
|
|
|
|
const int ksc = k % (QI3_K/4);
|
|
|
|
const int ksc_low = ksc % (QI3_K/8);
|
|
const int shift_low = 4 * (ksc / (QI3_K/8));
|
|
const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
|
|
|
|
const int ksc_high = QI3_K/8;
|
|
const int shift_high = 2 * ksc;
|
|
const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
|
|
|
|
const int sc = __vsubss4(sc_low | sc_high, 0x20202020);
|
|
|
|
x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc;
|
|
}
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q3_K_q8_1_mul_mat(
|
|
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
|
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
|
|
|
__builtin_assume(i >= 0);
|
|
__builtin_assume(i < GGML_CUDA_MMQ_Y);
|
|
__builtin_assume(j >= 0);
|
|
__builtin_assume(j < WARP_SIZE);
|
|
__builtin_assume(k >= 0);
|
|
__builtin_assume(k < WARP_SIZE);
|
|
__builtin_assume(k % VDR_Q3_K_Q8_1_MMQ == 0);
|
|
|
|
const int kbx = k / QI3_K;
|
|
const int ky = (k % QI3_K) * QR3_K;
|
|
const float * x_dmf = (const float *) x_dm;
|
|
const float * y_df = (const float *) y_ds;
|
|
|
|
const int8_t * scales = ((int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
|
|
|
|
int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
|
|
|
|
#pragma unroll
|
|
for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) {
|
|
const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2);
|
|
const int shift = 2 * ((ky % 32) / 8);
|
|
const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303;
|
|
|
|
const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8);
|
|
const int vlh = (vh << 2) & 0x04040404;
|
|
|
|
v[l] = __vsubss4(vll, vlh);
|
|
}
|
|
|
|
const int index_y = j * (QR3_K*WARP_SIZE) + k*QR3_K;
|
|
return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]);
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
|
|
|
#ifndef GGML_QKK_64
|
|
const block_q4_K * bq4_K = (const block_q4_K *) vbq;
|
|
|
|
int v[2];
|
|
int u[2*QR4_K];
|
|
float d8[QR4_K];
|
|
|
|
// iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6
|
|
const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2));
|
|
|
|
// iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
|
|
// iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
|
|
// iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
|
|
// iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
|
|
|
|
const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
|
|
v[0] = q4[0];
|
|
v[1] = q4[4];
|
|
|
|
const uint16_t * scales = (const uint16_t *)bq4_K->scales;
|
|
uint16_t aux[2];
|
|
const int j = bq8_offset/2;
|
|
if (j < 2) {
|
|
aux[0] = scales[j+0] & 0x3f3f;
|
|
aux[1] = scales[j+2] & 0x3f3f;
|
|
} else {
|
|
aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
|
|
aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
|
|
}
|
|
const uint8_t * sc = (const uint8_t *)aux;
|
|
const uint8_t * m = sc + 2;
|
|
|
|
for (int i = 0; i < QR4_K; ++i) {
|
|
const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
|
|
d8[i] = bq8i->ds.x;
|
|
|
|
const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
|
|
u[2*i+0] = q8[0];
|
|
u[2*i+1] = q8[4];
|
|
}
|
|
|
|
return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
|
|
|
|
#else
|
|
|
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
|
const block_q4_K * bq4_K = (const block_q4_K *) vbq;
|
|
|
|
float sumf_d = 0.0f;
|
|
float sumf_m = 0.0f;
|
|
|
|
uint16_t aux16[2];
|
|
const uint8_t * s = (const uint8_t *)aux16;
|
|
|
|
const uint16_t * a = (const uint16_t *)bq4_K->scales;
|
|
aux16[0] = a[0] & 0x0f0f;
|
|
aux16[1] = (a[0] >> 4) & 0x0f0f;
|
|
|
|
const float dall = bq4_K->d[0];
|
|
const float dmin = bq4_K->d[1];
|
|
|
|
const float d8_1 = bq8_1[0].ds.x;
|
|
const float d8_2 = bq8_1[1].ds.x;
|
|
|
|
const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
|
|
const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
|
|
const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
|
|
const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
|
|
|
|
const int * q4 = (const int *)bq4_K->qs + (iqs/2);
|
|
const int v1 = q4[0];
|
|
const int v2 = q4[4];
|
|
|
|
const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0));
|
|
const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
|
|
const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
|
|
const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0));
|
|
|
|
sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
|
|
sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
|
|
|
|
return dall * sumf_d - dmin * sumf_m;
|
|
|
|
#else
|
|
return 0.0f; // only to satisfy the compiler
|
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
|
|
|
#endif
|
|
}
|
|
|
|
static __device__ __forceinline__ void allocate_tiles_q4_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
|
|
|
__shared__ int tile_x_ql[GGML_CUDA_MMQ_Y * (WARP_SIZE) + GGML_CUDA_MMQ_Y];
|
|
__shared__ half2 tile_x_dm[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI4_K) + GGML_CUDA_MMQ_Y/QI4_K];
|
|
__shared__ int tile_x_sc[GGML_CUDA_MMQ_Y * (WARP_SIZE/8) + GGML_CUDA_MMQ_Y/8];
|
|
|
|
*x_ql = tile_x_ql;
|
|
*x_dm = tile_x_dm;
|
|
*x_sc = tile_x_sc;
|
|
}
|
|
|
|
template <bool need_check> static __device__ __forceinline__ void load_tiles_q4_K(
|
|
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
|
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
|
|
|
__builtin_assume(i_offset >= 0);
|
|
__builtin_assume(i_offset < 8);
|
|
__builtin_assume(k >= 0);
|
|
__builtin_assume(k < WARP_SIZE);
|
|
|
|
const int kbx = k / QI4_K; // == 0 if QK_K == 256
|
|
const int kqsx = k % QI4_K; // == k if QK_K == 256
|
|
|
|
const block_q4_K * bx0 = (block_q4_K *) vx;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8) {
|
|
int i = i0 + i_offset;
|
|
|
|
if (need_check) {
|
|
i = min(i, i_max);
|
|
}
|
|
|
|
const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx;
|
|
|
|
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
|
}
|
|
|
|
const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
|
|
const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * QI4_K) {
|
|
int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % GGML_CUDA_MMQ_Y;
|
|
|
|
if (need_check) {
|
|
i = min(i, i_max);
|
|
}
|
|
|
|
const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
|
x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * 8) {
|
|
int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % GGML_CUDA_MMQ_Y;
|
|
|
|
if (need_check) {
|
|
i = min(i, i_max);
|
|
}
|
|
|
|
const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
|
|
|
|
const int * scales = (int *) bxi->scales;
|
|
|
|
const int ksc = k % (WARP_SIZE/8);
|
|
|
|
// scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
|
|
int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
|
|
scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
|
|
|
|
x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
|
|
}
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat(
|
|
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
|
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
|
|
|
__builtin_assume(i >= 0);
|
|
__builtin_assume(i < GGML_CUDA_MMQ_Y);
|
|
__builtin_assume(j >= 0);
|
|
__builtin_assume(j < WARP_SIZE);
|
|
__builtin_assume(k >= 0);
|
|
__builtin_assume(k < WARP_SIZE);
|
|
__builtin_assume(k % VDR_Q4_K_Q8_1_MMQ == 0);
|
|
|
|
int v[QR4_K*VDR_Q4_K_Q8_1_MMQ];
|
|
|
|
#pragma unroll
|
|
for (int l = 0; l < VDR_Q4_K_Q8_1_MMQ; ++l) {
|
|
v[l + 0] = (x_ql[i * (WARP_SIZE + 1) + k + l] >> 0) & 0x0F0F0F0F;
|
|
v[l + (QI4_K/4)] = (x_ql[i * (WARP_SIZE + 1) + k + l] >> 4) & 0x0F0F0F0F;
|
|
}
|
|
|
|
const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
|
|
|
|
const int index_y = j * (QR4_K*WARP_SIZE) + QR4_K*k;
|
|
return vec_dot_q4_K_q8_1_impl_mmq(v, &y_qs[index_y], sc, sc+8, x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
|
|
|
#ifndef GGML_QKK_64
|
|
const block_q5_K * bq5_K = (const block_q5_K *) vbq;
|
|
|
|
int vl[2];
|
|
int vh[2];
|
|
int u[2*QR5_K];
|
|
float d8[QR5_K];
|
|
|
|
const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2));
|
|
const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
|
|
const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4));
|
|
|
|
vl[0] = ql[0];
|
|
vl[1] = ql[4];
|
|
|
|
vh[0] = qh[0] >> bq8_offset;
|
|
vh[1] = qh[4] >> bq8_offset;
|
|
|
|
const uint16_t * scales = (const uint16_t *)bq5_K->scales;
|
|
uint16_t aux[2];
|
|
const int j = bq8_offset/2;
|
|
if (j < 2) {
|
|
aux[0] = scales[j+0] & 0x3f3f;
|
|
aux[1] = scales[j+2] & 0x3f3f;
|
|
} else {
|
|
aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
|
|
aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
|
|
}
|
|
const uint8_t * sc = (const uint8_t *)aux;
|
|
const uint8_t * m = sc + 2;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR5_K; ++i) {
|
|
const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
|
|
d8[i] = bq8i->ds.x;
|
|
|
|
const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
|
|
u[2*i+0] = q8[0];
|
|
u[2*i+1] = q8[4];
|
|
}
|
|
|
|
return vec_dot_q5_K_q8_1_impl(vl, vh, u, sc, m, bq5_K->dm, d8);
|
|
|
|
#else
|
|
|
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
|
const block_q5_K * bq5_K = (const block_q5_K *) vbq;
|
|
|
|
const int8_t * s = bq5_K->scales;
|
|
|
|
const float d = bq5_K->d;
|
|
|
|
const float d8_1 = bq8_1[0].ds.x;
|
|
const float d8_2 = bq8_1[1].ds.x;
|
|
|
|
const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
|
|
const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
|
|
const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
|
|
const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
|
|
|
|
const int * ql = (const int *)bq5_K->qs + (iqs/2);
|
|
const int vl1 = ql[0];
|
|
const int vl2 = ql[4];
|
|
|
|
const int step = 4 * (iqs/2); // 0, 4, 8, 12
|
|
const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6
|
|
const int in = step%8; // 0, 4, 0, 4
|
|
const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
|
|
|
|
const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
|
|
const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
|
|
const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
|
|
const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
|
|
|
|
const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1])
|
|
+ d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]);
|
|
|
|
return d * sumf_d;
|
|
|
|
#else
|
|
return 0.0f; // only to satisfy the compiler
|
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
|
|
|
#endif
|
|
}
|
|
|
|
static __device__ __forceinline__ void allocate_tiles_q5_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
|
|
|
__shared__ int tile_x_ql[GGML_CUDA_MMQ_Y * (2*WARP_SIZE) + GGML_CUDA_MMQ_Y];
|
|
__shared__ half2 tile_x_dm[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI5_K) + GGML_CUDA_MMQ_Y/QI5_K];
|
|
__shared__ int tile_x_sc[GGML_CUDA_MMQ_Y * (WARP_SIZE/8) + GGML_CUDA_MMQ_Y/8];
|
|
|
|
*x_ql = tile_x_ql;
|
|
*x_dm = tile_x_dm;
|
|
*x_sc = tile_x_sc;
|
|
}
|
|
|
|
template <bool need_check> static __device__ __forceinline__ void load_tiles_q5_K(
|
|
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
|
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
|
|
|
__builtin_assume(i_offset >= 0);
|
|
__builtin_assume(i_offset < 8);
|
|
__builtin_assume(k >= 0);
|
|
__builtin_assume(k < WARP_SIZE);
|
|
|
|
const int kbx = k / QI5_K; // == 0 if QK_K == 256
|
|
const int kqsx = k % QI5_K; // == k if QK_K == 256
|
|
|
|
const block_q5_K * bx0 = (block_q5_K *) vx;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8) {
|
|
int i = i0 + i_offset;
|
|
|
|
if (need_check) {
|
|
i = min(i, i_max);
|
|
}
|
|
|
|
const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx;
|
|
const int ky = QR5_K*kqsx;
|
|
|
|
const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
|
const int ql0 = (ql >> 0) & 0x0F0F0F0F;
|
|
const int ql1 = (ql >> 4) & 0x0F0F0F0F;
|
|
|
|
const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4));
|
|
const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010;
|
|
const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010;
|
|
|
|
const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0;
|
|
const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4);
|
|
|
|
x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
|
|
x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
|
|
}
|
|
|
|
const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
|
|
const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * QI5_K) {
|
|
int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % GGML_CUDA_MMQ_Y;
|
|
|
|
if (need_check) {
|
|
i = min(i, i_max);
|
|
}
|
|
|
|
const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
|
x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * 8) {
|
|
int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % GGML_CUDA_MMQ_Y;
|
|
|
|
if (need_check) {
|
|
i = min(i, i_max);
|
|
}
|
|
|
|
const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
|
|
|
|
const int * scales = (int *) bxi->scales;
|
|
|
|
const int ksc = k % (WARP_SIZE/8);
|
|
|
|
// scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
|
|
int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
|
|
scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
|
|
|
|
x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
|
|
}
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat(
|
|
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
|
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
|
|
|
__builtin_assume(i >= 0);
|
|
__builtin_assume(i < GGML_CUDA_MMQ_Y);
|
|
__builtin_assume(j >= 0);
|
|
__builtin_assume(j < WARP_SIZE);
|
|
__builtin_assume(k >= 0);
|
|
__builtin_assume(k < WARP_SIZE);
|
|
__builtin_assume(k % VDR_Q5_K_Q8_1_MMQ == 0);
|
|
|
|
const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
|
|
|
|
const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k;
|
|
const int index_y = j * (QR5_K*WARP_SIZE) + QR5_K*k;
|
|
return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8, x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
|
|
|
const block_q6_K * bq6_K = (const block_q6_K *) vbq;
|
|
|
|
const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
|
|
const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
|
|
const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
|
|
|
|
const int vl = get_int_from_uint8(bq6_K->ql, iqs);
|
|
const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift;
|
|
|
|
const int8_t * scales = bq6_K->scales + scale_offset;
|
|
|
|
int u[QR6_K];
|
|
float d8[QR6_K];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR6_K; ++i) {
|
|
u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
|
|
d8[i] = bq8_1[bq8_offset + 2*i].ds.x;
|
|
}
|
|
|
|
return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
|
|
}
|
|
|
|
static __device__ __forceinline__ void allocate_tiles_q6_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
|
|
|
__shared__ int tile_x_ql[GGML_CUDA_MMQ_Y * (2*WARP_SIZE) + GGML_CUDA_MMQ_Y];
|
|
__shared__ half2 tile_x_dm[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI6_K) + GGML_CUDA_MMQ_Y/QI6_K];
|
|
__shared__ int tile_x_sc[GGML_CUDA_MMQ_Y * (WARP_SIZE/8) + GGML_CUDA_MMQ_Y/8];
|
|
|
|
*x_ql = tile_x_ql;
|
|
*x_dm = tile_x_dm;
|
|
*x_sc = tile_x_sc;
|
|
}
|
|
|
|
template <bool need_check> static __device__ __forceinline__ void load_tiles_q6_K(
|
|
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
|
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
|
|
|
__builtin_assume(i_offset >= 0);
|
|
__builtin_assume(i_offset < 8);
|
|
__builtin_assume(k >= 0);
|
|
__builtin_assume(k < WARP_SIZE);
|
|
|
|
const int kbx = k / QI6_K; // == 0 if QK_K == 256
|
|
const int kqsx = k % QI6_K; // == k if QK_K == 256
|
|
|
|
const block_q6_K * bx0 = (block_q6_K *) vx;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8) {
|
|
int i = i0 + i_offset;
|
|
|
|
if (need_check) {
|
|
i = min(i, i_max);
|
|
}
|
|
|
|
const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx;
|
|
const int ky = QR6_K*kqsx;
|
|
|
|
const int ql = get_int_from_uint8(bxi->ql, kqsx);
|
|
const int ql0 = (ql >> 0) & 0x0F0F0F0F;
|
|
const int ql1 = (ql >> 4) & 0x0F0F0F0F;
|
|
|
|
const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4));
|
|
const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030;
|
|
const int qh1 = (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) & 0x30303030;
|
|
|
|
const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0;
|
|
const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2);
|
|
|
|
x_ql[i * (2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020);
|
|
x_ql[i * (2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020);
|
|
}
|
|
|
|
const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
|
|
const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
|
|
float * x_dmf = (float *) x_dm;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * QI6_K) {
|
|
int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % GGML_CUDA_MMQ_Y;
|
|
|
|
if (need_check) {
|
|
i = min(i, i_max);
|
|
}
|
|
|
|
const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
|
x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d;
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * 8) {
|
|
int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % GGML_CUDA_MMQ_Y;
|
|
|
|
if (need_check) {
|
|
i = min(i, i_max);
|
|
}
|
|
|
|
const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4;
|
|
|
|
x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8));
|
|
}
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat(
|
|
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
|
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
|
|
|
__builtin_assume(i >= 0);
|
|
__builtin_assume(i < GGML_CUDA_MMQ_Y);
|
|
__builtin_assume(j >= 0);
|
|
__builtin_assume(j < WARP_SIZE);
|
|
__builtin_assume(k >= 0);
|
|
__builtin_assume(k < WARP_SIZE);
|
|
__builtin_assume(k % VDR_Q6_K_Q8_1_MMQ == 0);
|
|
|
|
const float * x_dmf = (const float *) x_dm;
|
|
const float * y_df = (const float *) y_ds;
|
|
|
|
const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]);
|
|
|
|
const int index_x = i * (QR6_K*WARP_SIZE + 1) + QR6_K*k;
|
|
const int index_y = j * (QR6_K*WARP_SIZE) + QR6_K*k;
|
|
return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]);
|
|
}
|
|
|
|
template <int qk, int qr, int qi, bool need_sum, typename block_q_t,
|
|
allocate_tiles_cuda_t allocate_tiles, load_tiles_cuda_t load_tiles, int vdr, vec_dot_q_mul_mat_cuda_t vec_dot>
|
|
static __global__ void mul_mat_q(
|
|
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
|
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
|
|
|
const block_q_t * x = (const block_q_t *) vx;
|
|
const block_q8_1 * y = (const block_q8_1 *) vy;
|
|
|
|
const int blocks_per_row_x = ncols_x / qk;
|
|
const int blocks_per_col_y = nrows_y / QK8_1;
|
|
const int blocks_per_warp = WARP_SIZE / qi;
|
|
|
|
const int & ncols_dst = ncols_y;
|
|
|
|
const int tid_x = threadIdx.x;
|
|
const int tid_y = threadIdx.y;
|
|
|
|
const int row_dst_0 = blockIdx.x*GGML_CUDA_MMQ_Y;
|
|
const int & row_x_0 = row_dst_0;
|
|
const int row_dst = row_dst_0 + tid_x;
|
|
|
|
const int col_dst_0 = blockIdx.y*WARP_SIZE;
|
|
const int & col_y_0 = col_dst_0;
|
|
|
|
int * tile_x_ql = nullptr;
|
|
half2 * tile_x_dm = nullptr;
|
|
int * tile_x_qh = nullptr;
|
|
int * tile_x_sc = nullptr;
|
|
|
|
allocate_tiles(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc);
|
|
|
|
const int blocks_per_tile_y_col = qr*WARP_SIZE/QI8_1;
|
|
|
|
__shared__ int tile_y_qs[(WARP_SIZE) * (qr*WARP_SIZE)];
|
|
__shared__ half2 tile_y_ds[(WARP_SIZE) * blocks_per_tile_y_col];
|
|
|
|
float sum[GGML_CUDA_MMQ_Y/WARP_SIZE][4] = {0.0f};
|
|
|
|
for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
|
|
|
|
load_tiles(x + row_x_0*blocks_per_row_x + ib0, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc,
|
|
tid_y, nrows_x-row_x_0-1, tid_x, blocks_per_row_x);
|
|
|
|
for (int ir = 0; ir < qr; ++ir) {
|
|
const int kqs = ir*WARP_SIZE + tid_x;
|
|
const int kbxd = kqs / QI8_1;
|
|
|
|
for (int i = 0; i < WARP_SIZE; i += 8) {
|
|
const int col_y_eff = min(col_y_0 + tid_y + i, ncols_y-1); // to prevent out-of-bounds memory accesses
|
|
|
|
const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd];
|
|
|
|
tile_y_qs[(tid_y + i) * (qr*WARP_SIZE) + kqs] = get_int_from_int8_aligned(by0->qs, tid_x % QI8_1);
|
|
}
|
|
}
|
|
|
|
for (int ids0 = 0; ids0 < WARP_SIZE; ids0 += 8 * (WARP_SIZE/blocks_per_tile_y_col)) {
|
|
const int ids = (ids0 + tid_y * (WARP_SIZE/blocks_per_tile_y_col) + tid_x / blocks_per_tile_y_col) % WARP_SIZE;
|
|
const int kby = tid_x % blocks_per_tile_y_col;
|
|
const int col_y_eff = min(col_y_0 + ids, ncols_y-1);
|
|
|
|
// if the sum is not needed it's faster to transform the scale to f32 ahead of time
|
|
const half2 * dsi_src = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kby].ds;
|
|
half2 * dsi_dst = &tile_y_ds[ids * (qr*WARP_SIZE/QI8_1) + kby];
|
|
if (need_sum) {
|
|
*dsi_dst = *dsi_src;
|
|
} else {
|
|
float * dfi_dst = (float *) dsi_dst;
|
|
*dfi_dst = (*dsi_src).x;
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
#if __CUDA_ARCH__ >= 700 // Unrolling the loop is slower on Pascal
|
|
#pragma unroll
|
|
#endif // __CUDA_ARCH__ >= 700
|
|
for (int k = 0; k < WARP_SIZE; k += vdr) {
|
|
#pragma unroll
|
|
for (int j = 0; j < WARP_SIZE; j += 8) {
|
|
#pragma unroll
|
|
for (int i = 0; i < GGML_CUDA_MMQ_Y; i += WARP_SIZE) {
|
|
sum[i/WARP_SIZE][j/8] += vec_dot(tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, tile_y_qs, tile_y_ds,
|
|
tid_x + i, tid_y + j, k);
|
|
}
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
}
|
|
|
|
|
|
if (row_dst >= nrows_dst) {
|
|
return;
|
|
}
|
|
|
|
for (int j = 0; j < WARP_SIZE; j += 8) {
|
|
const int col_dst = col_dst_0 + j + tid_y;
|
|
|
|
if (col_dst >= ncols_dst) {
|
|
return;
|
|
}
|
|
|
|
for (int i = 0; i < GGML_CUDA_MMQ_Y; i += WARP_SIZE) {
|
|
dst[col_dst*nrows_dst + row_dst + i] = sum[i/WARP_SIZE][j/8];
|
|
}
|
|
}
|
|
}
|
|
|
|
template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
|
|
static __global__ void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows) {
|
|
const int row = blockIdx.y*blockDim.y + threadIdx.y;
|
|
|
|
if (row >= nrows) {
|
|
return;
|
|
}
|
|
|
|
const int blocks_per_row = ncols / qk;
|
|
const int blocks_per_warp = vdr * WARP_SIZE / qi;
|
|
|
|
// partial sum for each thread
|
|
float tmp = 0.0f;
|
|
|
|
const block_q_t * x = (const block_q_t *) vx;
|
|
const block_q8_1 * y = (const block_q8_1 *) vy;
|
|
|
|
for (int i = 0; i < blocks_per_row; i += blocks_per_warp) {
|
|
const int ibx = row*blocks_per_row + i + threadIdx.x / (qi/vdr); // x block index
|
|
|
|
const int iby = (i + threadIdx.x / (qi/vdr)) * (qk/QK8_1); // y block index that aligns with ibx
|
|
|
|
const int iqs = vdr * (threadIdx.x % (qi/vdr)); // x block quant index when casting the quants to int
|
|
|
|
tmp += vec_dot_q_cuda(&x[ibx], &y[iby], iqs);
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
}
|
|
|
|
if (threadIdx.x == 0) {
|
|
dst[row] = tmp;
|
|
}
|
|
}
|
|
|
|
template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
|
|
static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
|
|
// qk = quantized weights per x block
|
|
// qr = number of quantized weights per data value in x block
|
|
const int row = blockIdx.y*blockDim.y + threadIdx.y;
|
|
|
|
if (row >= nrows) {
|
|
return;
|
|
}
|
|
|
|
const int tid = threadIdx.x;
|
|
|
|
const int iter_stride = 2*GGML_CUDA_DMMV_X;
|
|
const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
|
|
const int y_offset = qr == 1 ? 1 : qk/2;
|
|
|
|
// partial sum for each thread
|
|
#ifdef GGML_CUDA_F16
|
|
half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
|
|
#else
|
|
float tmp = 0.0f;
|
|
#endif // GGML_CUDA_F16
|
|
|
|
for (int i = 0; i < ncols; i += iter_stride) {
|
|
const int col = i + vals_per_iter*tid;
|
|
const int ib = (row*ncols + col)/qk; // x block index
|
|
const int iqs = (col%qk)/qr; // x quant index
|
|
const int iybs = col - col%qk; // y block start index
|
|
|
|
// processing >2 values per i iter is faster for fast GPUs
|
|
#pragma unroll
|
|
for (int j = 0; j < vals_per_iter; j += 2) {
|
|
// process 2 vals per j iter
|
|
|
|
// dequantize
|
|
// for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
|
|
dfloat2 v;
|
|
dequantize_kernel(vx, ib, iqs + j/qr, v);
|
|
|
|
// matrix multiplication
|
|
// for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
|
|
#ifdef GGML_CUDA_F16
|
|
tmp += __hmul2(v, {
|
|
y[iybs + iqs + j/qr + 0],
|
|
y[iybs + iqs + j/qr + y_offset]
|
|
});
|
|
#else
|
|
tmp += v.x * y[iybs + iqs + j/qr + 0];
|
|
tmp += v.y * y[iybs + iqs + j/qr + y_offset];
|
|
#endif // GGML_CUDA_F16
|
|
}
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
}
|
|
|
|
if (tid == 0) {
|
|
#ifdef GGML_CUDA_F16
|
|
dst[row] = tmp.x + tmp.y;
|
|
#else
|
|
dst[row] = tmp;
|
|
#endif // GGML_CUDA_F16
|
|
}
|
|
}
|
|
|
|
static __global__ void mul_mat_p021_f16_f32(
|
|
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
|
|
const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {
|
|
|
|
const half * x = (const half *) vx;
|
|
|
|
const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
|
|
const int channel = blockDim.z*blockIdx.z + threadIdx.z;
|
|
const int channel_x = channel / (nchannels_y / nchannels_x);
|
|
|
|
const int nrows_y = ncols_x;
|
|
const int nrows_dst = nrows_x;
|
|
const int row_dst = row_x;
|
|
|
|
float tmp = 0.0f;
|
|
|
|
for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
|
|
const int col_x = col_x0 + threadIdx.x;
|
|
|
|
if (col_x >= ncols_x) {
|
|
break;
|
|
}
|
|
|
|
// x is transposed and permuted
|
|
const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
|
|
const float xi = __half2float(x[ix]);
|
|
|
|
const int row_y = col_x;
|
|
|
|
|
|
// y is not transposed but permuted
|
|
const int iy = channel*nrows_y + row_y;
|
|
|
|
tmp += xi * y[iy];
|
|
}
|
|
|
|
// dst is not transposed and not permuted
|
|
const int idst = channel*nrows_dst + row_dst;
|
|
|
|
// sum up partial sums and write back result
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
}
|
|
|
|
if (threadIdx.x == 0) {
|
|
dst[idst] = tmp;
|
|
}
|
|
}
|
|
|
|
static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
|
|
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
|
|
const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {
|
|
|
|
const half * x = (const half *) vx;
|
|
|
|
const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
|
|
const int channel = blockDim.z*blockIdx.z + threadIdx.z;
|
|
const int channel_x = channel / channel_x_divisor;
|
|
|
|
const int nrows_y = ncols_x;
|
|
const int nrows_dst = nrows_x;
|
|
const int row_dst = row_x;
|
|
|
|
const int idst = channel*nrows_dst + row_dst;
|
|
|
|
float tmp = 0.0f;
|
|
|
|
for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
|
|
const int col_x = col_x0 + threadIdx.x;
|
|
|
|
if (col_x >= ncols_x) {
|
|
break;
|
|
}
|
|
|
|
const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
|
|
const float xi = __half2float(x[ix]);
|
|
|
|
const int row_y = col_x;
|
|
|
|
const int iy = channel*nrows_y + row_y;
|
|
|
|
tmp += xi * y[iy];
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
}
|
|
|
|
if (threadIdx.x == 0) {
|
|
dst[idst] = tmp;
|
|
}
|
|
}
|
|
|
|
static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) {
|
|
const float * xi = (const float *) cxi;
|
|
float * dsti = (float *) cdsti;
|
|
|
|
*dsti = *xi;
|
|
}
|
|
|
|
static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
|
|
const float * xi = (const float *) cxi;
|
|
half * dsti = (half *) cdsti;
|
|
|
|
*dsti = __float2half(*xi);
|
|
}
|
|
|
|
template <cpy_kernel_t cpy_1>
|
|
static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
|
|
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
|
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12) {
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (i >= ne) {
|
|
return;
|
|
}
|
|
|
|
// determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
|
|
// then combine those indices with the corresponding byte offsets to get the total offsets
|
|
const int i02 = i / (ne00*ne01);
|
|
const int i01 = (i - i02*ne01*ne00) / ne00;
|
|
const int i00 = i - i02*ne01*ne00 - i01*ne00;
|
|
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02;
|
|
|
|
const int i12 = i / (ne10*ne11);
|
|
const int i11 = (i - i12*ne10*ne11) / ne10;
|
|
const int i10 = i - i12*ne10*ne11 - i11*ne10;
|
|
const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12;
|
|
|
|
cpy_1(cx + x_offset, cdst + dst_offset);
|
|
}
|
|
|
|
// rope == RoPE == rotary positional embedding
|
|
static __global__ void rope_f32(const float * x, float * dst, const int ncols, const float p0,
|
|
const float p_delta, const int p_delta_rows, const float theta_scale) {
|
|
const int col = 2*(blockDim.x*blockIdx.x + threadIdx.x);
|
|
|
|
if (col >= ncols) {
|
|
return;
|
|
}
|
|
|
|
const int row = blockDim.y*blockIdx.y + threadIdx.y;
|
|
const int i = row*ncols + col;
|
|
|
|
const float theta = (p0 + p_delta * (row/p_delta_rows))*powf(theta_scale, col/2);
|
|
const float sin_theta = sinf(theta);
|
|
const float cos_theta = cosf(theta);
|
|
|
|
const float x0 = x[i + 0];
|
|
const float x1 = x[i + 1];
|
|
|
|
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
|
dst[i + 1] = x0*sin_theta + x1*cos_theta;
|
|
}
|
|
|
|
static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float p, const float block_p, const float theta_scale) {
|
|
const int col = blockDim.x*blockIdx.x + threadIdx.x;
|
|
const int half_n_dims = ncols/4;
|
|
|
|
if (col >= half_n_dims) {
|
|
return;
|
|
}
|
|
|
|
const int row = blockDim.y*blockIdx.y + threadIdx.y;
|
|
const int i = row*ncols + col;
|
|
|
|
const float col_theta_scale = powf(theta_scale, col);
|
|
|
|
const float theta = p*col_theta_scale;
|
|
const float sin_theta = sinf(theta);
|
|
const float cos_theta = cosf(theta);
|
|
|
|
const float x0 = x[i + 0];
|
|
const float x1 = x[i + half_n_dims];
|
|
|
|
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
|
dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
|
|
|
|
const float block_theta = block_p*col_theta_scale;
|
|
const float sin_block_theta = sinf(block_theta);
|
|
const float cos_block_theta = cosf(block_theta);
|
|
|
|
const float x2 = x[i + half_n_dims * 2];
|
|
const float x3 = x[i + half_n_dims * 3];
|
|
|
|
dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta;
|
|
dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
|
|
}
|
|
|
|
static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
|
|
const int col = blockDim.x*blockIdx.x + threadIdx.x;
|
|
const int row = blockDim.y*blockIdx.y + threadIdx.y;
|
|
|
|
if (col >= ncols) {
|
|
return;
|
|
}
|
|
|
|
const int i = row*ncols + col;
|
|
// dst[i] = col > n_past + row ? -INFINITY : x[i];
|
|
dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
|
|
}
|
|
|
|
// the CUDA soft max implementation differs from the CPU implementation
|
|
// instead of doubles floats are used
|
|
// values are also not normalized to the maximum value by subtracting it in the exponential function
|
|
// theoretically these changes could cause problems with rounding error and arithmetic overflow but for LLaMa it seems to be fine
|
|
static __global__ void soft_max_f32(const float * x, float * dst, const int ncols) {
|
|
const int row = blockDim.y*blockIdx.y + threadIdx.y;
|
|
const int block_size = blockDim.x;
|
|
const int tid = threadIdx.x;
|
|
|
|
float tmp = 0.0;
|
|
|
|
for (int block_start = 0; block_start < ncols; block_start += block_size) {
|
|
const int col = block_start + tid;
|
|
|
|
if (col >= ncols) {
|
|
break;
|
|
}
|
|
|
|
const int i = row*ncols + col;
|
|
const float val = expf(x[i]);
|
|
tmp += val;
|
|
dst[i] = val;
|
|
}
|
|
|
|
// sum up partial sums
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
}
|
|
|
|
for (int block_start = 0; block_start < ncols; block_start += block_size) {
|
|
const int col = block_start + tid;
|
|
|
|
if (col >= ncols) {
|
|
break;
|
|
}
|
|
|
|
const int i = row*ncols + col;
|
|
dst[i] /= tmp;
|
|
}
|
|
}
|
|
|
|
static __global__ void scale_f32(const float * x, float * dst, const float scale, const int k) {
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
|
|
dst[i] = scale * x[i];
|
|
}
|
|
|
|
static void add_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
|
|
const int num_blocks = (kx + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE;
|
|
add_f32<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
|
|
}
|
|
|
|
static void add_f16_f32_f16_cuda(const half * x, const float * y, half * dst, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE;
|
|
add_f16_f32_f16<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, k);
|
|
}
|
|
|
|
static void mul_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
|
|
const int num_blocks = (kx + CUDA_MUL_BLOCK_SIZE - 1) / CUDA_MUL_BLOCK_SIZE;
|
|
mul_f32<<<num_blocks, CUDA_MUL_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
|
|
}
|
|
|
|
static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
|
|
gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
|
}
|
|
|
|
static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
|
|
silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
|
}
|
|
|
|
static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
|
norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
|
|
}
|
|
|
|
static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
|
rms_norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
|
}
|
|
|
|
static void quantize_row_q8_1_cuda(const float * x, void * vy, const int kx, const int ky, const int kx_padded, cudaStream_t stream) {
|
|
const int block_num_x = (kx_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
|
|
const dim3 num_blocks(block_num_x, ky, 1);
|
|
const dim3 block_size(CUDA_DEQUANTIZE_BLOCK_SIZE, 1, 1);
|
|
quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, kx, kx_padded);
|
|
}
|
|
|
|
static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
|
dequantize_block<QK4_0, QR4_0, dequantize_q4_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
|
}
|
|
|
|
static void dequantize_row_q4_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
|
dequantize_block<QK4_1, QR4_1, dequantize_q4_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
|
}
|
|
|
|
static void dequantize_row_q5_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
|
dequantize_block<QK5_0, QR5_0, dequantize_q5_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
|
}
|
|
|
|
static void dequantize_row_q5_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
|
dequantize_block<QK5_1, QR5_1, dequantize_q5_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
|
}
|
|
|
|
static void dequantize_row_q8_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
|
dequantize_block<QK8_0, QR8_0, dequantize_q8_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
|
}
|
|
|
|
static void dequantize_row_q2_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
|
const int nb = k / QK_K;
|
|
#if QK_K == 256
|
|
dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
|
|
#else
|
|
dequantize_block_q2_K<<<nb, 32, 0, stream>>>(vx, y);
|
|
#endif
|
|
}
|
|
|
|
static void dequantize_row_q3_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
|
const int nb = k / QK_K;
|
|
#if QK_K == 256
|
|
dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
|
|
#else
|
|
dequantize_block_q3_K<<<nb, 32, 0, stream>>>(vx, y);
|
|
#endif
|
|
}
|
|
|
|
static void dequantize_row_q4_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
|
const int nb = k / QK_K;
|
|
dequantize_block_q4_K<<<nb, 32, 0, stream>>>(vx, y);
|
|
}
|
|
|
|
static void dequantize_row_q5_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
|
const int nb = k / QK_K;
|
|
#if QK_K == 256
|
|
dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
|
|
#else
|
|
dequantize_block_q5_K<<<nb, 32, 0, stream>>>(vx, y);
|
|
#endif
|
|
}
|
|
|
|
static void dequantize_row_q6_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
|
const int nb = k / QK_K;
|
|
#if QK_K == 256
|
|
dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
|
|
#else
|
|
dequantize_block_q6_K<<<nb, 32, 0, stream>>>(vx, y);
|
|
#endif
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
|
|
const int block_num_y = (nrows + ny - 1) / ny;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(32, ny, 1);
|
|
dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
|
const int block_num_y = (nrows + ny - 1) / ny;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(32, ny, 1);
|
|
dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
|
const int block_num_y = (nrows + ny - 1) / ny;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(32, ny, 1);
|
|
dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const dim3 block_dims(32, 1, 1);
|
|
dequantize_mul_mat_vec_q5_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
|
const int block_num_y = (nrows + ny - 1) / ny;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(32, ny, 1);
|
|
dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void mul_mat_vec_q4_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK4_0 == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
mul_mat_vec_q<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
}
|
|
|
|
static void mul_mat_vec_q4_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK4_1 == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
mul_mat_vec_q<QK4_0, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
}
|
|
|
|
static void mul_mat_vec_q5_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK5_0 == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
mul_mat_vec_q<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
}
|
|
|
|
static void mul_mat_vec_q5_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK5_1 == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
mul_mat_vec_q<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
}
|
|
|
|
static void mul_mat_vec_q8_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK8_0 == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
mul_mat_vec_q<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
}
|
|
|
|
static void mul_mat_vec_q2_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
mul_mat_vec_q<QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
}
|
|
|
|
static void mul_mat_vec_q3_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
mul_mat_vec_q<QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
}
|
|
|
|
static void mul_mat_vec_q4_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
mul_mat_vec_q<QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
}
|
|
|
|
static void mul_mat_vec_q5_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
mul_mat_vec_q<QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
}
|
|
|
|
static void mul_mat_vec_q6_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
mul_mat_vec_q<QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
}
|
|
|
|
static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
|
dequantize_block<1, 1, convert_f16><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
|
}
|
|
|
|
static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
dequantize_mul_mat_vec<1, 1, convert_f16>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
|
|
switch (type) {
|
|
case GGML_TYPE_Q4_0:
|
|
return dequantize_row_q4_0_cuda;
|
|
case GGML_TYPE_Q4_1:
|
|
return dequantize_row_q4_1_cuda;
|
|
case GGML_TYPE_Q5_0:
|
|
return dequantize_row_q5_0_cuda;
|
|
case GGML_TYPE_Q5_1:
|
|
return dequantize_row_q5_1_cuda;
|
|
case GGML_TYPE_Q8_0:
|
|
return dequantize_row_q8_0_cuda;
|
|
case GGML_TYPE_Q2_K:
|
|
return dequantize_row_q2_K_cuda;
|
|
case GGML_TYPE_Q3_K:
|
|
return dequantize_row_q3_K_cuda;
|
|
case GGML_TYPE_Q4_K:
|
|
return dequantize_row_q4_K_cuda;
|
|
case GGML_TYPE_Q5_K:
|
|
return dequantize_row_q5_K_cuda;
|
|
case GGML_TYPE_Q6_K:
|
|
return dequantize_row_q6_K_cuda;
|
|
case GGML_TYPE_F16:
|
|
return convert_fp16_to_fp32_cuda;
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
static void ggml_mul_mat_q4_0_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
|
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
const int block_num_x = (nrows_x + GGML_CUDA_MMQ_Y - 1) / GGML_CUDA_MMQ_Y;
|
|
const int block_num_y = (ncols_y + WARP_SIZE - 1) / WARP_SIZE;
|
|
const dim3 block_nums(block_num_x, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, WARP_SIZE/4, 1);
|
|
|
|
if (nrows_x % GGML_CUDA_MMQ_Y == 0) {
|
|
mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, allocate_tiles_q4_0, load_tiles_q4_0<false>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
} else {
|
|
mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, allocate_tiles_q4_0, load_tiles_q4_0<true>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
}
|
|
}
|
|
|
|
static void ggml_mul_mat_q4_1_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
|
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
const int block_num_x = (nrows_x + GGML_CUDA_MMQ_Y - 1) / GGML_CUDA_MMQ_Y;
|
|
const int block_num_y = (ncols_y + WARP_SIZE - 1) / WARP_SIZE;
|
|
const dim3 block_nums(block_num_x, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, WARP_SIZE/4, 1);
|
|
|
|
if (nrows_x % GGML_CUDA_MMQ_Y == 0) {
|
|
mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, allocate_tiles_q4_1, load_tiles_q4_1<false>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
} else {
|
|
mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, allocate_tiles_q4_1, load_tiles_q4_1<true>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
}
|
|
}
|
|
|
|
static void ggml_mul_mat_q5_0_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
|
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
const int block_num_x = (nrows_x + GGML_CUDA_MMQ_Y - 1) / GGML_CUDA_MMQ_Y;
|
|
const int block_num_y = (ncols_y + WARP_SIZE - 1) / WARP_SIZE;
|
|
const dim3 block_nums(block_num_x, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, WARP_SIZE/4, 1);
|
|
|
|
if (nrows_x % GGML_CUDA_MMQ_Y == 0) {
|
|
mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, allocate_tiles_q5_0, load_tiles_q5_0<false>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
} else {
|
|
mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, allocate_tiles_q5_0, load_tiles_q5_0<true>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
}
|
|
}
|
|
|
|
static void ggml_mul_mat_q5_1_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
|
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
const int block_num_x = (nrows_x + GGML_CUDA_MMQ_Y - 1) / GGML_CUDA_MMQ_Y;
|
|
const int block_num_y = (ncols_y + WARP_SIZE - 1) / WARP_SIZE;
|
|
const dim3 block_nums(block_num_x, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, WARP_SIZE/4, 1);
|
|
|
|
if (nrows_x % GGML_CUDA_MMQ_Y == 0) {
|
|
mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, allocate_tiles_q5_1, load_tiles_q5_1<false>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
} else {
|
|
mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, allocate_tiles_q5_1, load_tiles_q5_1<true>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
}
|
|
}
|
|
|
|
static void ggml_mul_mat_q8_0_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
|
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
const int block_num_x = (nrows_x + GGML_CUDA_MMQ_Y - 1) / GGML_CUDA_MMQ_Y;
|
|
const int block_num_y = (ncols_y + WARP_SIZE - 1) / WARP_SIZE;
|
|
const dim3 block_nums(block_num_x, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, WARP_SIZE/4, 1);
|
|
|
|
if (nrows_x % GGML_CUDA_MMQ_Y == 0) {
|
|
mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, allocate_tiles_q8_0, load_tiles_q8_0<false>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
} else {
|
|
mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, allocate_tiles_q8_0, load_tiles_q8_0<true>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
}
|
|
}
|
|
|
|
static void ggml_mul_mat_q2_K_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
|
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
const int block_num_x = (nrows_x + GGML_CUDA_MMQ_Y - 1) / GGML_CUDA_MMQ_Y;
|
|
const int block_num_y = (ncols_y + WARP_SIZE - 1) / WARP_SIZE;
|
|
const dim3 block_nums(block_num_x, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, WARP_SIZE/4, 1);
|
|
|
|
if (nrows_x % GGML_CUDA_MMQ_Y == 0) {
|
|
mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, allocate_tiles_q2_K, load_tiles_q2_K<false>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
} else {
|
|
mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, allocate_tiles_q2_K, load_tiles_q2_K<true>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
}
|
|
}
|
|
|
|
static void ggml_mul_mat_q3_K_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
|
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
const int block_num_x = (nrows_x + GGML_CUDA_MMQ_Y - 1) / GGML_CUDA_MMQ_Y;
|
|
const int block_num_y = (ncols_y + WARP_SIZE - 1) / WARP_SIZE;
|
|
const dim3 block_nums(block_num_x, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, WARP_SIZE/4, 1);
|
|
|
|
if (nrows_x % GGML_CUDA_MMQ_Y == 0) {
|
|
mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, allocate_tiles_q3_K, load_tiles_q3_K<false>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
} else {
|
|
mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, allocate_tiles_q3_K, load_tiles_q3_K<true>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
}
|
|
}
|
|
|
|
static void ggml_mul_mat_q4_K_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
|
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
const int block_num_x = (nrows_x + GGML_CUDA_MMQ_Y - 1) / GGML_CUDA_MMQ_Y;
|
|
const int block_num_y = (ncols_y + WARP_SIZE - 1) / WARP_SIZE;
|
|
const dim3 block_nums(block_num_x, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, WARP_SIZE/4, 1);
|
|
|
|
if (nrows_x % GGML_CUDA_MMQ_Y == 0) {
|
|
mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, allocate_tiles_q4_K, load_tiles_q4_K<false>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
} else {
|
|
mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, allocate_tiles_q4_K, load_tiles_q4_K<true>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
}
|
|
}
|
|
|
|
static void ggml_mul_mat_q5_K_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
|
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
const int block_num_x = (nrows_x + GGML_CUDA_MMQ_Y - 1) / GGML_CUDA_MMQ_Y;
|
|
const int block_num_y = (ncols_y + WARP_SIZE - 1) / WARP_SIZE;
|
|
const dim3 block_nums(block_num_x, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, WARP_SIZE/4, 1);
|
|
|
|
if (nrows_x % GGML_CUDA_MMQ_Y == 0) {
|
|
mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, allocate_tiles_q5_K, load_tiles_q5_K<false>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
} else {
|
|
mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, allocate_tiles_q5_K, load_tiles_q5_K<true>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
}
|
|
}
|
|
|
|
static void ggml_mul_mat_q6_K_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
|
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
const int block_num_x = (nrows_x + GGML_CUDA_MMQ_Y - 1) / GGML_CUDA_MMQ_Y;
|
|
const int block_num_y = (ncols_y + WARP_SIZE - 1) / WARP_SIZE;
|
|
const dim3 block_nums(block_num_x, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, WARP_SIZE/4, 1);
|
|
|
|
if (nrows_x % GGML_CUDA_MMQ_Y == 0) {
|
|
mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, allocate_tiles_q6_K, load_tiles_q6_K<false>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
} else {
|
|
mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, allocate_tiles_q6_K, load_tiles_q6_K<true>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
}
|
|
}
|
|
|
|
static void ggml_mul_mat_p021_f16_f32_cuda(
|
|
const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
|
|
const int nchannels_x, const int nchannels_y, cudaStream_t stream) {
|
|
|
|
const dim3 block_nums(1, nrows_x, nchannels_y);
|
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
|
mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
|
|
}
|
|
|
|
static void ggml_mul_mat_vec_nc_f16_f32_cuda(
|
|
const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
|
|
const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {
|
|
|
|
const dim3 block_nums(1, nrows_x, nchannels_y);
|
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
|
mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
|
|
(vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
|
|
}
|
|
|
|
static void ggml_cpy_f32_f32_cuda(
|
|
const char * cx, char * cdst, const int ne,
|
|
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
|
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
|
|
|
|
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
|
cpy_f32_f16<cpy_1_f32_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
|
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
|
|
}
|
|
|
|
static void ggml_cpy_f32_f16_cuda(
|
|
const char * cx, char * cdst, const int ne,
|
|
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
|
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
|
|
|
|
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
|
cpy_f32_f16<cpy_1_f32_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
|
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
|
|
}
|
|
|
|
static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
|
|
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
|
|
}
|
|
|
|
static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0,
|
|
const float p_delta, const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
|
|
GGML_ASSERT(nrows % 2 == 0);
|
|
const dim3 block_dims(2*CUDA_ROPE_BLOCK_SIZE, 1, 1);
|
|
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
|
const dim3 block_nums(num_blocks_x, nrows, 1);
|
|
rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale);
|
|
}
|
|
|
|
static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float block_p, const float theta_scale, cudaStream_t stream) {
|
|
GGML_ASSERT(nrows % 4 == 0);
|
|
const dim3 block_dims(4*CUDA_ROPE_BLOCK_SIZE, 1, 1);
|
|
const int num_blocks_x = (ncols + 4*CUDA_ROPE_BLOCK_SIZE - 1) / (4*CUDA_ROPE_BLOCK_SIZE);
|
|
const dim3 block_nums(num_blocks_x, nrows, 1);
|
|
rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p, block_p, theta_scale);
|
|
}
|
|
|
|
static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
|
|
const dim3 block_dims(CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1, 1);
|
|
const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
|
|
const dim3 block_nums(block_num_x, nrows_x, 1);
|
|
diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
|
|
}
|
|
|
|
static void soft_max_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, cudaStream_t stream) {
|
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
|
const dim3 block_nums(1, nrows_x, 1);
|
|
soft_max_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x);
|
|
}
|
|
|
|
// buffer pool for cuda
|
|
#define MAX_CUDA_BUFFERS 256
|
|
|
|
struct scoped_spin_lock {
|
|
std::atomic_flag& lock;
|
|
scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
|
|
while (lock.test_and_set(std::memory_order_acquire)) {
|
|
; // spin
|
|
}
|
|
}
|
|
~scoped_spin_lock() {
|
|
lock.clear(std::memory_order_release);
|
|
}
|
|
scoped_spin_lock(const scoped_spin_lock&) = delete;
|
|
scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
|
|
};
|
|
|
|
struct cuda_buffer {
|
|
void * ptr = nullptr;
|
|
size_t size = 0;
|
|
};
|
|
|
|
static cuda_buffer g_cuda_buffer_pool[GGML_CUDA_MAX_DEVICES][MAX_CUDA_BUFFERS];
|
|
static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
|
|
|
|
static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
|
|
scoped_spin_lock lock(g_cuda_pool_lock);
|
|
int id;
|
|
CUDA_CHECK(cudaGetDevice(&id));
|
|
#ifdef DEBUG_CUDA_MALLOC
|
|
int nnz = 0;
|
|
size_t max_size = 0, tot_size = 0;
|
|
#endif
|
|
size_t best_diff = 1ull << 36;
|
|
int ibest = -1;
|
|
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
|
|
cuda_buffer& b = g_cuda_buffer_pool[id][i];
|
|
if (b.ptr != nullptr) {
|
|
#ifdef DEBUG_CUDA_MALLOC
|
|
++nnz;
|
|
tot_size += b.size;
|
|
if (b.size > max_size) max_size = b.size;
|
|
#endif
|
|
if (b.size >= size) {
|
|
size_t diff = b.size - size;
|
|
if (diff < best_diff) {
|
|
best_diff = diff;
|
|
ibest = i;
|
|
if (!best_diff) {
|
|
void * ptr = b.ptr;
|
|
*actual_size = b.size;
|
|
b.ptr = nullptr;
|
|
b.size = 0;
|
|
return ptr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (ibest >= 0) {
|
|
cuda_buffer& b = g_cuda_buffer_pool[id][ibest];
|
|
void * ptr = b.ptr;
|
|
*actual_size = b.size;
|
|
b.ptr = nullptr;
|
|
b.size = 0;
|
|
return ptr;
|
|
}
|
|
#ifdef DEBUG_CUDA_MALLOC
|
|
fprintf(stderr, "%s: %d buffers, max_size = %u MB, tot_size = %u MB, requested %u MB\n", __func__, nnz,
|
|
(uint32_t)(max_size/1024/1024), (uint32_t)(tot_size/1024/1024), (uint32_t)(size/1024/1024));
|
|
#endif
|
|
void * ptr;
|
|
size_t look_ahead_size = (size_t) (1.05 * size);
|
|
look_ahead_size = 256 * ((look_ahead_size + 255)/256);
|
|
CUDA_CHECK(cudaMalloc((void **) &ptr, look_ahead_size));
|
|
*actual_size = look_ahead_size;
|
|
return ptr;
|
|
}
|
|
|
|
static void ggml_cuda_pool_free(void * ptr, size_t size) {
|
|
scoped_spin_lock lock(g_cuda_pool_lock);
|
|
int id;
|
|
CUDA_CHECK(cudaGetDevice(&id));
|
|
|
|
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
|
|
cuda_buffer& b = g_cuda_buffer_pool[id][i];
|
|
if (b.ptr == nullptr) {
|
|
b.ptr = ptr;
|
|
b.size = size;
|
|
return;
|
|
}
|
|
}
|
|
fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
|
|
CUDA_CHECK(cudaFree(ptr));
|
|
}
|
|
|
|
|
|
static void * g_scratch_buffer = nullptr;
|
|
static size_t g_scratch_size = 1024*1024*1024; // 1 GB by default
|
|
static size_t g_scratch_offset = 0;
|
|
|
|
static int g_device_count = -1;
|
|
static int g_main_device = 0;
|
|
static int g_compute_capabilities[GGML_CUDA_MAX_DEVICES];
|
|
static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0};
|
|
static bool g_mul_mat_q = false;
|
|
|
|
static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
|
|
|
|
static cudaStream_t g_cudaStreams_main[GGML_CUDA_MAX_DEVICES] = { nullptr };
|
|
|
|
void ggml_init_cublas() {
|
|
static bool initialized = false;
|
|
|
|
if (!initialized) {
|
|
CUDA_CHECK(cudaGetDeviceCount(&g_device_count));
|
|
GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES);
|
|
int64_t total_vram = 0;
|
|
fprintf(stderr, "%s: found %d CUDA devices:\n", __func__, g_device_count);
|
|
for (int id = 0; id < g_device_count; ++id) {
|
|
cudaDeviceProp prop;
|
|
CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
|
|
fprintf(stderr, " Device %d: %s, compute capability %d.%d\n", id, prop.name, prop.major, prop.minor);
|
|
|
|
g_tensor_split[id] = total_vram;
|
|
total_vram += prop.totalGlobalMem;
|
|
|
|
g_compute_capabilities[id] = 100*prop.major + 10*prop.minor;
|
|
}
|
|
for (int id = 0; id < g_device_count; ++id) {
|
|
g_tensor_split[id] /= total_vram;
|
|
}
|
|
|
|
for (int id = 0; id < g_device_count; ++id) {
|
|
CUDA_CHECK(cudaSetDevice(id));
|
|
|
|
// create main stream
|
|
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams_main[id], cudaStreamNonBlocking));
|
|
|
|
// create cublas handle
|
|
CUBLAS_CHECK(cublasCreate(&g_cublas_handles[id]));
|
|
CUBLAS_CHECK(cublasSetMathMode(g_cublas_handles[id], CUBLAS_TF32_TENSOR_OP_MATH));
|
|
}
|
|
|
|
// configure logging to stdout
|
|
// CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
|
|
|
|
initialized = true;
|
|
}
|
|
}
|
|
|
|
void ggml_cuda_set_tensor_split(const float * tensor_split) {
|
|
if (tensor_split == nullptr) {
|
|
return;
|
|
}
|
|
bool all_zero = true;
|
|
for (int i = 0; i < g_device_count; ++i) {
|
|
if (tensor_split[i] != 0.0f) {
|
|
all_zero = false;
|
|
break;
|
|
}
|
|
}
|
|
if (all_zero) {
|
|
return;
|
|
}
|
|
float split_sum = 0.0f;
|
|
for (int i = 0; i < g_device_count; ++i) {
|
|
g_tensor_split[i] = split_sum;
|
|
split_sum += tensor_split[i];
|
|
}
|
|
for (int i = 0; i < g_device_count; ++i) {
|
|
g_tensor_split[i] /= split_sum;
|
|
}
|
|
}
|
|
|
|
void * ggml_cuda_host_malloc(size_t size) {
|
|
if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
void * ptr = nullptr;
|
|
cudaError_t err = cudaMallocHost((void **) &ptr, size);
|
|
if (err != cudaSuccess) {
|
|
// The allocation error can be bypassed. A null ptr will assigned out of this function.
|
|
// This can fixed the OOM error in WSL.
|
|
cudaGetLastError();
|
|
fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
|
|
size/1024.0/1024.0, cudaGetErrorString(err));
|
|
return nullptr;
|
|
}
|
|
|
|
return ptr;
|
|
}
|
|
|
|
void ggml_cuda_host_free(void * ptr) {
|
|
CUDA_CHECK(cudaFreeHost(ptr));
|
|
}
|
|
|
|
static cudaError_t ggml_cuda_cpy_tensor_2d(
|
|
void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
|
|
|
|
cudaMemcpyKind kind;
|
|
char * src_ptr;
|
|
if (src->backend == GGML_BACKEND_CPU) {
|
|
kind = cudaMemcpyHostToDevice;
|
|
src_ptr = (char *) src->data;
|
|
} else if (src->backend == GGML_BACKEND_GPU) {
|
|
kind = cudaMemcpyDeviceToDevice;
|
|
struct ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
|
|
int id;
|
|
CUDA_CHECK(cudaGetDevice(&id));
|
|
src_ptr = (char *) extra->data_device[id];
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
char * dst_ptr = (char *) dst;
|
|
|
|
const int64_t ne0 = src->ne[0];
|
|
const int64_t nb0 = src->nb[0];
|
|
const int64_t nb1 = src->nb[1];
|
|
const int64_t nb2 = src->nb[2];
|
|
const int64_t nb3 = src->nb[3];
|
|
const enum ggml_type type = src->type;
|
|
const int64_t ts = ggml_type_size(type);
|
|
const int64_t bs = ggml_blck_size(type);
|
|
int64_t i1_diff = i1_high - i1_low;
|
|
|
|
const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
|
|
if (nb0 == ts && nb1 == ts*ne0/bs) {
|
|
return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, kind, stream);
|
|
} else if (nb0 == ts) {
|
|
return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, kind, stream);
|
|
} else {
|
|
for (int64_t i1 = 0; i1 < i1_diff; i1++) {
|
|
const void * rx = (const void *) ((const char *) x + i1*nb1);
|
|
void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
|
|
// pretend the row is a matrix with cols=1
|
|
cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, kind, stream);
|
|
if (r != cudaSuccess) return r;
|
|
}
|
|
return cudaSuccess;
|
|
}
|
|
}
|
|
|
|
inline void ggml_cuda_op_add(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
|
|
float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t & cudaStream_main){
|
|
|
|
GGML_ASSERT(src0_ddq_i != nullptr || src0_ddf_i != nullptr);
|
|
GGML_ASSERT(src1_ddf_i != nullptr);
|
|
GGML_ASSERT(dst_ddf_i != nullptr);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
|
|
// compute
|
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
add_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne00*i01_diff, ne10*ne11, cudaStream_main);
|
|
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
|
|
add_f16_f32_f16_cuda((half *) src0_ddq_i, src1_ddf_i, (half *) dst_ddf_i, ne00*i01_diff, cudaStream_main);
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src0_ddq_i;
|
|
(void) i02;
|
|
(void) i1;
|
|
}
|
|
|
|
inline void ggml_cuda_op_mul(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
|
|
float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t & cudaStream_main){
|
|
|
|
GGML_ASSERT(src0_ddf_i != nullptr);
|
|
GGML_ASSERT(src1_ddf_i != nullptr);
|
|
GGML_ASSERT(dst_ddf_i != nullptr);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
|
|
mul_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne00*i01_diff, ne10*ne11, cudaStream_main);
|
|
|
|
(void) dst;
|
|
(void) src0_ddq_i;
|
|
(void) i02;
|
|
(void) i1;
|
|
}
|
|
|
|
inline void ggml_cuda_op_gelu(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
|
|
float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t & cudaStream_main){
|
|
|
|
GGML_ASSERT(src0_ddf_i != nullptr);
|
|
GGML_ASSERT(dst_ddf_i != nullptr);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
// compute
|
|
gelu_f32_cuda(src0_ddf_i, dst_ddf_i, ne00*i01_diff, cudaStream_main);
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src0_ddq_i;
|
|
(void) src1_ddf_i;
|
|
(void) i02;
|
|
(void) i1;
|
|
}
|
|
|
|
inline void ggml_cuda_op_silu(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
|
|
float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t & cudaStream_main){
|
|
|
|
GGML_ASSERT(src0_ddf_i != nullptr);
|
|
GGML_ASSERT(dst_ddf_i != nullptr);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
// compute
|
|
silu_f32_cuda(src0_ddf_i, dst_ddf_i, ne00*i01_diff, cudaStream_main);
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src0_ddq_i;
|
|
(void) src1_ddf_i;
|
|
(void) i02;
|
|
(void) i1;
|
|
}
|
|
|
|
inline void ggml_cuda_op_norm(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
|
|
float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t & cudaStream_main){
|
|
|
|
GGML_ASSERT(src0_ddf_i != nullptr);
|
|
GGML_ASSERT(dst_ddf_i != nullptr);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
// compute
|
|
norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src0_ddq_i;
|
|
(void) src1_ddf_i;
|
|
(void) i02;
|
|
(void) i1;
|
|
}
|
|
|
|
inline void ggml_cuda_op_rms_norm(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
|
|
float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t & cudaStream_main){
|
|
|
|
GGML_ASSERT(src0_ddf_i != nullptr);
|
|
GGML_ASSERT(dst_ddf_i != nullptr);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
float eps;
|
|
memcpy(&eps, dst->op_params, sizeof(float));
|
|
|
|
// compute
|
|
rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, eps, cudaStream_main);
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src0_ddq_i;
|
|
(void) src1_ddf_i;
|
|
(void) i02;
|
|
(void) i1;
|
|
}
|
|
|
|
inline void ggml_cuda_op_mul_mat_q(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
|
|
float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t & cudaStream_main){
|
|
|
|
GGML_ASSERT(src0_ddq_i != nullptr);
|
|
GGML_ASSERT(src1_ddf_i != nullptr);
|
|
GGML_ASSERT(dst_ddf_i != nullptr);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
GGML_ASSERT(ne10 % QK8_1 == 0);
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
int id;
|
|
CUDA_CHECK(cudaGetDevice(&id));
|
|
|
|
// the main device has a larger memory buffer to hold the results from all GPUs
|
|
// nrows_dst == nrows of the matrix that the dequantize_mul_mat kernel writes into
|
|
const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : i01_diff;
|
|
|
|
const int64_t padded_row_size = ne10 % MATRIX_ROW_PADDING == 0 ?
|
|
ne10 : ne10 - ne10 % MATRIX_ROW_PADDING + MATRIX_ROW_PADDING;
|
|
size_t as;
|
|
void * src1_q8_1 = ggml_cuda_pool_malloc(padded_row_size*ne11*sizeof(block_q8_1)/QK8_1, &as);
|
|
quantize_row_q8_1_cuda(src1_ddf_i, src1_q8_1, ne10, ne11, padded_row_size, cudaStream_main);
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_Q4_0:
|
|
ggml_mul_mat_q4_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q4_1:
|
|
ggml_mul_mat_q4_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q5_0:
|
|
ggml_mul_mat_q5_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q5_1:
|
|
ggml_mul_mat_q5_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q8_0:
|
|
ggml_mul_mat_q8_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q2_K:
|
|
ggml_mul_mat_q2_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q3_K:
|
|
ggml_mul_mat_q3_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q4_K:
|
|
ggml_mul_mat_q4_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q5_K:
|
|
ggml_mul_mat_q5_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q6_K:
|
|
ggml_mul_mat_q6_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
break;
|
|
}
|
|
|
|
ggml_cuda_pool_free(src1_q8_1, as);
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src0_ddf_i;
|
|
(void) i02;
|
|
(void) i1;
|
|
}
|
|
|
|
inline void ggml_cuda_op_mul_mat_vec(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
|
|
float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t & cudaStream_main){
|
|
|
|
GGML_ASSERT(src0_ddq_i != nullptr);
|
|
GGML_ASSERT(src1_ddf_i != nullptr);
|
|
GGML_ASSERT(dst_ddf_i != nullptr);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t nrows = i01_high - i01_low;
|
|
|
|
#ifdef GGML_CUDA_FORCE_DMMV
|
|
const bool use_mul_mat_vec_q = false;
|
|
(void) g_compute_capabilities[0];
|
|
#else
|
|
int id;
|
|
CUDA_CHECK(cudaGetDevice(&id));
|
|
|
|
bool mul_mat_vec_q_implemented =
|
|
src0->type == GGML_TYPE_Q4_0 ||
|
|
src0->type == GGML_TYPE_Q4_1 ||
|
|
src0->type == GGML_TYPE_Q5_0 ||
|
|
src0->type == GGML_TYPE_Q5_1 ||
|
|
src0->type == GGML_TYPE_Q8_0;
|
|
#if QK_K == 256
|
|
mul_mat_vec_q_implemented = mul_mat_vec_q_implemented ||
|
|
src0->type == GGML_TYPE_Q2_K ||
|
|
src0->type == GGML_TYPE_Q3_K ||
|
|
src0->type == GGML_TYPE_Q4_K ||
|
|
src0->type == GGML_TYPE_Q5_K ||
|
|
src0->type == GGML_TYPE_Q6_K;
|
|
#endif // QK_K == 256
|
|
|
|
const bool use_mul_mat_vec_q = g_compute_capabilities[id] >= MIN_CC_DP4A && mul_mat_vec_q_implemented;
|
|
#endif
|
|
|
|
if (use_mul_mat_vec_q) {
|
|
const int64_t padded_row_size = ne00 % MATRIX_ROW_PADDING == 0 ?
|
|
ne00 : ne00 - ne00 % MATRIX_ROW_PADDING + MATRIX_ROW_PADDING;
|
|
size_t as;
|
|
void * src1_q8_1 = ggml_cuda_pool_malloc(padded_row_size*sizeof(block_q8_1)/QK8_1, &as);
|
|
quantize_row_q8_1_cuda(src1_ddf_i, src1_q8_1, ne00, 1, padded_row_size, cudaStream_main);
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_Q4_0:
|
|
mul_mat_vec_q4_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q4_1:
|
|
mul_mat_vec_q4_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q5_0:
|
|
mul_mat_vec_q5_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q5_1:
|
|
mul_mat_vec_q5_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q8_0:
|
|
mul_mat_vec_q8_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q2_K:
|
|
mul_mat_vec_q2_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q3_K:
|
|
mul_mat_vec_q3_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q4_K:
|
|
mul_mat_vec_q4_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q5_K:
|
|
mul_mat_vec_q5_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q6_K:
|
|
mul_mat_vec_q6_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
break;
|
|
}
|
|
|
|
ggml_cuda_pool_free(src1_q8_1, as);
|
|
} else {
|
|
// on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
|
|
#ifdef GGML_CUDA_F16
|
|
size_t ash;
|
|
dfloat * src1_dfloat = nullptr; // dfloat == half
|
|
|
|
bool src1_convert_f16 = src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
|
|
src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
|
|
src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
|
|
|
|
if (src1_convert_f16) {
|
|
src1_dfloat = (half *) ggml_cuda_pool_malloc(ne00*sizeof(half), &ash);
|
|
ggml_cpy_f32_f16_cuda((char *) src1_ddf_i, (char *) src1_dfloat, ne00,
|
|
ne00, 1, sizeof(float), 0, 0,
|
|
ne00, 1, sizeof(half), 0, 0, cudaStream_main);
|
|
}
|
|
#else
|
|
dfloat * src1_dfloat = src1_ddf_i; // dfloat == float, no conversion
|
|
#endif // GGML_CUDA_F16
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_Q4_0:
|
|
dequantize_mul_mat_vec_q4_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q4_1:
|
|
dequantize_mul_mat_vec_q4_1_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q5_0:
|
|
dequantize_mul_mat_vec_q5_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q5_1:
|
|
dequantize_mul_mat_vec_q5_1_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q8_0:
|
|
dequantize_mul_mat_vec_q8_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q2_K:
|
|
dequantize_mul_mat_vec_q2_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q3_K:
|
|
dequantize_mul_mat_vec_q3_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q4_K:
|
|
dequantize_mul_mat_vec_q4_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q5_K:
|
|
dequantize_mul_mat_vec_q5_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q6_K:
|
|
dequantize_mul_mat_vec_q6_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_F16:
|
|
convert_mul_mat_vec_f16_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
break;
|
|
}
|
|
|
|
#ifdef GGML_CUDA_F16
|
|
if (src1_convert_f16) {
|
|
ggml_cuda_pool_free(src1_dfloat, ash);
|
|
}
|
|
#endif // GGML_CUDA_F16
|
|
}
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src0_ddf_i;
|
|
(void) i02;
|
|
(void) i1;
|
|
}
|
|
|
|
inline void ggml_cuda_op_mul_mat_cublas(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
|
|
float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t & cudaStream_main){
|
|
|
|
GGML_ASSERT(src0_ddf_i != nullptr);
|
|
GGML_ASSERT(src1_ddf_i != nullptr);
|
|
GGML_ASSERT(dst_ddf_i != nullptr);
|
|
|
|
const float alpha = 1.0f;
|
|
const float beta = 0.0f;
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
int id;
|
|
CUDA_CHECK(cudaGetDevice(&id));
|
|
|
|
// the main device has a larger memory buffer to hold the results from all GPUs
|
|
// ldc == nrows of the matrix that cuBLAS writes into
|
|
int ldc = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : i01_diff;
|
|
|
|
CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], cudaStream_main));
|
|
CUBLAS_CHECK(
|
|
cublasSgemm(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
|
|
i01_diff, ne11, ne10,
|
|
&alpha, src0_ddf_i, ne00,
|
|
src1_ddf_i, ne10,
|
|
&beta, dst_ddf_i, ldc));
|
|
|
|
(void) dst;
|
|
(void) src0_ddq_i;
|
|
(void) i02;
|
|
(void) i1;
|
|
}
|
|
|
|
inline void ggml_cuda_op_rope(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
|
|
float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t & cudaStream_main){
|
|
|
|
GGML_ASSERT(src0_ddf_i != nullptr);
|
|
GGML_ASSERT(dst_ddf_i != nullptr);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
const int n_past = ((int32_t *) dst->op_params)[0];
|
|
const int n_dims = ((int32_t *) dst->op_params)[1];
|
|
const int mode = ((int32_t *) dst->op_params)[2];
|
|
const int n_ctx = ((int32_t *) dst->op_params)[3];
|
|
// RoPE alteration for extended context
|
|
|
|
float freq_base, freq_scale;
|
|
memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
|
|
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
|
|
|
|
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
|
|
|
const bool is_glm = mode & 4;
|
|
|
|
// compute
|
|
if (is_glm) {
|
|
const float p = (((mode & 1) == 0 ? n_past + i02 : i02)) * freq_scale;
|
|
const float id_p = min(p, n_ctx - 2.f);
|
|
const float block_p = max(p - (n_ctx - 2.f), 0.f);
|
|
rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, id_p, block_p, theta_scale, cudaStream_main);
|
|
} else {
|
|
const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale;
|
|
rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main);
|
|
}
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src0_ddq_i;
|
|
(void) src1_ddf_i;
|
|
(void) i1;
|
|
}
|
|
|
|
inline void ggml_cuda_op_diag_mask_inf(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
|
|
float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t & cudaStream_main){
|
|
|
|
GGML_ASSERT(src0_ddf_i != nullptr);
|
|
GGML_ASSERT(dst_ddf_i != nullptr);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
const int n_past = ((int32_t *) dst->op_params)[0];
|
|
|
|
// compute
|
|
diag_mask_inf_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, ne01, n_past, cudaStream_main);
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src0_ddq_i;
|
|
(void) src1_ddf_i;
|
|
(void) i02;
|
|
(void) i1;
|
|
}
|
|
|
|
inline void ggml_cuda_op_soft_max(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
|
|
float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t & cudaStream_main){
|
|
|
|
GGML_ASSERT(src0_ddf_i != nullptr);
|
|
GGML_ASSERT(dst_ddf_i != nullptr);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
// compute
|
|
soft_max_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src0_ddq_i;
|
|
(void) src1_ddf_i;
|
|
(void) i02;
|
|
(void) i1;
|
|
}
|
|
|
|
inline void ggml_cuda_op_scale(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
|
|
float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t & cudaStream_main){
|
|
|
|
GGML_ASSERT(src0_ddf_i != nullptr);
|
|
GGML_ASSERT(dst_ddf_i != nullptr);
|
|
|
|
const float scale = ((float *) src1->data)[0];
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
// compute
|
|
scale_f32_cuda(src0_ddf_i, dst_ddf_i, scale, ne00*i01_diff, cudaStream_main);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src0_ddq_i;
|
|
(void) src1_ddf_i;
|
|
(void) i02;
|
|
(void) i1;
|
|
}
|
|
|
|
static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
|
ggml_cuda_op_t op, bool src0_needs_f32, bool flatten_rows) {
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
const int64_t nrows0 = ggml_nrows(src0);
|
|
|
|
const bool use_src1 = src1 != nullptr;
|
|
const int64_t ne10 = use_src1 ? src1->ne[0] : 1;
|
|
const int64_t ne11 = use_src1 ? src1->ne[1] : 1;
|
|
const int64_t ne12 = use_src1 ? src1->ne[2] : 1;
|
|
const int64_t ne13 = use_src1 ? src1->ne[3] : 1;
|
|
const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
|
|
|
|
GGML_ASSERT(ne03 == ne13);
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
|
|
const int nb2 = dst->nb[2];
|
|
const int nb3 = dst->nb[3];
|
|
|
|
GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT);
|
|
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);
|
|
|
|
// strides for iteration over dims 3 and 2
|
|
const int64_t num_iters_0 = ne02 >= ne12 ? ne02*ne03 : ne12*ne13;
|
|
const int64_t num_iters = flatten_rows ? 1 : num_iters_0;
|
|
const int64_t stride_mod = flatten_rows ? num_iters_0 : 1;
|
|
const int64_t src0_stride = ne00 * ne01 * stride_mod;
|
|
const int64_t src1_stride = ne10 * ne11 * stride_mod;
|
|
const int64_t dst_stride = ne0 * ne1 * stride_mod;
|
|
|
|
const int64_t rows_per_iter = flatten_rows ? nrows0 : ne01;
|
|
const int64_t i03_max = flatten_rows ? 1 : ne03;
|
|
const int64_t i02_max = flatten_rows ? 1 : (ne02 >= ne12 ? ne02 : ne12);
|
|
const int64_t i02_divisor = ne02 >= ne12 ? 1 : ne12 / ne02;
|
|
GGML_ASSERT(!(flatten_rows && ne02 < ne12));
|
|
|
|
const size_t src0_ts = ggml_type_size(src0->type);
|
|
const size_t src0_bs = ggml_blck_size(src0->type);
|
|
|
|
struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
|
struct ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
|
|
struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
|
|
|
const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
|
|
const bool src0_is_contiguous = ggml_is_contiguous(src0);
|
|
const bool src0_is_f32 = src0->type == GGML_TYPE_F32;
|
|
|
|
const bool src1_is_contiguous = use_src1 && ggml_is_contiguous(src1);
|
|
const bool src1_stays_on_host = use_src1 && (
|
|
dst->op == GGML_OP_SCALE || dst->op == GGML_OP_DIAG_MASK_INF || dst->op == GGML_OP_ROPE);
|
|
|
|
const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
|
|
GGML_ASSERT(!(split && ne02 < ne12));
|
|
|
|
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
|
|
|
|
// dd = data device
|
|
char * src0_ddq[GGML_CUDA_MAX_DEVICES] = {nullptr}; // quantized
|
|
float * src0_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr}; // float
|
|
float * src1_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr};
|
|
float * dst_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr};
|
|
|
|
// asq = actual size quantized, asf = actual size float
|
|
size_t src0_asq[GGML_CUDA_MAX_DEVICES] = {0};
|
|
size_t src0_asf[GGML_CUDA_MAX_DEVICES] = {0};
|
|
size_t src1_asf[GGML_CUDA_MAX_DEVICES] = {0};
|
|
size_t dst_asf[GGML_CUDA_MAX_DEVICES] = {0};
|
|
|
|
// if multiple devices are used they need to wait for the main device
|
|
// here an event is recorded that signifies that the main device has finished calculating the input data
|
|
if (split && g_device_count > 1) {
|
|
CUDA_CHECK(cudaSetDevice(g_main_device));
|
|
CUDA_CHECK(cudaEventRecord(src0_extra->events[g_main_device], g_cudaStreams_main[g_main_device]));
|
|
}
|
|
|
|
for (int id = 0; id < g_device_count; ++id) {
|
|
if (!split && id != g_main_device) {
|
|
continue;
|
|
}
|
|
|
|
const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU && id == g_main_device;
|
|
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device;
|
|
|
|
int64_t row_low, row_high;
|
|
if (split) {
|
|
row_low = id == 0 ? 0 : nrows0*g_tensor_split[id];
|
|
row_low -= row_low % GGML_CUDA_MMQ_Y;
|
|
|
|
if (id == g_device_count - 1) {
|
|
row_high = nrows0;
|
|
} else {
|
|
row_high = nrows0*g_tensor_split[id + 1];
|
|
row_high -= row_high % GGML_CUDA_MMQ_Y;
|
|
}
|
|
} else {
|
|
row_low = 0;
|
|
row_high = nrows0*i02_divisor;
|
|
}
|
|
if (row_low == row_high) {
|
|
continue;
|
|
}
|
|
|
|
int64_t row_diff = row_high - row_low;
|
|
|
|
cudaSetDevice(id);
|
|
cudaStream_t cudaStream_main = g_cudaStreams_main[id];
|
|
|
|
// wait for main GPU data if necessary
|
|
if (split && id != g_main_device) {
|
|
CUDA_CHECK(cudaStreamWaitEvent(cudaStream_main, src0_extra->events[g_main_device]));
|
|
}
|
|
|
|
if (src0_on_device && src0_is_contiguous) {
|
|
if (src0_is_f32) {
|
|
src0_ddf[id] = (float *) src0_extra->data_device[id];
|
|
} else {
|
|
src0_ddq[id] = (char *) src0_extra->data_device[id];
|
|
}
|
|
} else {
|
|
if (src0_is_f32) {
|
|
src0_ddf[id] = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_asf[id]);
|
|
} else {
|
|
src0_ddq[id] = (char *) ggml_cuda_pool_malloc(row_diff*ne00 * src0_ts/src0_bs, &src0_asq[id]);
|
|
}
|
|
}
|
|
|
|
if (src0_needs_f32 && !src0_is_f32) {
|
|
src0_ddf[id] = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_asf[id]);
|
|
}
|
|
|
|
if (use_src1 && !src1_stays_on_host) {
|
|
if (src1_on_device && src1_is_contiguous) {
|
|
src1_ddf[id] = (float *) src1_extra->data_device[id];
|
|
} else {
|
|
src1_ddf[id] = (float *) ggml_cuda_pool_malloc(num_iters*src1_stride * sizeof(float), &src1_asf[id]);
|
|
}
|
|
}
|
|
if (dst_on_device) {
|
|
dst_ddf[id] = (float *) dst_extra->data_device[id];
|
|
} else {
|
|
size_t size_dst_ddf = split ? row_diff*ne1 * sizeof(float) : num_iters*dst_stride * sizeof(float);
|
|
dst_ddf[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_asf[id]);
|
|
}
|
|
|
|
for (int64_t i03 = 0; i03 < i03_max; i03++) {
|
|
const int64_t i13 = i03 % ne13;
|
|
for (int64_t i02 = 0; i02 < i02_max; i02++) {
|
|
const int64_t i12 = i02 % ne12;
|
|
|
|
const int64_t i0 = i03*i02_max + i02;
|
|
|
|
// i0 values that contain the lower/upper rows for a split tensor when using multiple GPUs
|
|
const int64_t i0_offset_low = row_low/rows_per_iter;
|
|
const int64_t i0_offset_high = row_high/rows_per_iter;
|
|
|
|
int64_t i01_low = 0;
|
|
int64_t i01_high = rows_per_iter;
|
|
if (split) {
|
|
if (i0 < i0_offset_low || i0 > i0_offset_high) {
|
|
continue;
|
|
}
|
|
if (i0 == i0_offset_low) {
|
|
i01_low = row_low % rows_per_iter;
|
|
}
|
|
if (i0 == i0_offset_high) {
|
|
i01_high = row_high % rows_per_iter;
|
|
}
|
|
}
|
|
|
|
// There is possibly a bug in the Windows nvcc compiler regarding instruction reordering or optimizing out local variables.
|
|
// Removing the first assert or changing the order of the arguments causes the second assert to fail.
|
|
// Removing both asserts results in i01_high becoming 0 which in turn results in garbage output.
|
|
// The root cause seems to be a problem with i0_offset_high becoming 0 when it should always be >0 (for single GPU).
|
|
GGML_ASSERT(i01_low == 0 || g_device_count > 1);
|
|
GGML_ASSERT(i01_high == rows_per_iter || g_device_count > 1);
|
|
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
if (i01_diff == 0) {
|
|
continue;
|
|
}
|
|
const int64_t i11 = i13*ne12 + i12;
|
|
|
|
// for split tensors the data begins at i0 == i0_offset_low
|
|
char * src0_ddq_i = src0_ddq[id] + (i0/i02_divisor - i0_offset_low)*src0_stride*src0_ts/src0_bs;
|
|
float * src0_ddf_i = src0_ddf[id] + (i0/i02_divisor - i0_offset_low)*src0_stride;
|
|
float * src1_ddf_i = src1_ddf[id] + i11*src1_stride;
|
|
float * dst_ddf_i = dst_ddf[id] + (i0 - i0_offset_low)*dst_stride;
|
|
|
|
// for split tensors the data pointer needs to be rounded down
|
|
// to the bin edge for i03, i02 bins beyond the first
|
|
if (i0 - i0_offset_low > 0) {
|
|
GGML_ASSERT(!flatten_rows);
|
|
src0_ddq_i -= (row_low % ne01)*ne00 * src0_ts/src0_bs;
|
|
src0_ddf_i -= (row_low % ne01)*ne00;
|
|
dst_ddf_i -= (row_low % ne0)*ne1;
|
|
}
|
|
|
|
// the main device memory buffer can be on VRAM scratch, with space for all partial results
|
|
// in that case an offset on dst_ddf_i is needed
|
|
if (dst->backend == GGML_BACKEND_GPU && id == g_main_device) {
|
|
dst_ddf_i += i01_low; // offset is 0 if no tensor split
|
|
}
|
|
|
|
// copy src0, src1 to device if necessary
|
|
if (use_src1 && !src1_stays_on_host) {
|
|
if (src1->backend == GGML_BACKEND_CPU) {
|
|
GGML_ASSERT(!flatten_rows || nrows0 == ggml_nrows(src1));
|
|
int64_t nrows1 = flatten_rows ? nrows0 : ne11;
|
|
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf_i, src1, i03, i02, 0, nrows1, cudaStream_main));
|
|
} else if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) {
|
|
if (id != g_main_device) {
|
|
GGML_ASSERT(!flatten_rows);
|
|
float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device];
|
|
src1_ddf_i_source += i11*src1_stride;
|
|
CUDA_CHECK(cudaMemcpyAsync(src1_ddf_i, src1_ddf_i_source, src1_stride*sizeof(float),
|
|
cudaMemcpyDeviceToDevice, cudaStream_main));
|
|
}
|
|
} else if (src1_on_device && !src1_is_contiguous) {
|
|
GGML_ASSERT(!split);
|
|
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf_i, src1, i03, i02, 0, ne11, cudaStream_main));
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
if ((!src0_on_device || !src0_is_contiguous) && i02 % i02_divisor == 0) {
|
|
if (src0_is_f32) {
|
|
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf_i, src0, i03, i02/i02_divisor, i01_low, i01_high, cudaStream_main));
|
|
} else {
|
|
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddq_i, src0, i03, i02/i02_divisor, i01_low, i01_high, cudaStream_main));
|
|
}
|
|
}
|
|
|
|
// convert src0 to f32 if it is necessary for the ggml_cuda_op
|
|
if (src0_needs_f32 && !src0_is_f32) {
|
|
to_fp32_cuda(src0_ddq_i, src0_ddf_i, i01_diff*ne00, cudaStream_main);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
}
|
|
|
|
// do the computation
|
|
op(src0, src1, dst, src0_ddq_i, src0_ddf_i, src1_ddf_i, dst_ddf_i, i02, i01_low, i01_high, i11, cudaStream_main);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
// copy dst to host or other device if necessary
|
|
if (!dst_on_device) {
|
|
void * dst_off_device;
|
|
cudaMemcpyKind kind;
|
|
if (dst->backend == GGML_BACKEND_CPU) {
|
|
dst_off_device = dst->data;
|
|
kind = cudaMemcpyDeviceToHost;
|
|
} else if (dst->backend == GGML_BACKEND_GPU) {
|
|
dst_off_device = dst_extra->data_device[g_main_device];
|
|
kind = cudaMemcpyDeviceToDevice;
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
if (split) {
|
|
// src0 = weight matrix is saved as a transposed matrix for better memory layout.
|
|
// dst is NOT transposed.
|
|
// The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
|
|
// Instead they need to be copied to the correct slice in ne0 = dst row index.
|
|
// If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
|
|
float * dhf_dst_i = (float *) ((char *) dst_off_device + i01_low*sizeof(float) + i02*nb2 + i03*nb3);
|
|
CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float), dst_ddf_i, i01_diff*sizeof(float),
|
|
i01_diff*sizeof(float), ne1, kind, cudaStream_main));
|
|
} else {
|
|
float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
|
|
CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i, dst_stride*sizeof(float), kind, cudaStream_main));
|
|
}
|
|
}
|
|
|
|
// signify to main device that other device is done
|
|
if (split && g_device_count > 1 && id != g_main_device) {
|
|
CUDA_CHECK(cudaEventRecord(src0_extra->events[id], cudaStream_main));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// wait until each device is finished, then free their buffers
|
|
for (int id = 0; id < g_device_count; ++id) {
|
|
if (src0_asq[id] == 0 && src0_asf[id] == 0 && src1_asf[id] == 0 && dst_asf[id] == 0) {
|
|
continue;
|
|
}
|
|
|
|
CUDA_CHECK(cudaSetDevice(id));
|
|
|
|
if (src0_asq[id] > 0) {
|
|
ggml_cuda_pool_free(src0_ddq[id], src0_asq[id]);
|
|
}
|
|
if (src0_asf[id] > 0) {
|
|
ggml_cuda_pool_free(src0_ddf[id], src0_asf[id]);
|
|
}
|
|
if (src1_asf[id] > 0) {
|
|
ggml_cuda_pool_free(src1_ddf[id], src1_asf[id]);
|
|
}
|
|
if (dst_asf[id] > 0) {
|
|
ggml_cuda_pool_free(dst_ddf[id], dst_asf[id]);
|
|
}
|
|
}
|
|
|
|
// main device waits for all other devices to be finished
|
|
if (split && g_device_count > 1) {
|
|
CUDA_CHECK(cudaSetDevice(g_main_device));
|
|
for (int id = 0; id < g_device_count; ++id) {
|
|
if (id != g_main_device && src0_extra->events[id]) {
|
|
CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams_main[g_main_device], src0_extra->events[id]));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dst->backend == GGML_BACKEND_CPU) {
|
|
CUDA_CHECK(cudaSetDevice(g_main_device));
|
|
CUDA_CHECK(cudaDeviceSynchronize());
|
|
}
|
|
}
|
|
|
|
void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
// ggml_cuda_add permits f16 dst even though this could in theory cause problems with the pointer arithmetic in ggml_cuda_op.
|
|
// Due to flatten_rows == true this does in practice not make a difference however.
|
|
// Better solution would be nice but right now that would require disproportionate changes.
|
|
GGML_ASSERT(
|
|
(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16) &&
|
|
src1->type == GGML_TYPE_F32 &&
|
|
(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16));
|
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_add, false, true);
|
|
}
|
|
|
|
void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul, true, false); // TODO ggml_cuda_op needs modification for flatten
|
|
}
|
|
|
|
void ggml_cuda_gelu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_gelu, true, true);
|
|
}
|
|
|
|
void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_silu, true, true);
|
|
}
|
|
|
|
void ggml_cuda_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_norm, true, true);
|
|
}
|
|
|
|
void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rms_norm, true, true);
|
|
}
|
|
|
|
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
|
const int64_t ne10 = src1->ne[0];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
|
|
// TODO: find the optimal values for these
|
|
if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
|
|
src1->type == GGML_TYPE_F32 &&
|
|
dst->type == GGML_TYPE_F32 &&
|
|
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
|
|
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
|
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
|
|
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
|
|
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
|
|
const int64_t ne12 = src1->ne[2];
|
|
|
|
CUDA_CHECK(cudaSetDevice(g_main_device));
|
|
cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];
|
|
|
|
struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
|
void * src0_ddq = src0_extra->data_device[g_main_device];
|
|
|
|
struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
|
|
float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
|
|
|
|
struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
|
float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
|
|
|
|
ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, cudaStream_main);
|
|
}
|
|
|
|
void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
|
|
GGML_ASSERT(!ggml_is_contiguous(src0) && ggml_is_contiguous(src1));
|
|
GGML_ASSERT(!ggml_is_permuted(src0));
|
|
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
|
|
const int64_t ne12 = src1->ne[2];
|
|
|
|
const int64_t nb01 = src0->nb[1];
|
|
const int64_t nb02 = src0->nb[2];
|
|
|
|
CUDA_CHECK(cudaSetDevice(g_main_device));
|
|
cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];
|
|
|
|
struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
|
void * src0_ddq = src0_extra->data_device[g_main_device];
|
|
|
|
struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
|
|
float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
|
|
|
|
struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
|
float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
|
|
|
|
const int row_stride_x = nb01 / sizeof(half);
|
|
const int channel_stride_x = nb02 / sizeof(half);
|
|
|
|
ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, cudaStream_main);
|
|
}
|
|
|
|
void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
bool all_on_device = (src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
|
|
src1->backend == GGML_BACKEND_GPU && dst->backend == GGML_BACKEND_GPU;
|
|
|
|
if (all_on_device && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
|
|
ggml_cuda_mul_mat_vec_p021(src0, src1, dst);
|
|
} else if (all_on_device && !ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && src1->ne[1] == 1) {
|
|
ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
|
|
}else if (src0->type == GGML_TYPE_F32) {
|
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true, false);
|
|
} else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) {
|
|
if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0) {
|
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_vec, false, false);
|
|
} else {
|
|
int min_compute_capability = INT_MAX;
|
|
for (int id = 0; id < g_device_count; ++id) {
|
|
if (min_compute_capability > g_compute_capabilities[id]
|
|
&& g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) {
|
|
min_compute_capability = g_compute_capabilities[id];
|
|
}
|
|
}
|
|
|
|
if (g_mul_mat_q && ggml_is_quantized(src0->type) && min_compute_capability >= MIN_CC_DP4A) {
|
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_q, false, false);
|
|
} else {
|
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true, false);
|
|
}
|
|
}
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_scale, true, true);
|
|
}
|
|
|
|
void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
const int64_t ne = ggml_nelements(src0);
|
|
GGML_ASSERT(ne == ggml_nelements(src1));
|
|
|
|
GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
|
|
GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
|
|
|
|
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
|
|
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
GGML_ASSERT(src0->ne[3] == 1);
|
|
|
|
const int64_t nb00 = src0->nb[0];
|
|
const int64_t nb01 = src0->nb[1];
|
|
const int64_t nb02 = src0->nb[2];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
GGML_ASSERT(src1->ne[3] == 1);
|
|
|
|
const int64_t nb10 = src1->nb[0];
|
|
const int64_t nb11 = src1->nb[1];
|
|
const int64_t nb12 = src1->nb[2];
|
|
|
|
CUDA_CHECK(cudaSetDevice(g_main_device));
|
|
cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];
|
|
|
|
const struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
|
const struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
|
|
|
|
char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
|
|
char * src1_ddc = (char *) src1_extra->data_device[g_main_device];
|
|
|
|
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
|
|
ggml_cpy_f32_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
|
|
ne10, ne11, nb10, nb11, nb12, cudaStream_main);
|
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
|
|
ggml_cpy_f32_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
|
|
ne10, ne11, nb10, nb11, nb12, cudaStream_main);
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
(void) dst;
|
|
}
|
|
|
|
void ggml_cuda_dup(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
ggml_cuda_cpy(src0, dst, nullptr);
|
|
(void) src1;
|
|
}
|
|
|
|
void ggml_cuda_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_diag_mask_inf, true, true);
|
|
}
|
|
|
|
void ggml_cuda_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_soft_max, true, true);
|
|
}
|
|
|
|
void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
|
|
|
const int mode = ((int32_t *) dst->op_params)[2];
|
|
const bool is_glm = mode & 4;
|
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, !is_glm); // flatten support not implemented for glm
|
|
}
|
|
|
|
void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
(void) src0;
|
|
(void) src1;
|
|
(void) dst;
|
|
}
|
|
|
|
void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
|
|
int nrows = ggml_nrows(tensor);
|
|
|
|
const int64_t ne0 = tensor->ne[0];
|
|
|
|
const size_t nb1 = tensor->nb[1];
|
|
|
|
ggml_backend backend = tensor->backend;
|
|
struct ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu;
|
|
memset(extra, 0, sizeof(*extra));
|
|
|
|
for (int id = 0; id < g_device_count; ++id) {
|
|
if (backend == GGML_BACKEND_GPU && id != g_main_device) {
|
|
continue;
|
|
}
|
|
|
|
cudaSetDevice(id);
|
|
|
|
int row_low, row_high;
|
|
if (backend == GGML_BACKEND_GPU) {
|
|
row_low = 0;
|
|
row_high = nrows;
|
|
} else if (backend == GGML_BACKEND_GPU_SPLIT) {
|
|
row_low = id == 0 ? 0 : nrows*g_tensor_split[id];
|
|
row_low -= row_low % GGML_CUDA_MMQ_Y;
|
|
|
|
if (id == g_device_count - 1) {
|
|
row_high = nrows;
|
|
} else {
|
|
row_high = nrows*g_tensor_split[id + 1];
|
|
row_high -= row_high % GGML_CUDA_MMQ_Y;
|
|
}
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
if (row_low == row_high) {
|
|
continue;
|
|
}
|
|
|
|
int64_t nrows_split = row_high - row_low;
|
|
|
|
const size_t offset_split = row_low*nb1;
|
|
size_t size = ggml_nbytes_split(tensor, nrows_split);
|
|
const size_t original_size = size;
|
|
|
|
// pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
|
|
if (ne0 % MATRIX_ROW_PADDING != 0) {
|
|
size += (MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING)
|
|
* ggml_type_size(tensor->type)/ggml_blck_size(tensor->type);
|
|
}
|
|
|
|
char * buf;
|
|
CUDA_CHECK(cudaMalloc(&buf, size));
|
|
char * buf_host = (char*)data + offset_split;
|
|
|
|
// set padding to 0 to avoid possible NaN values
|
|
if (size > original_size) {
|
|
CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
|
|
}
|
|
|
|
|
|
CUDA_CHECK(cudaMemcpy(buf, buf_host, original_size, cudaMemcpyHostToDevice));
|
|
|
|
extra->data_device[id] = buf;
|
|
|
|
if (backend == GGML_BACKEND_GPU_SPLIT) {
|
|
CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id], cudaEventDisableTiming));
|
|
}
|
|
}
|
|
|
|
tensor->extra = extra;
|
|
}
|
|
|
|
void ggml_cuda_free_data(struct ggml_tensor * tensor) {
|
|
if (!tensor || (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) ) {
|
|
return;
|
|
}
|
|
|
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
|
|
|
for (int id = 0; id < g_device_count; ++id) {
|
|
if (extra->data_device[id] != nullptr) {
|
|
CUDA_CHECK(cudaSetDevice(id));
|
|
CUDA_CHECK(cudaFree(extra->data_device[id]));
|
|
}
|
|
|
|
if (extra->events[id] != nullptr) {
|
|
CUDA_CHECK(cudaSetDevice(id));
|
|
CUDA_CHECK(cudaEventDestroy(extra->events[id]));
|
|
}
|
|
}
|
|
|
|
delete extra;
|
|
}
|
|
|
|
static struct ggml_tensor_extra_gpu * g_temp_tensor_extras = nullptr;
|
|
static size_t g_temp_tensor_extra_index = 0;
|
|
|
|
static struct ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
|
|
if (g_temp_tensor_extras == nullptr) {
|
|
g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_MAX_NODES];
|
|
}
|
|
|
|
size_t alloc_index = g_temp_tensor_extra_index;
|
|
g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_MAX_NODES;
|
|
struct ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index];
|
|
memset(extra, 0, sizeof(*extra));
|
|
|
|
return extra;
|
|
}
|
|
|
|
void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bool force_inplace) {
|
|
if (scratch && g_scratch_size == 0) {
|
|
return;
|
|
}
|
|
|
|
// recursively assign CUDA buffers until a compute tensor is found
|
|
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_CPU) {
|
|
const ggml_op src0_op = tensor->src[0]->op;
|
|
if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW || src0_op == GGML_OP_PERMUTE) {
|
|
ggml_cuda_assign_buffers_impl(tensor->src[0], scratch, force_inplace);
|
|
}
|
|
}
|
|
if (tensor->op == GGML_OP_CPY && tensor->src[1]->backend == GGML_BACKEND_CPU) {
|
|
ggml_cuda_assign_buffers_impl(tensor->src[1], scratch, force_inplace);
|
|
}
|
|
|
|
tensor->backend = GGML_BACKEND_GPU;
|
|
struct ggml_tensor_extra_gpu * extra;
|
|
|
|
const bool inplace = (tensor->src[0] != nullptr && tensor->src[0]->data == tensor->data) ||
|
|
tensor->op == GGML_OP_VIEW ||
|
|
force_inplace;
|
|
const size_t size = ggml_nbytes(tensor);
|
|
|
|
CUDA_CHECK(cudaSetDevice(g_main_device));
|
|
if (inplace && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) {
|
|
struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra;
|
|
char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
|
|
size_t offset = 0;
|
|
if (tensor->op == GGML_OP_VIEW) {
|
|
memcpy(&offset, tensor->op_params, sizeof(size_t));
|
|
}
|
|
extra = ggml_cuda_alloc_temp_tensor_extra();
|
|
extra->data_device[g_main_device] = src0_ddc + offset;
|
|
} else if (tensor->op == GGML_OP_CPY) {
|
|
struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu * ) tensor->src[1]->extra;
|
|
void * src1_ddv = src1_extra->data_device[g_main_device];
|
|
extra = ggml_cuda_alloc_temp_tensor_extra();
|
|
extra->data_device[g_main_device] = src1_ddv;
|
|
} else if (scratch) {
|
|
GGML_ASSERT(size <= g_scratch_size);
|
|
if (g_scratch_offset + size > g_scratch_size) {
|
|
g_scratch_offset = 0;
|
|
}
|
|
|
|
char * data = (char *) g_scratch_buffer;
|
|
if (data == nullptr) {
|
|
CUDA_CHECK(cudaMalloc(&data, g_scratch_size));
|
|
g_scratch_buffer = data;
|
|
}
|
|
extra = ggml_cuda_alloc_temp_tensor_extra();
|
|
extra->data_device[g_main_device] = data + g_scratch_offset;
|
|
|
|
g_scratch_offset += size;
|
|
|
|
GGML_ASSERT(g_scratch_offset <= g_scratch_size);
|
|
} else { // allocate new buffers outside of scratch
|
|
void * data;
|
|
CUDA_CHECK(cudaMalloc(&data, size));
|
|
CUDA_CHECK(cudaMemset(data, 0, size));
|
|
extra = new ggml_tensor_extra_gpu;
|
|
memset(extra, 0, sizeof(*extra));
|
|
extra->data_device[g_main_device] = data;
|
|
}
|
|
|
|
tensor->extra = extra;
|
|
}
|
|
|
|
void ggml_cuda_assign_buffers(struct ggml_tensor * tensor) {
|
|
ggml_cuda_assign_buffers_impl(tensor, true, false);
|
|
}
|
|
|
|
void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor) {
|
|
ggml_cuda_assign_buffers_impl(tensor, false, false);
|
|
}
|
|
|
|
void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor) {
|
|
ggml_cuda_assign_buffers_impl(tensor, false, true);
|
|
}
|
|
|
|
void ggml_cuda_set_main_device(int main_device) {
|
|
if (main_device >= g_device_count) {
|
|
fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n",
|
|
main_device, g_device_count, g_main_device);
|
|
return;
|
|
}
|
|
g_main_device = main_device;
|
|
if (g_device_count > 1) {
|
|
cudaDeviceProp prop;
|
|
CUDA_CHECK(cudaGetDeviceProperties(&prop, g_main_device));
|
|
fprintf(stderr, "%s: using device %d (%s) as main device\n", __func__, g_main_device, prop.name);
|
|
}
|
|
}
|
|
|
|
void ggml_cuda_set_mul_mat_q(bool mul_mat_q) {
|
|
g_mul_mat_q = mul_mat_q;
|
|
}
|
|
|
|
void ggml_cuda_set_scratch_size(size_t scratch_size) {
|
|
g_scratch_size = scratch_size;
|
|
}
|
|
|
|
void ggml_cuda_free_scratch() {
|
|
if (g_scratch_buffer == nullptr) {
|
|
return;
|
|
}
|
|
|
|
CUDA_CHECK(cudaFree(g_scratch_buffer));
|
|
g_scratch_buffer = nullptr;
|
|
}
|
|
|
|
bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor){
|
|
ggml_cuda_func_t func;
|
|
const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
|
|
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
|
|
|| (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);
|
|
|
|
switch (tensor->op) {
|
|
case GGML_OP_DUP:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cuda_dup;
|
|
break;
|
|
case GGML_OP_ADD:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cuda_add;
|
|
break;
|
|
case GGML_OP_MUL:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cuda_mul;
|
|
break;
|
|
case GGML_OP_UNARY:
|
|
switch (ggml_get_unary_op(tensor)) {
|
|
case GGML_UNARY_OP_GELU:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cuda_gelu;
|
|
break;
|
|
case GGML_UNARY_OP_SILU:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cuda_silu;
|
|
break;
|
|
default:
|
|
return false;
|
|
} break;
|
|
case GGML_OP_NORM:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cuda_norm;
|
|
break;
|
|
case GGML_OP_RMS_NORM:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cuda_rms_norm;
|
|
break;
|
|
case GGML_OP_MUL_MAT:
|
|
if (!any_on_device && !ggml_cuda_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
|
|
return false;
|
|
}
|
|
func = ggml_cuda_mul_mat;
|
|
break;
|
|
case GGML_OP_SCALE:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cuda_scale;
|
|
break;
|
|
case GGML_OP_CPY:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cuda_cpy;
|
|
break;
|
|
case GGML_OP_CONT:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cuda_dup;
|
|
break;
|
|
case GGML_OP_RESHAPE:
|
|
case GGML_OP_VIEW:
|
|
case GGML_OP_PERMUTE:
|
|
case GGML_OP_TRANSPOSE:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cuda_nop;
|
|
break;
|
|
case GGML_OP_DIAG_MASK_INF:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cuda_diag_mask_inf;
|
|
break;
|
|
case GGML_OP_SOFT_MAX:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cuda_soft_max;
|
|
break;
|
|
case GGML_OP_ROPE:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cuda_rope;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
if (params->ith != 0) {
|
|
return true;
|
|
}
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return true;
|
|
}
|
|
func(tensor->src[0], tensor->src[1], tensor);
|
|
return true;
|
|
}
|